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Abstract

The paper presents the general procedure of solving of the equations of linear mul-

tivelocity neutron transport theory in plane geometry. Elementary solutions are found

and then it is proved that the general solutions can be formed by the superposition

of elementary solutions. As an application the Green’s function for a uniform infinite

medium is constructed.
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1 Introduction

We wish to present here a method for solving the transport equations de-
scribing multivelocity neutron diffusion. The motivation is manifold (see
[2]). First, conventional methods of treatment, such as converting to in-
tegral equations, become extremely complicated for anything but a single
uniform medium. Moreover, the solutions obtained for the integral equa-
tions are usually expressed as contour integrals. These are put in a tractable
form for numerical transformation only after many transformation. It is de-
sirable to find the transformed forms directly. Secondly, it may be hoped
that an alternate approach will throw light on the general subject and
suggest new methods for corresponded of inverse and nonlinear problems.
Thirdly, the usual methods of obtaining rigorous solutions of particular
problems are quite varied and seem to have no common bases, especially to
elementary approach familiar in the treatment of partial differential equa-
tions in which variables are separated and solutions expanded in normal
modes seems lacking.

The last remark contains the essence of the method to be discussed. It is
suggested by Van Kampen’s work [1] on the related problems of plasma os-
cillations. In 1955 N.G. Van Kampen made two important points. First he
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noted that in problems involving the transport equation it is sufficient that
admissible solutions be distributions in the sense of Schwartz. Secondly
he has shown that for the particular problem of a plasma these eigen-
distributions are complete. In 1960 K.M.Case showed that similar (but
more comprehensive) completeness properties hold for various one velocity
neutron diffusion problems. In addition an orthogonality property is found
which simplifies the expansion [2].In 1973 starting from Van Kampen’s and
K.Case’s observations that it is sufficient that ”solutions” be distributions,
there were found by us the elementary solutions of the homogeneous equa-
tion of multivelocity theory [4].

Attention here is restricted to the linear boundary value problems of
multivelocity neutron diffusion in plane geometry. In Section 2 solutions
of homogeneous form of Equations are discussed. As an application the
Green’s function for a uniform infinite medium is constructed in Section 3.
For the reader’s convenience our paper is written accordingly to the paper
of K.Case [2].

2 Elementary Solutions of the Homogeneous Equa-
tion

We consider the problems of multivelocity neutron diffusion. We look for
solutions of the homogeneous equation there. The idea (as in approach
of Case) is to construct special solutions appropriate to various boundary
conditions in terms of superpositions of the elementary solutions.

For illustration, we will restrict to the simplest form of multivelocity
transport equation

µ
∂Ψ
∂x

+ Ψ =
∫ E2

E1

∫ +1

−1
K(E, E′)Ψ(x, µ′, E′)dµ′dE′, (1)

x ∈ (−∞, +∞), µ ∈ (−1, +1), E ∈ [E1, E2],

where K is the real valued continuous, symmetric function.
Translational invariance suggests trying

Ψ(x, µ, E) = exp(−x/ν)φν(µ,E)

here ν is a parameter. With this assumption, Eq.(1) becomes

(ν − µ)φν(µ,E) = ν

∫ E2

E1

∫ +1

−1
Kφνdµ′dE′. (2)

It is seen that when ν ∈ [−1, 1] this equation admits continuous solution
only the zero.
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Let us denote

M(E) =
∫ E2

E1

∫ +1

−1
Kφνdµ′dE′,

then when ν /∈ [−1, 1] Eq.(2) leads to

M(E) = λ

∫ E2

E1

K(E,E′)M(E′)dE′, (3)

where
λ = ν ln

ν + 1
ν − 1

≡ ρ(ν).

From this point the conventional argument runs as follows: Solving Eq.(2)
gives

φν(µ,E) =
νM(E)
ν − µ

but ν is defined from ρ(ν) = λi where λi is the eigenvalue of (3). The pair
roots ±νi occur. The argument has given the usual solutions of the original
homogeneous transport equation

Ψ(x, µ, E) =
∑

k

a±νk
φ±νk

(µ,E) exp(∓x/νk),

(Here a±νk
are constants.) However, there are other solutions of Eq.(1).

We had found the class of continuous solutions which have the form

Ψ(x, µ, E) =
∫ E2

E1

∫ +1

−1
A(ν, ζ)φν,(ζ)(µ,E) exp(−x/ν)dνdζ

where

φν,(ζ)(µ, E) = P
νK(E, ζ)

ν − µ
+

(
δ(ζ −E)−

∫ +1

−1

νK(E, ζ)
ν − µ′

dµ′
)
δ(ν − µ), (4)

ν ∈ (−1, +1), ζ ∈ [E1, E2],

is the solutions of Eq.(2) in Van Kampen sense. (Here A is the arbitrary
continuous function satisfying the certain conditions, P indicates that prin-
cipal values is to be understood, and δ is the distribution ( Dirac function).
Note that ∫ E2

E1

∫ +1

−1
φν,(ζ)(µ, E)dµdE = 1. (5)

To summarize: There are for (2) discrete solutions and a continuum of
solutions given by Eq.(4).
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The usefulness of these functions arises from the facts that they are
both orthogonal and complete. This can be stated in the form of theorems.

Theorem 1:
∫ E2

E1

∫ +1

−1
µφνφν′dµdE = 0, ν 6= ν ′, (6)

moreover

Nνk
=

∫ E2

E1

∫ +1

−1
µφ2

νk
dµdE 6= 0. (7)

Let D be the class of continuous in domain (−1, +1) × [E1, E2] func-
tions ψ(µ,E) satisfying the H∗ conditions with respect to µ (Muskhelishvili
class)[3].

Theorem 2: The set of functions {φ±νk
, φν,(ζ)} is complete for

functions ψ ∈ D.

It is to be shown that one can express ψ in the form

ψ =
∑

k

a±νk
φ±νk

+
∫ E2

E1

∫ +1

−1
A(ν, ζ)φν,(ζ)dνdζ. (8)

If the expansion is possible, the coefficients in discrete term are readily
found using Theorem 1. In particular, it follows from Eqs. (6) and (7) that

a±νk
=

1
N±νk

∫ E2

E1

∫ +1

−1
µφ±νk

ψdµdE. (9)

Hence it is sufficient to show that given any ψ the function

ψ′ = ψ −
∑

k

a±νk
φ±νk

(10)

(with a±νk
give by (9)) can be written as

ψ′ =
∫ E2

E1

∫ +1

−1
A(ν, ζ)φν,(ζ)dνdζ.

With (4) this becomes

ψ′(µ, E) = A(µ,E)−
∫ E2

E1

∫ +1

−1

µK(E, ζ)
µ− µ′

dµ′A(µ, ζ)dζ

+
∫ E2

E1

∫ +1

−1

νK(E, ζ)
ν − µ

A(ν, ζ)dνdζ. (11)
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To prove completeness the existence of a solution of this singular integral
equation must be demonstrated. Such problems have been treated by us
[5-6]. The essential point is to relate the functions which occur to the
boundary values of functions of a complex variable. The properties which
can be ascribed to these functions serve to determine them completely.

The basic result for Eq.(11) is the following:
Theorem 3. The equation (11) is solvable if and only if ψ′ ∈ D satisfies

the conditions ∫ E2

E1

∫ +1

−1
µφ±νiψ

′dµdE = 0. (12)

Provided these conditions are satisfied, the equation (11) has one and only
one solution A ∈ D.

From (10) it follows that

∫ E2

E1

∫ +1

−1
µφ±νiψdµdE

−
∑

k

1
N±νk

∫ E2

E1

∫ +1

−1
µ′φ±νk

ψdµ′dE′
∫ E2

E1

∫ +1

−1
µφ±νiφ±νk

dµdE = 0.

(Here the orthogonality and normalization properties of the φνk
have been

used.) Thus, the question of Eq. (12) is answered affirmatively.
For determination of the factor for function of the continuum spectrum

it will be necessary to do more drudgery, since functions of the continuum
spectrum are not a function with integrable square and not orthogonal whit
respect to ζ.

Assume

S(ν, ζ0, ζ) = 2
∫ +1

−1

νK(ζ0, ζ)
ν − µ

dµ− π2ν2

∫ E2

E1

K(ζ0, E)K(ζ, E)dE

−
∫ E2

E1

∫ +1

−1

νK(ζ0, E)
ν − µ

dµ

∫ +1

−1

νK(ζ, E)
ν − µ

dµdE

ν ∈ (−1, 1) ζ0, ζ ∈ [E1, E2].

We can prove that
Lemma: The regular second kind integral equation

p(ν, ζ0, ζ)−
∫ E2

E1

S(ν, ζ ′, ζ)p(ν, ζ0, ζ
′)dζ ′ = S(ν, ζ0, ζ)

for any ν ∈ (−1, 1) and ζ0 ∈ [E1, E2] has unique continuous solution.
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Denote by

φ̃ν,(ζ)(µ,E) = φν,(ζ)(µ,E) +
∫ E2

E1

p(ν, ζ, ζ ′)φν,(ζ′)dζ ′.

Now multiply both sides of (8) by µφ̃ν,(ζ)(µ,E) and integrate over µ and E,
then using well known Bertrand-Poincaré formula and taking into account
Lemma and also the property of orthogonality, we obtain

A(ν, ζ) =
∫ E2

E1

∫ +1

−1
µφ̃ν,(ζ)(µ,E)ψ(µ,E)dµdE.

Based on Theorem 2, the following theorem is proved
Theorem 4: Every differentiable with respect to x continuous solution

Ψ of (1) can be represent in the form

Ψ(x, µ, E) =
∑

k

c±νk
φ±νk

exp(−x/νk)+
∫ E2

E1

∫ +1

−1
C(ν, ζ)φν,(ζ) exp(−x/ν)dνdζ,

where c±νk
are constants and the arbitrary functions c(ν, ζ) ∈ D.

3 Green’s Function for a Uniform Infinite Medium

As an illustration of the applicability of the results of the preceding section,
the Green’s function for the transport equation will be constructed. The
Green’s function Ψg satisfies the equation

µ
∂Ψg

∂x
+Ψg =

∫ E2

E1

∫ +1

−1
K(E, E′)Ψg(x, µ′, E′)dµ′dE′+

1
4π

δ(x)δ(µ−µ0)δ(E−E0).

(13)
µ, µ0 ∈ (−1, 1), E, E0 ∈ [E1, E].

Integrating across the plane x shows that Ψg satisfies the homogeneous
equation for x 6= 0 and the jump condition

µ(Ψg(0+, µ, E)−Ψg(0−, µ, E)) =
1
4π

δ(µ− µ0)δ(E −E0). (14)

Let us look for the solution Ψg which vanishes as | x |→ ∞. It is
sufficient to expand Ψg in the form

Ψg(x, µ,E) =
∑

k

a+νk
exp(−x/ + νk)φ+νk

(µ,E)

+
∫ E2

E1

∫ +1

0
A(ν, ζ)φν,(ζ)(µ,E) exp(−x/ν)dνdE, x > 0, (15)
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or
Ψg(x, µ,E) = −

∑

k

a−νk
exp(−x/− νk)φ−νk

(µ,E)

−
∫ E2

E1

∫ 0

−1
A(ν, ζ)φν,(ζ)(µ,E) exp(−x/ν)dνdE, x < 0. (16)

Condition (14) then gives an integral equation to determine the expansion
coefficients. It is

1
4π

δ(µ− µ0)δ(E −E0) = µ
∑

k

a±νk
φ±νk

+ µ

∫ E2

E1

∫ +1

−1
A(ν, ζ)φν,(ζ)dνdζ.

(17)
The solution obtained using the orthogonality relations is

a±νk
=

1
N±νk

∫ E2

E1

∫ +1

−1

φ±νk
δ(µ− µ0)δ(E − E0)dµdE

4π
=

1
4π

φ±νk
(µ0, E0)

N±νk

and
A(ν, ζ) =

1
4π

φ̃ν,(ζ)(µ0, E0).

Hence Ψg can be written in the typical normal mode expansion

Ψg =
1
4π

∑

k

φ+νk
(µ0, E0)φ+νk

(µ,E) exp(−x/ + νk)
N+νk

+
1
4π

∫ E2

E1

∫ +1

0
φ̃ν,(ζ)(µ0, E0)φν,(ζ)(µ,E) exp(−x/ν)dνdζ. (x > 0)

= − 1
4π

∑

k

φ−νk
(µ0, E0)φ−νk

(µ,E) exp(x/ + νk)
N−νk

− 1
4π

∫ E2

E1

∫ 0

−1
φ̃ν,(ζ)(µ0, E0)φν,(ζ)(µ,E) exp(−x/ν)dνdζ. (x < 0).

For angular and energetic density Ψg we have

Ψo(x, µ, E) =
∫ E2

E1

∫ 1

−1
Ψg(x, µ,E, µ0, E0)dµ0dE0 (18)

=
1
4π

∑

k

φ+νk
(µ,E) exp(− | x | / + νk)

N+νk

+
1
4π

∫ E2

E1

∫ +1

0
(1 +

∫ E2

E1

p(ν, ζ, ζ ′)dζ ′)φν,(ζ)(µ,E) exp(− | x | /ν)dνdζ,
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where the normalization of Eq.(5) has been used. To find the neutron
density it is only necessary to integrate (18) over all µ and E. This yields

ρ0(x) =
1
4π

∑

k

φ+νk
(µ,E) exp(− | x | / + νk)

N+νk

+
1
4π

∫ E2

E1

∫ +1

0
(1 +

∫ E2

E1

p(ν, ζ, ζ ′)dζ ′) exp(− | x | /ν)dνdζ.

It is worth noting that the method is well suited to finding the asymp-
totic behavior of solutions.

4 Partial Range Completeness

The elementary solutions found in Section 2 have a much more general
completeness property than is indicated by Theorem 2. But to this end
beforehand must be investigate the inhomogeneous equation corresponding
to Eqs.(2)

(ω − µ)ϕω = ω

∫ E2

E1

∫ +1

−1
Kϕωdµ′dE′ + f. (19)

We are able to prove the results concerning for questions of solvability and
solution of this equation. Namely

Theorem 5: If ω /∈ [−1, 1] then Eq. (19) has a unique solution ϕ ∈ D
for any f ∈ D. The solution of this equation is given by

ϕω =
∑

k

c±νk
φ±νk

+
∫ E2

E1

∫ +1

−1
C(ν, ζ)φν,(ζ)dνdζ, (20)

where

c±νk
=

±νk

±νk − ω

1
N±νk

∫ E2

E1

∫ 1

−1
φ±νk

fdµdE,

C(ν, ζ) =
ν

ω − ν

∫ E2

E1

∫ +1

−1
φ̃ν,(ζ)fdµdE

Theorem 6: Let ω = νk0 be an eigenvalue. Then Eq.(19) is solvable,
if and only if the function f satisfies the conditions

∫ E2

E1

∫ +1

−1
φνk0

fdµdE = 0.

Provided these conditions are satisfied, then solutions of (19) may be written
as

ϕω = cφνk0
+

∑

k 6=k0

c±νk
φ±νk

+
∫ E2

E1

∫ +1

−1
C(ν, ζ)φν,(ζ)dνdζ,
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where c is arbitrary constant.
Theorem 7: If ω = ω0 ∈ (−1, 1) Eq.(19) is solvable, if and only if the

function f satisfies the conditions

∫ E2

E1

∫ +1

−1
φ̃ω0,(ζ)fdµdE = 0

for every ζ ∈ [E1, E2]. Provided these conditions are satisfied, Eq.(19) has
one and only one solution and this solution may be given by (20).

Several results on completeness can be derived from the preceding the-
orems.

Let D+ be the class of continuous in domain (0,+1)× [E1, E2] functions
ψ(µ,E) satisfying the H∗ conditions with respect to µ.

Theorem 7: The set of functions {φ+νk
, φν,(ζ)} where ν ∈ (0, 1),

ζ ∈ [E1, E2] is complete for functions ψ ∈ D+.

This theorem means that the expansion

ψ =
∑

k

a+νk
φ+νk

+
∫ E2

E1

∫ +1

0
A(ν, ζ)φν,(ζ)dνdζ (21)

is possible. The coefficients can be also found from the certain regular
integral equation of the second kind .

5 Applications of the Half-Range Completeness
Relations

The first of our applications is to the albedo problem. A plane parallel
beam is incident at x = 0 on the half space 0 ≤ x < ∞. The problem is to
find a solution Ψa of Eq.(1) in this region subject to the conditions:

(a) Ψa(0, µ, E) = δ(µ− µ0)δ(E − E0) µ, µ0 > 0, E,E0 ∈ [E1, E2];

(b) lim
|x|→∞

Ψa(x, µ, E) = 0.

A general solution of (1) subject to condition (b) is

Ψa(x, µ,E) =
∑

k

a+νk
φ+νk

(µ,E) exp(−x/ + νk)

+
∫ E2

E1

∫ +1

0
A(ν, ζ)φν,(ζ)(µ,E) exp(−x/ν)dνdζ.
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Condition (a) gives the equation

δ(µ−µ0)δ(E−E0) =
∑

k

a+νk
φ+νk

(µ,E)+
∫ E2

E1

∫ +1

0
A(ν, ζ)φν,(ζ)(µ,E)dνdζ,

µ > 0, E ∈ [E1, E2].

The coefficients a+νk
and A(ν, ζ) is given by the completeness proof above.

Secondly, we consider the Milne problem. A solution Ψo of Eq.(1) is
required in the region 0 ≤ x < ∞ subject to the conditions:

(a) Ψo(0, µ, E) = 0, µ ≥ 0, E ∈ [E1, E2];
(b) limx→∞(Ψo(x, µ,E)− φ−νk0

exp(−x/− νk0)) = 0.

The general solution of Eq.(1) subject to condition (b) can be written
as

Ψo(x, µ, E) = φ−νk0
(µ,E) exp(−x/−νk0)+

∑

k

a+νk
φ+νk

(µ,E) exp(−x/+νk)

+
∫ E2

E1

∫ +1

0
A(ν, ζ)φν,(ζ)(µ,E) exp(−x/ν)dνdζ.

Condition (a) then requires that

−φ−νk0
(µ,E) =

∑

k

a+νk
φ+νk

(µ,E) +
∫ E2

E1

∫ +1

0
A(ν, ζ)φν,(ζ)(µ,E)dνdζ.

Again the solution has been found above. All that is needed is to put
ψ(µ,E) = −φ−νk0

(µ,E) in the formulas for definitions of coefficients.
A generalization of the Milne problem suggests itself. We ask for a

solution Ψν(x, µ, E) of Eq.(1) subject to condition (a) and

(b′) lim
x→∞(Ψν(x, µ,E)− φν,(ζ)(µ,E) exp(−x/ν)) = 0 (−1 ≤ ν ≤ 0).

The solution of this Milne problem is obviously obtained just as that of the
original one. Thus, instead of a single solution of the half-space problem
with zero incoming flux, we have one discrete solution plus a continuum of
solutions. This set of solutions determines the Green’s function for a half
space. Thus suppose it is required to solve the equation

µ
∂Φg

∂x
+Φg =

∫ E2

E1

∫ +1

−1
KΦgdµ′dE′+

1
4π

δ(x−x0)δ(µ−µ0)δ(E−E0) (22)

in the region 0 ≤ x < ∞ subject to the boundary conditions

Φg(0, µ, E) = 0, µ ≥ 0, E ∈ [E1, E2], (23)
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and
lim

x→∞Φg(x, µ,E) = 0. (24)

We write down the solution and then check the properties.

Φg(x, µ, E) = Ψg(x− x0, µ, E)

− 1
4π

∑

k

φ−νk
(µ0, E0)

N−νk

(Ψ−νk
(x, µ, E)−φ−νk

(µ,E) exp(−x/−νk)) exp(x0/−νk)

− 1
4π

∫ E2

E1

∫ 0

−1
φ̃ν,(ζ)(µ0, E0)(Ψν,(ζ)(x, µ,E)

−φ−ν(µ,E) exp(−x/ν)) exp(x0/ν)dνdζ. (25)

Ψg is the infinite medium Green’s function given by Eq.(15,16) and hence
satisfies Eq.(22). The remainder is a solution of the homogeneous equation.
Hence Eq.(22) is satisfied. Condition (24) is fulfilled since

Ψ−νk
(x, µ, E)− φ−νk

(µ, E) exp(−x/(−νk))

and
Ψν,(ζ)(x, µ, E)− φ−ν(µ,E) exp(−x/ν)

are combinations of decreasing exponentials. Finally, at x = 0 the expres-
sion becomes

Φg(0, µ, E) = − 1
4π

∑

k

φ−νk
(µ0, E0)

N−νk

Ψ−νk
(0, µ, E) exp(x0/(−νk))

− 1
4π

∫ E2

E1

∫ 0

−1
φ̃ν,(ζ)(µ0, E0)Ψν,(ζ)(0, µ, E) exp(x0/ν)dνdζ,

and each term vanishes for µ ≥ 0, E ∈ [E1, E2].

6 Time-Dependent Problems

The method is readily generalizable to time-dependent problems. Consider
the simplest time-dependent homogeneous multi-velocity transport equa-
tion

∂Ψ
∂t

+ µ
∂Ψ
∂x

+ Ψ =
∫ E2

E1

∫ +1

−1
KΨdµ′dE′. (26)

Look for solutions of the form

Ψ(t, x, µ,E) = exp(ikx) exp(−(1 + iαk)t)φα,k(µ,E). (27)
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(k is any fixed real number). The permissible values of α are to be deter-
mined.) With this assumption Eq.(26) becomes

(α− µ)φα,k(µ,E) =
i
k

∫ E2

E1

∫ +1

−1
K(E, E′)φα,k(µ′, E′)dµ′dE′.

This practically same equation that was received for φν in stationary case.
Thus, results of the previous chapters possible carry in this case practically
without change. Since a generalization of this eigenvalue problem has been
discussed elsewhere, it is sufficient to state the conclusions.

For each k there is a continuum of solutions φα,(ζ),k(µ, E) with
−1 ≤ α ≤ 1. These are

φα,(ζ),k(µ,E) =
i
k
P

K(E, ζ)
α− µ

+(δ(ζ −E)− i
k

∫ +1

−1

K(E, ζ)
α− µ′

dµ′)δ(α− µ),

ζ ∈ [E1, E2].

For any k the enumerated solutions are complete for functions ψ(µ, , E)
defined in the range −1 ≤ µ ≤ 1, E ∈ [E1, E2]. They are all normalized
so that ∫ E2

E1

∫ +1

−1
φα,(ζ),k(µ,E)dµdE = 1. (28)

As an application we will solve the initial value problem for a uniform
infinite medium. It is sufficient to consider an initial distribution which is

Ψi(0, x, µ,E) = δ(x− x0)δ(µ− µ0)δ(E −E0).

Expand in the complete set of functions exp(ikx)φα,(ζ),k(µ,E), that is,

Ψi(0, x, µ, E) =
1√
2π

∫ ∞

−∞
dk exp(ikx)

∫

S
φα,(ζ),k(µ,E)A(α, k)dα.

(Here
∫
S dα means adding the discrete term to an integral over the contin-

uum.) We readily find the expansion coefficients using the bi-orthogonality
properties. The distribution at a time t is then (using the time dependence
of the eigenfunctions indicated by Eq. (27))

Ψi(t, x, µ, E)

=
exp(−t)

2π

∫ ∞

−∞
exp(ik(x−x0))dk

∫

S
φ̄α,(ζ),k(µ0, E0)φα,(ζ),k(µ,E) exp(iαkt)dα.

(29)
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The neutron density ρ due to an initial distribution which is located at x0

but uniform in velocity directions is particularly simple. All that is needed
is to integrate (29) with respect to µ0, E0 and µ,E and remember Eq.(28).
The result is

ρ(x, t) =
exp(−t)

2π

∫ ∞

−∞
exp(ik(x− x0))dk

∫

S

exp(iαkt)
Nα,k

dα,

where Nα,k is the coefficient of normalization of eigenfunctions.
Finally, the time-dependent Green’s function for a uniform infinite medium,

i.e., the function which satisfies nonhomogeneous equation corresponding
(26) with nonhomogeneous term δ(x − x0)δ(µ − µ0)δ(E − E0)δ(t − t0), is
trivially expressible as

G =
{

Ψi(t, x, µ, E), t > t0,
0, t < t0.

Conclusion
It has been seen that a varied set of neutron transport problems can be

treated in a uniform manner with the present method. The approach is the
analogy of Case approach and also of the classical separation of variables
method for partial differential equations.

It should be emphasized that while the illustrations have all been rela-
tively simple problems, but the structure of the solutions for more compli-
cated situations will be similar.

The simplifications utilized in this paper serve primarily to permit cer-
tain integrals to be found explicitly. No particular limitations of principle
seem to have been made. In complicated problems where the explicit func-
tions may not be readily evaluated, the present method may serve as a
basis of approximation.
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