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Abstract

In this present paper the basic two-dimensional second BVP of statics of elastic

transversally isotropic binary mixtures is investigated for an infinite strip. The solution

of the basic BVP for the anisotropic strip is given in [1]. The present paper is an at-

tempt to use this method for BVP of elastic mixture theory for a transversally-isotropic

elastic strip. Using the potential method and the Fourier method, we solve effectively

(in quadratures) the second BVP that has not been solved before.
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We say that a body is subject to a plane deformation if the second
components u′2 and u”2 of the partial displacements vectors u′(u′1, u

′
2, u

′
3)

and u”(u”1, u”2, u”3) vanish and the other components are functions of
the variables only x1, x3. Then the basic homogeneous equations of statics
of the transversally isotropic elastic binary mixtures theory in the case of
plane deformation can be written in the form [2]

C(∂x)U =
(

C(1)(∂x) C(3)(∂x)
C(3)(∂x) C(2)(∂x)

)
U = 0, (1)

where the components of the matrix C(j)(∂x) = ‖C(j)
pq (∂x)‖2x2 are given in

the form

C
(j)
pq = C

(j)
qp , j = 1, 2, 3; p, q = 1, 2, C

(j)
11 (∂x) = c

(j)
11

∂2

∂x2
1

+ +c
(j)
44

∂2

∂x2
3

,

C
(j)
12 (∂x) = (c(j)

13 + c
(j)
44 )

∂2

∂x1∂x3
, C

(j)
22 (∂x) = c

(j)
44

∂2

∂x2
1

+ c
(j)
33

∂2

∂x2
3

,

c
(k)
pq are constants, characterizing the physical properties of the mixture

and satisfying certain inequalities caused by the positive definiteness of
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potential energy.U = UT (x) = (u′, u′′) is four-dimensional displacement
vector-function, u′(x) = (u′1, u

′
3) and u′′(x) = (u′′1, u

′′
3) are partial displace-

ment vectors depending on the variables x1, x3. Throughout this paper
superscript T denotes transposition.

The stress vector is defined as follows [2]

T (∂x, n)U =
(

T (1)(∂x, n) T (3)(∂x, n)
T (3)(∂x, n) T (2)(∂x, n)

)
U, (2)

where

T j(∂x, n) =

(
c
(j)
11 n1∂x1 + c

(j)
44 n3∂x3 c

(j)
13 n1∂x3 + c

(j)
44 n3∂x1

c
(j)
44 n1∂x3 + c

(j)
13 n3∂x1 c

(j)
44 n1∂x1 + c

(j)
33 n3∂x3

)
, (3)

where n1, n3 are the components of normal vector, ∂xk =
∂

∂xk
.

Let D denote an infinite transversally isotropic binary mixtures strip
0 < x3 < h,∞ < x1 < ∞. Introduce the definition of a regular vector
function.

Definition 1.A vector-function U(x) defined in the domain D, is called
regular if it has integrable continuous second derivatives in D and U(x) itself
and its first derivatives are continuously extendable at every point of the
boundary of D ( i.e. U(x) ∈ C2(D)∩C1(D)), and the following conditions
at infinity are added:

U(x) = O(1),
∂U

∂xk
= O(|x|−1), |x|2 = x2

1 + x2
3, k = 1, 3,

where O(1) denotes a bounded function.
For the equation (1) the second BVP for an infinite strip is formulated

as follows:
Problem 2. Find a regular function U(x) = U(x1, x3), satisfying in

D the equation (1), when on the boundary of the domain D the following
conditions are given in the form

TU = f(x1), x3 = 0, TU = F (x1), x3 = h,

where f and F are given vector functions satisfying certain smoothness
conditions and also the conditions at infinity.

A solution of the second BVP is sought in the domain D in the form

U(x) =
1√
2π

∞∫

∞

4∑

k=1

[R(k)T Leipαkx3X(p)+

R(k)T Le−ipαk(h−x3)Y (p)]eipx1
dp

ip
,

(4)

34
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where X(p) and Y (p) are unknown vector functions, αk = i
√

aksgnp, αk =
−ip

√
aksgnp, ak > 0, k = 1, .., 4 are the roots of the characteristic equa-

tion [see [3],[4]]. Let a1 < a2 < a3 < a4. Since ipαk = −|p|√ak,−ipαk =
−|p|√ak, the functions exp (ipαkx3) and exp(−ipαkx3) tend to zero as
p →∞,

R(k) = ‖R(k)
pq ‖4x4, p, q = 1, 2, 3, 4,

R
(k)
1j = αk(c

(1)
44 A

(k)
1j + c

(3)
44 A

(k)
j3 ) + c

(1)
44 A

(k)
j2 + c

(3)
44 A

(k)
j4 , R

(k)
2j = −α−1

k R
(k)
1j ,

R
(k)
3j = αk(c

(3)
44 A

(k)
1j + c

(2)
44 A

(k)
j3 ) + c

(3)
44 A

(k)
j2 + c

(2)
44 A

(k)
j4 ,

R
(k)
4j = −α−1

k R
(k)
3j , j = 1, 2, 3, 4,

(5)
A

(k)
pq are given in [3],[4] and R(k)T L denotes the complex conjugate matrix

of R(k)T L,

L = 1
∆1∆2




L33∆2 0 − L13∆2 0
0 L44∆1 0 − L24∆1

−L13∆2 0 L11∆2 0
0 − L24∆1 0 L22∆1


 , (6)

L11 = −∆q4[a44B1 + (b11 + 2a34)A1 + a33D1],

A1 = −B0m3, B1 = Bom1, C1 = −A1 + B1m2

α1α2α3α4
,

L13 = ∆q4[a24B1 + (−b33 + a14 + a23)A1 + a13D1],
L22 = −∆q4[a44C1 + (b11 + 2a34)B1 + a33A1],
D1 = −A1m2 −B1α1α2α3α4,
L24 = ∆q4[a24C1 + (−b33 + a14 + a23)B1 + a13A1],
L33 = −∆q4[a22B1 + (b22 + 2a12)A1 + a11D1],
∆1 = L11L33 − L2

13,∆2 = L22L44 − L2
24,

L44 = −∆q4[a22C1 + (b22 + 2a12)B1 + a11A1],
∆2 = [b4(m1m3 − 2

√
a1a2a3a4) + q4∆m0]q4∆B0 > 0,

m0 = (a11a44 + a33a22 − 2a13a24), ∆1 =
√

a1a2a3a4∆2,

m1 =
4∑

k=1

αk,m2 = α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4,

m3 = α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4,

B−1
0 = (α1 + α2)(α1 + α3)(α1 + α4)(α2 + α3)(α2 + α4)(α3 + α4).
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Between the coefficients apq, bpp and c
(j)
pq there are the relations

a11∆ = c
(2)
11 q3 − c

(1)
33 c

(2)2
13 + 2c

(2)
13 c

(3)
13 c

(3)
33 − c

(2)
33 c

(2)2
13 > 0,

a12∆ = c
(2)
13 (c(1)

13 c
(2)
13 − c

(3)2
13 )− c

(1)
13 c

(2)
11 c

(2)
33 − c

(2)
13 c

(3)
11 c

(3)
33

+c
(3)
13 (c(2)

11 c
(3)
33 + c

(3)
11 c

(2)
33 ),

a13∆ = −c
(3)
11 q3 + c

(2)
33 c

(1)
13 c

(3)
13 + c

(1)
33 c

(2)
13 c

(3)
13 − c

(3)
33 (c(1)

13 c
(2)
13 + c

(3)2
13 ),

a14∆ = −c
(3)
13 (c(1)

13 c
(2)
13 − c

(3)2
13 ) + c

(1)
13 c

(2)
11 c

(3)
33 + c

(2)
13 c

(3)
11 c

(1)
33

−c
(3)
13 (c(2)

11 c
(1)
33 + c

(3)
11 c

(3)
33 ),

a23∆ = −c
(3)
13 (c(1)

13 c
(2)
13 − c

(3)2
13 ) + c

(1)
13 c

(3)
11 c

(2)
33 + c

(2)
13 c

(1)
11 c

(3)
33

−c
(3)
13 (c(1)

11 c
(2)
33 + c

(3)
11 c

(3)
33 ),

a22∆ = c
(2)
33 q1 − c

(1)
11 c

(2)2
13 + 2c

(2)
13 c

(3)
13 c

(3)
11 − c

(2)
11 c

(2)2
13 > 0,

a24∆ = −c
(3)
33 q1 + c

(2)
11 c

(1)
13 c

(3)
13 + c

(2)
13 c

(3)
13 c

(1)
11 − c

(3)
11 (c(1)

13 c
(2)
13 + c

(3)2
13 ),

a33∆ = c
(1)
11 q3 − c

(2)
33 c

(1)2
13 + 2c

(1)
13 c

(3)
13 c

(3)
33 − c

(1)
33 c

(3)2
13 > 0,

a34∆ = c
(1)
13 (c(1)

13 c
(2)
13 − c

(3)2
13 )− c

(2)
13 c

(1)
11 c

(1)
33 − c

(1)
13 c

(3)
11 c

(3)
33 + c

(3)
13 (c(1)

11 c
(3)
33 + c

(3)
11 c

(1)
33 ),

a44∆ = c
(1)
33 q1 − c

(2)
11 c

(1)2
13 + 2c

(1)
13 c

(3)
13 c

(3)
11 − c

(1)
11 c

(3)2
13 > 0,

∆ = (c(1)
11 a11 + c

(2)
11 a33 + 2c

(3)
11 a13)∆− q1q3 + (c(1)

13 c
(2)
13 − c

(3)2
13 ) > 0,

bjj = c
(j)
44 q−1

4 > 0, j = 1, 2, 3.

After elementary calculations, from (4) we obtain for the stress vector

TU =
1√
2π

∞∫

∞

4∑

k=1

[L(k)L exp(ipαkx3)X(p)

+L(k)L exp(ipαk(h− x3)Y (p)] exp(ipx1)(n1αk − n3)dp,

(7)

where the matrix L(k)(∂x) = ‖L(k)
pq (∂x)‖4x4 is given in the form

L(k) =




α2
kL

(k)
22 − αkL

(k)
22 α2

kL
(k)
24 − αkL

(k)
24

−αkL
(k)
22 L

(2)
22 − αkL

(k)
24 L

(k)
24

α2
kL

(k)
24 − αkL

(k)
24 α2

kL
(k)
44 − αkL

(k)
44

−αkL
(k)
24 L

(k)
24 − αkL

(k)
44 L

(k)
44


 ,

L
(k)
22 = −∆q4dk[a44 + α2

k(b11 + 2a34) + a33α
4
k],

L
(k)
24 = ∆q4dk[a24 + α2

k(−b33 + a14 + a23) + a13α
4
k],

L
(k)
44 = −∆q4dk[a22 + α2

k(b22 + 2a12) + a11α
4
k],

In what follows, when the point x lies on the boundary D, i.e. x3 = 0 or
x3 = h, in the expression for the stress vector we will always suppose that
n1 = 0 and n3 = −1. Taking into account this remark and the boundary
conditions,for determining the unknown vector functions X(p) and Y (p),
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from (7) we obtain the following equations

X(p) + QY (p) = f̂ = 1√
2π

∞∫
∞

f(ξ)e−ipξdξ,

QX(p) + Y (p) = F̂ = 1√
2π

∞∫
∞

F (ξ)e−ipξdξ,
(8)

Here we have introduced the notation

Q =
4∑

k=1

L(k)Le−|p|
√

akh, Q =
4∑

k=1

L(k)Le−|p|
√

akh.

f̂ , F̂ are Fourier transforms of the functions f and F respectively. Hence

(E −QQ)X(p) = f̂ −QF̂ , (E −QQ)Y (p) = −Qf̂ + F̂ ,

where E is the unit matrix. Denote D = det(E − QQ). After some cum-
bersome transformation we find that

D(p) = (1− λ2
1)(1− λ2

2)(1− λ2
3)(1− λ2

4)

+
16

∆1∆2
{α1α2h12(λ1 − λ3)(λ2 − λ4) + α1α3h13(λ3 − λ4)(λ1 − λ2)}2

+
4α1α2α3

∆1∆2
{α1h12h13[(1− λ2

2)(1− λ2
3)(λ1 − λ4)2

(α2 − α3)2

α2α3

+(1− λ2
4)(1− λ2

1)(λ2 − λ3)2
(α1 − α4)2

α1α4
]

+α2h12h23[(1− λ2
1)(1− λ2

3)(λ2 − λ4)2
(α1 − α3)2

α1α3

+(1− λ2
2)(1− λ2

4)(λ1 − λ3)2
(α2 − α4)2

α2α4
]

+α1h13h23[(1− λ2
1)(1− λ2

2)(λ3 − λ4)2
(α1 − α2)2

α1α2

+(1− λ2
3)(1− λ2

4)(λ1 − λ2)2
(α3 − α4)2

α3α4
]} = det(E −QQ),

λk = e−|p|h
√

ak ,
(9)

where

h12 =
∆q4[−b4(a1a2 + a3a4) + m0∆q4]√

a1a2(a1 − a3)(a1 − a4)(a2 − a3)(a2 − a4)
,

h13 = − ∆q4[−b4(a1a3 + a2a4) + m0∆q4]√
a1a3(a1 − a2)(a1 − a4)(a2 − a3)(a3 − a4)

,

h23 =
∆q4[−b4(a2a3 + a1a4) + m0∆q4]√

a3a2(a1 − a2)(a2 − a4)(a1 − a3)(a3 − a4)
.
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From (9) we can show, that in the vicinity of the point p = 0 the function
D(p) has zero of sixth order and moreover lim

|p|→∞
D(p) = 1. Then on the

basis of the uniqueness theorem for the second BVP , we conclude that
D 6= 0, p ∈ (0, +∞). Thus from the system (8) we uniquely define X and
Y :

X = (E −QQ)−1(f̂ −QF̂ ), Y = (E −QQ)−1(F̂ −Qf̂). (10)

If we substitute this expressions into (7) the stress vector takes the form

TU =
1√
2π

∞∫

∞

4∑

k=1

[L(k)Leipαkx3(E −QQ)−1(f̂ −QF̂ )

+L(k)Leipαk(h−x3)(E −QQ)−1(F̂ −Qf̂)]eipx1dp.

(11)

The conditions of vanishing of the principal vectors and of the principal
moment of external forces

∞∫
∞

f(ξ)dξ =
∞∫
∞

F (ξ)dξ,
∞∫
∞

ξ(F2(ξ)− f2(ξ))dξ = h
∞∫
∞

F1(ξ)dξ,

∞∫
∞

ξ(F4(ξ)− f4(ξ))dξ = h
∞∫
∞

F3(ξ)dξ,

will take the form

f̂(0) = F̂ (0), f̂ ′2(0)− F̂ ′
2(0) = ihF̂ ′

1(0), f̂ ′4(0)− F̂ ′
4(0) = ihF ′

3(0).

On the basis of this conditions we conclude, that the integrand in (11)
remains bounded at the point p = 0.

Substituting X(p) and Y into (4),we obtain an expression for the dis-
placement vector

U(x) =
1√
2π

∞∫

∞

4∑

k=1

[R(k)T Leipαkx3(E −QQ)−1(f̂ −QF̂ )

+R(k)T Le−ipαk(h−x3)(E −QQ)−1(F̂ −Qf̂)]eipx1
dp

ip
.

(12)

But in this case the integrant possesses a singularity at the point p = 0.
To get rid of the singularity, it is necessary to assume that

u(0) = 0,
(

∂u′3
∂x1

− ∂u′1
∂x3

)

x=0

= 0,

(
∂u′′3
∂x1

− ∂u′′1
∂x3

)

x=0

= 0. (13)

Now the integrand in (12) is bounded at the point p = 0. Thus we have
proved the following result.
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For the solvability of second BVP problem it is necessary that the prin-
cipal vector and the principal moment of external forces be equal to zero.
Moreover it is also necessary that the boundary values be absolutely inte-
grable vectors. To ensure the boundedness of the displacement vector, one
has to require additionally the fulfilment of condition (13).
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