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Abstract

General questions of the theory of optimal stopping for an inhomogeneous Markov

process with observation cost are investigated. The connection between optimal stop-

ping problems for an inhomogeneous standard Markov process and the corresponding

homogeneous Markov process constructed in the extended state space is established.

A detailed characterization of a value-function and the limit procedure for its con-

struction in the problem of optimal stopping of an inhomogeneous standard Markov

process is given. The form of ε-optimal (optimal) stopping times is also found.
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1 Introduction

General questions of the theory of optimal stopping of a homogeneous stan-
dard Markov process are set forth in the monograph [1]. An excessive
characterization of the payoff, the methods of its construction, the form of
ε-optimal and optimal stopping times are given in various restrictions on
the gain function.

In the present work, the questions of optimal stopping theory for an
inhomogeneous (with infinite lifetime) standard Markov process with the
observation cost are studied. By extending the state space and the space
of elementary events the problems of optimal stopping for the inhomoge-
neous case can be reduced to the corresponding problems for homogeneous
standard Markov processes from which an excessive characterization of a
value-function, the method of its construction and the form of ε-optimal
(optimal) stopping times for the initial problem are found.

It should be noted that using the method of state space extension in
the papers [2], [5], [7], the form of ε-optimal stopping times was established
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for the case of optimal stopping of homogeneous Markov processes on a
bounded time interval.

Here we consider the inhomogeneous (with infinite lifetime) standard
Markov process

X = (Ω,Ms,Ms
t , Xt, Ps,x), 0 ≤ s ≤ t < +∞,

in the state space (E,B), [3], [6].
Let the gain function f(t, x) and the observation cost c(t, x) ≥ 0 be

Borel measurable functions (i.e. measurable with respect to the product σ-
algebra B′ = B[0, +∞)⊗B) which is defined on E′ = [0, +∞)×E and f(t, x)
takes its values in (−∞, +∞]. It is assumed the observation stopping time
t we obtain a gain

g(t, x) = f(t, x)−
t∫

0

c(s,Xs) ds.

It is further assumed that the following integrability condition of a ran-
dom process g(t,Xt(ω)), t ≥ 0, is fulfilled:

Ms,x sup
t≥s

g−(t,Xt) < +∞, s ≥ 0, x ∈ E. (1)

The optimal stopping problem for the process X with gain g(t, x) is
stated as follows: the value-function (payoff) v(s, x) is introduced in the
form

v(s, x) = sup
τ∈Ms

Ms,xg(τ,Xτ ), (2)

where Ms is the class of all finite (Ps,x-a.s.) M s
t , t ≥ s-stopping times; it is

required to find the stopping time τε (for each ε ≥ 0) for which

Ms,xg(τε, Xτε) ≥ v(s, x)− ε

for any x ∈ E.
Such a stopping time is called ε-optimal, and in the case ε = 0 it is

called simply an optimal stopping time.
To construct ε-optimal (optimal) stopping times it is necessary to char-

acterize the value v(s, x) and for this purpose the following notion of an
excessive function turns out to be fundamental.

A function f(t, x) given on E′ and taking its values in (−∞, +∞] such
that it is measurable with respect to the universal completion B′∗ of the
σ-algebra B′, is called excessive (with respect to X) if

1) Ms,xf−(t,Xt) < +∞, 0 ≤ s ≤ t < +∞, x ∈ E,

2) Ms,xf(t,Xt) ≤ f(s, x), t ≥ s, x ∈ E, (3)
3) Ms,xf(t,Xt) → f(s, x), if t ↓ s, x ∈ E.
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2 Construction of a Homogeneous Standard Markov
Process in the Extended State Space

Let us introduce now the new space of elementary events Ω′ = [0, +∞)×Ω
with elements ω′ = (s, ω), a new state space (extended state space) E′ =
[0, +∞)×E with the σ-algebra B′ = B[0,+∞)⊗B, the new random process
X ′ with values in (E′,B′)

X ′
t(ω

′) = X ′
t(s, ω) = (s + t,Xs+t(ω)), s ≥ 0, t ≥ 0,

and the translation operators Θ′
t

Θ′
t(s, ω) = (s + t, ω), s ≥ 0, t ≥ 0,

where it is obvious that

X ′
u(Θ′

t(ω
′)) = X ′

u+t(ω
′), u ≥ 0, t ≥ 0.

In the space Ω′ we introduce the σ-algebra

N0 = σ(X ′
u, u ≥ 0), N0

t = σ(X ′
u, 0 ≤ u ≤ t)

and on the σ-algebra N0 the probability measures

P ′
x′(A) = P ′

(s,x)(A) ≡ Ps,x(As),

where A ∈ N0 and As is the section of A at the point s

As = {ω : (s, x) ∈ A},
where it is easy to see that As ∈ Fs ≡ σ(Xu, u = s) and if a ∈ N0

t , then
As ∈ Fs

s+t ≡ σ(Xu, s ≤ u ≤ s + t).
Consider the function

P ′(h, x′, B′) ≡ P ′
x′(X

′
h ∈ B′).

We have to verify that this function is measurable in x′ for a fixed h ≥ 0.
For the rectangles B′ = Γ×B which generate the σ-algebra B′ we have

P ′(h, x′, B′) = Ps,x(ω : (s+h,Xs+h(ω)) ∈ Γ×B) = I(s+h∈Γ)Ps,x(Xs+h ∈ B).

The function P ′(h, x′, B′) is measurable in x′, and hence we can in-
troduce the measures P ′

µ′ on (E′,B′). Let us perform the completion of
σ-algebra N0 with respect to the family of all measures P ′

µ′ , denote this
completion by N ′ and then perform the completion of each σ-algebra N0

t

in N ′ with respect to the same family of measures denoting them by N ′
t .

The following key result (in a somewhat different form) was proved in
the paper [2].
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Theorem 2.1 The random process

X ′ = (Ω′, N ′, N ′
t , X

′
t,Θ

′
t, P

′
x′), t ≥ 0,

is a homogeneous standard Markov process in the space (E′,B′).

Proof. The main step in the proof is to verify that the process X ′
t, t ≥ 0 is

strong Markov, i.e. we have to show that

M ′
x′ [f

′(X ′
τ ′+h) · I(τ ′<∞)] = M ′

x′ [M
′
X′

τ ′
f ′(X ′

h)I(τ ′<∞)], (4)

where f ′(x′)is an arbitrary bounded B′-measurable function and τ ′ is an
arbitrary N0

t+-stopping time. Using the monotone class theorem, it suffices
to prove this relation for the indicator functions

f ′(x′) = I(s∈Γ) · I(x∈B).

Note that if τ ′(ω′) is an N0
t+-stopping time, then τ(ω) = s + τ ′(s, ω) is

a F0
t+, t ≥ s-stopping time where Fs

t = σ(Xu, s ≤ u ≤ t), t ≥ s.
We have

(ω : τ(ω) < t) = (ω : τ ′(s, ω) < t− s) = (ω′ : τ ′(ω′) < t− s)s,

but (ω′ : τ ′(ω′) < t− s) ∈ N0
t−s, therefore the section (ω′ : τ ′(ω′) < t− s)s

belongs to Fs
t . Thus τ(ω) is a Fs

t+, t ≥ s-stopping time and the variable
τ(ω) = s + τ ′(s, ω) is a Ms

t , t ≥ s-stopping time.
We know from Proposition 7.3, Ch. I in [3] that the strong Markov

property (4) of the process X ′ remains true for arbitrary N ′
t , t ≥ 0-stopping

times τ ′ and from Proposition 8.12, Ch. I in [3] we get that N ′
t = N ′

t+. The
quasi-left-continuity of the process X ′ now easily follows from the same
property of X. Theorem 1 is proved.

3 The Optimal Stopping Problem for Processes
X and X ′ and the Connection Between Them

Let f(x′) = f(s, x) be an arbitrary Borel measurable function (i.e. B′-
measurable) which is given on E′ and takes its values in (−∞, +∞]. Con-
sider the following sets

A =
{

ω′ : lim
t↓0

f(X ′
t) = f(X ′

0)
}

,

B =
{

ω′ : thepath f(X ′
t(ω

′)) is right continuouson [0, +∞)
}

.
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Obviously, the sections As and Bs can be written in the form

As =
{

ω : lim
t↓s

f(t,Xt(ω)) = f(s,Xs(ω))
}

,

Bs =
{

ω : the path f(t,Xt(ω)) is right continuous on [s,+∞)
}

.

Theorem 3.1 The sets A and B belong to N0∗ (N0∗ is the universal com-
pletion of N0) and the sections As and Bs belong to Fs∗ (Fs∗ is the uni-
versal completion of Fs = σ(Xu, u ≥ s)).

Further we have

P ′
s,x(A) = Ps,x(As), P ′

s,x(B) = Ps,x(Bs). (5)

Proof. The set A can be written as

A =
{

ω′ : lim
k→∞

sup
0<t< 1

k

f(X ′
t(ω

′)) = lim
k→∞

inf
0<t< 1

k

f(X ′
t(ω

′)) = f(X ′
0(ω

′))
}

.

We get from Theorem 13, Ch. III in [4] that the latter sets are N0-analytic
and hence they belong to the universal completion of N0. Thus the set A
itself belongs to N0∗. As for the set B, we get from Theorem 34, Ch. IV in
[4] that this set is a completion of the N0-analytic set, hence B ∈ N0∗. The
same reasoning shows that As and Bs belong to the universal completion
Fs∗ of the σ-algebra Fs. For the measure P ′

s,x and for the sets A and B
belonging to the universal completion of N0 there obviously exist sets A1,
A2, B1, B2 belonging to N0 such that

A1 ⊆ A ⊆ A2, B1 ⊆ B ⊆ B2, P ′
s,x(A1) = P ′

s,x(A) = P ′
s,x(A2), P ′

s,x(B1)

= P ′
s,x(B) = P ′

s,x(B2).

But by the definition of the measure P ′
s,x we have

P ′
s,x(A1) = P ′

s,x(A1
s),

P ′
s,x(A2) = Ps,x(A2

s), P
′
s,x(B1) = P ′

s,x(B1
s ),

P ′
s,x(B2) = Ps,x(B2

s ).

From these relations and the inclusions A1
s ⊆ As ⊆ A2

s, B1 ⊆ B ⊆ B2 it
easily follows that

P ′
s,x(A) = P ′

s,x(As), P ′
s,x(B) = Ps,x(Bs). (6)

Theorem 2 is proved.
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Let us consider the optimal stopping problem for the process X ′ with
the same gain g(x′) = g(s, x) (x′ = (s, x)) satisfying the conditions

M ′
x′ sup

t≥0
g−(X ′

t) < ∞, x′ ∈ E′, P ′
x′{ω′ : lim

t↓0
g(X ′

t) = g(x′)} = 1, x′ ∈ E′,

and with the value v′(x′) defined by

v′(x′) = sup
τ ′∈M′

M ′
x′g(X ′

τ ′), (7)

where M′ is the class of all finite (P ′
x′-a.s.) N ′

t , t ≥ 0-stopping times.
Our next step consists in establishing the connection between the value-

functions v(s, x) and v′(s, x).

Theorem 3.2 The values of the initial optimal stopping problem (9) coin-
cide

v(s, x) = v′(s, x), s ≥ 0, x ∈ E. (8)

Proof. Consider first the N ′
t , t ≥ 0-stopping time τ ′. By Proposition 7.3,

Ch. I in [3], for τ ′ and fixed x′ = (s, x) there exists an N0
t+, t ≥ 0-stopping

time τ̃ ′ such that P ′
x′(τ

′ = τ̃ ′) = 1. We have

M ′
x′g(X ′

τ̃ ′) = Ms,xg(s + τ̃ ′(s, ω), Xs+τ̃ ′(s,ω)) = = Ms,xg(τ(ω), Xτ(ω)),

where s+ τ̃ ′(s, ω) ≡ τ(ω) is anMs
t , t ≥ s-stopping time. Hence it is obvious

that
v′(s, x) ≤ v(s, x). (9)

It remains to establish that the opposite inequality it true. Denote by Mn
s

the class of all Ms
t , t ≥ s-stopping times taking their values from the finite

set
s, s + 2−n, . . . , s + k · 2−n, . . . , s + n.

Obviously,
Mn

s ⊆ Mn+1
s , n = 1, 2, . . . .

For every τ ∈ Ms define the sequence τn of stopping times

τn = { s + k2−n, if a + (k − 1)2−n ≤ τ < s + k2−n, s + n if τ ≥ s + n.

It is clear that τn ∈ Mn
s , and starting from some n(ω) the sequence

τn(ω) decreases to τ(ω). Using the right continuity of paths g(t,Xt(ω)),
t ≥ s (Ps,x-a.s.), we can write

g(τ,Xτ ) = lim
n→+∞ g(τn, Xτn) (Ps,x − a.s.).
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Hence by Fatou’s lemma we get

Ms,xg(τ, Xτ ) ≤ lim
n

Ms,xg(τn, Xτn).

Consequently,

v(s, x) = sup
τ∈⋃

n
Mn

s

Ms,xg(τ, Xτ ) = lim
n→+∞ sup

τ∈Mn
s

Ms,xg(τ,Xτ ).

Consider the expression

sup
τ∈Mn

s

Ms,xg(τ,Xτ )

which optimal stopping problem in the represents the value of the sequence

{g(s + k2−n, Xs+k2−n),Ms+k2−n}, k = 0, 1, . . . , n2−n.

It is well-known that for this problem there always exists an optimal stop-
ping time having form

σn = min {s + k2−n : γn
k = g(s + k2−n, Xs+k2−n)},

where the sequence γn
k is constricted recursively

γn
k = max

{
g(s + k2−n, Xs+k2−n),Ms,x(γn

k+1/Ms+k2−n)
}

.

It easily follows from these recursion relations that γn
k is a Borel function

of Xs+k2−n . Therefore σn has the following form

σn = min {s + k2−n : Xs+k2−n ∈ Bn
k },

where the sets Bn
k belong to the σ-algebra B.

Thus we get

v(s, x) = lim
n→+∞ ↑ Ms,xg(σn, Xσn).

Define now the corresponding N0
t , t ≥ 0-stopping times

σ′n = min {k2−n : X ′
k2−n ∈ [0, +∞)×Bn

k }.

We have

M ′
s,xg(X ′

σ′n) = Ms,xg(X ′
σ′n(s,ω)(s, ω)) =

= Ms,xg(s + σ′n(s, ω), Xs+σ′n(s,ω)(ω))
= Ms,xg(σn, Xσn)
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as s + σ′n(s, ω) = σn(ω). Therefore

Ms,xg(σn, Xσn) = M ′
s,xg(X ′

σ′n) ≤ v′(s, x).

Thus v(s, x) ≤ v′(s, x) and, finally, v(s, x) = v′(s, x). Theorem 3 is proved.

The next purpose is an excessive characterization of the payoff v(s, x).
Let us note (as can be easily seen) that our definition of a excessive func-
tion (with respect to X) coincides exactly with the usual definition of an
excessive function (with respect to X ′). Therefore we can directly use The-
orem 1, Ch. III in [1] and get the following result.

Theorem 3.3 Suppose that condition (1) is satisfied. Then the value v(s, x)
is a minimal excessive majorant of the function g(s, x). The value v(s, x)
is a Borel measurable function (i.e. B′-measurable) which can be found by
the limit procedure

v(s, x) = lim
n→+∞ lim

N→+∞
QN

n g(s, x), (10)

where
Qng(s, x) = max {g(s, x),Ms,xg(s + 2−n, X2+s−n)}

and QN
n is the N -th power of the operator Qn.

Proof. The assertion is a consequence of the coincidence of the values v(s, x)
and v′(s, x) and of Lemma 3, Ch. III in [3] which states that

v′(x′) = lim
n→+∞ lim

N→+∞
QN

n g(x′),

where
Qng(x′) = max {g(x′),M ′

x′g(X ′
2−n)}.

Note also that M ′
x′g(X ′

2−n) is B′-measurable in x′, hence the functions
Qng(x′), QN

n g(x′) and the function v′(x′), being the limit of these functions,
are also B′-measurable.

Thus the value v′(x′) is a Borel measurable excessive function (with
respect to X ′) which obviously satisfies the condition

M ′
x′ sup

t≥0
v′(X ′

t) < +∞, x′ ∈ E′.

Then, as is well-known (Theorem 2.12, Ch. II in [3]), the paths v(X ′
t(ω

′))
are right continuous with the left-hand limits on [0, +∞) (P ′

x′-a.s.). To
prove the main result of the present work we can now apply Theorem 3,
Ch. III in [1]. Theorem 4 is proved.
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Theorem 3.4 Let the gain g(t, x) satisfy (with respect to X) the following
conditions

1) Ms,x sup
t≥s

|g(t, Xt)| < +∞, s ≥ 0, x ∈ E;

2) Ps,x{ω : lim
t↓s

g(t,Xt(ω)) = g(s, x)} = 1, s ≥ 0, x ∈ E.

Then
i) for every ε > 0 the stopping times

τε = inf {t ≥ s : v(t,Xt) ≤ g(t,Xt) + ε} (11)

are ε-optimal;
ii) if the function g(t, x) is upper semi-continuous, that is

g(s, x) ≥ lim
t→s, y→x

g(t, y)

and the stopping time

τ0(ω) = inf {t ≥ s : v(t,Xt) = g(t,Xt)} (12)

is finite (Ps,x-a.s.), then τ0(ω) is an optimal stopping time.

Proof. From Theorem 3, Ch.III in [1] we know that for every ε > 0 the
stopping time

τ ′ε = inf {t : v(X ′
t) ≤ g(X ′

t) + ε}
is ε-optimal:

M ′
x′g(X ′

τ ′ε) ≥ v(x′)− ε, x′ ∈ E′,

that is
Ms,xg(s + τ ′ε(s, ω), Xs+τ ′ε(s,ω)(ω)) ≥ v(s, x)− ε.

But it is obvious that s + τ ′ε(s, ω) = τε(ω), hence

Ms,xg(τε, Xτε) ≥ v(s, x)− ε.

Assume now the upper semi-continuity of the function g(x′). Then from
the same theorem we get again that the stopping time

τ ′0 = inf {t ≥ 0 : v(X ′
t) = g(x′t)}

is optimal:
M ′

x′g(Xτ ′0) = v(x′).

From this, similarly to the previous reasoning, we get the optimality of
the stopping time τ0(ω). Theorem 5 is proved.
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