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Abstract

In the paper boundary value problem of three-dimensional asymmetrical microp-
olar, momental elasticity theory with free rotation is investigated for thin shell. It
is established that the general stress-deformed state is formed by the interior stress-
deformed state and boundary layers. For the approximate definition of interior stress-
deformed state and boundary layers the asymptotic method of integration of three-
dimensional boundary value problem of asymmetrical elasticity theory with free rotation
is applied. For the set problem of three-dimensional elasticity theory with free rotation
depending on the values of dimensionless physical constants of shell material there
are built three different asymptotics. The initial approximation, correspondingly, for
the first asymptotics leads to the theory of micropolar shell with free rotation, for the
second asymptotics leads to the theory of micropolar shells with constraint rotation
and for the third asypmtotics leads to the so-called theory of micropolar shells with
"small shift rigidity”. Corresponding micropolar boundary layers are built and studied.
The fields of application of each of the constructed theories of micropolar shell are
listed.
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1 Introduction

The construction of elasticity theory of thin plates and shells was real-
ized with the help of three main methods: a) method of hypothesis, b)
method of expansion along the thickness of coordinates of plates and shells
c) the asymptotic method. Alongside with the classic theory of thin plates
and shells built according to Kirchhoff- Love hypothesis, Ambartsumyan-
Reissner-Timoshenko refined theory of plates and shells is generally ac-
knowledged [1]. In [2] for the construction of the theory of micropolar
plates and shells symbiosis of main principles of asymmetrical elasticity
theory and refined theory of plates and shells is used. The power series
expansion method with respect to the thickness of plates and shells, which
was first stated in the works of Cauchy and Poisson, was further developed
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in several other works (see e.g. [3]). In the works of ILN. Vekua, we see
rather a perspective method of expansion on the thickness coordinates and
also the method for constructing the theory of plates and shells without
Kirchhoff-Love hypothesis [4]. Great perspectives for the construction of
the general theory of thin plates and shells were opened by the development
of the methods of immediate asymptotic integration of equations of three-
dimensional elasticity theory (Green A. [5], Vorovich I. [6], Goldenveizer
A. [7], Agalovyan L. [8], Sargsyan S. [9], etc.) In [10], on the basis of the
asymptotic method of integration of equations of three-dimensional elas-
ticity theory depending on the values of dimensionless constants of plate’s
material, there are built the theories of generalized flat stress state and
the theories of bending of micropolar plates with both free rotations, with
constraint rotation and with small shift rigidity. Here the corresponding
boundary layer theories are also built and investigated. In the present paper
the results obtained in [11], [12] are generalized and systemized. On the ba-
sis of the asymptotic of integration of equations of asymmetrical elasticity
theory depending on the values of dimensionless elastic constants of shell’s
material, three types of general applied two-dimensional theories of microp-
olar shells are constructed: the general applied two-dimensional theories of
micropolar shells with free rotation, the general applied two-dimensional
theories of micropolar shells with constraint rotation and the general ap-
plied two-dimensional theories of micropolar shells with small shift rigidity.
Micropolar boundary layers around the shell’s lateral surface are also built
and investigated. Here the problems of matching of interior and boundary
value problems are investigated and there are also obtained boundary condi-
tions for applied two-dimensional theory of micropolar shells and boundary
conditions for boundary layer problems.

2 Statement of the problem

Let us consider a shell with constant thickness 2h as a three-dimensional
elastic body. Tensor equations of static problem of asymmetrical elasticity
theory with independent fields of transition and rotation (ATE with IFTR)
look as follows [13]:

Balance equations:

deji =0, Vjuji—f-eijkajk =0. (1.1)

Elasticity correlations:

{ i = (4 )y + (10— a)yij + Mekdij, (1.2)
pii = (v+e)xgi+ (v —€)xij + BXrrij;
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Geometrical correlations:
’in = Vjui - ekjiwk, in = ijl-. (13)

Here 0, 1" are the corresponding components of force and momental
stress tensor; 7yj;,Xji— are the corresponding components of deformation
and bending-torsion tensors; 4—is the transition vector; & is the vector of
free turning; A, u, o, 3, y, € are the elastic constants of the shell’s micropolar
material; 7,7,k = 1,2, 3.

Further, we shall use three-dimensional orthogonal coordinate system
a;(i = 1,2,3) which is accepted in the theory of shells[7]. Afterwards, we
shall attach the corresponding boundary conditions to the defining equa-
tions of ATE with IFTR (1.1)-(1.3). For the boundary conditions on the
shell’s facial surface we shall accept boundary conditions of the first bound-
ary value problem of ATE with IFTR, which can be presented as follows:

o3 = Fq;, pai=Fm; when agz==xh (i=1,2,3). (1.4)

The boundary conditions on the shell’s lateral surface ¥ = ¥ U 3o
(which represents itself a closed end ay = a9 ) will be considered as given
in general case of boundary conditions with mixed boundary value problems
of ATE with IFTR.

04T :p:, HjiTj :mf in El(i,j,k‘:l,Q,B), ﬁ:ﬁ*, @ =" in 22,

(1.5)
where pf,m} (i = 1,2,3) are the components of the given exterior force
and moments on Y ; 4*, &" are the given vectors of transition and free
turning on s .

It is supposed that the shell’s thickness is small in comparison with the
characteristic curvature radiuses of shell’s midplane.

We shall proceed from the following general conception: in the static
case thin three-dimensional body’s general stress-deformable state (SDS)
which forms the shell, consists of interior SDS embracing the whole shell
and the boundary layer located near the shell’s lateral surface. For the
approximate definition of both interior and lateral SDS we will apply the
asymptotic method [10].

For the construction of the interior iteration process we shall introduce
new free variables:

i = RA\P&, a3 =RAIC (i=1,2), (1.6)

where R is the characteristic curvature radius of midplane, p,l are whole
numbers satisfying to inequalities [ > p > 0; X is a large constant dimen-
sionless geometrical parameter, which is defined by formula h = RA L.
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While defining the shell’s interior and lateral SDS, the values of physical
constants of the shell’s micropolar material play an important role. For this
purpose we shall introduce the following dimensionless parameters:

@ 15} ~y €
ﬁa RQM’ RQM’ RQM (17)

It is convenient to introduce the asymmetrical tensor 7;; of force stress [7]
and the analogues tensor v;; for momental stress [11].

a3 o3 a3 .
Tii = (1 + R) Oiiy Tij = (1 + R) Oij, Ti3 = (1 + R> oi3(i < 3),
J J J

Qs « (6
T33 = <1 + é) <1 + Ri) 033, Vij = <1 + Rj) Wi

a a .
vij = <1+Rj>uz'j,vz‘3=<1+};>Mz‘3(’é<—>3)7

V33 = <1 + ;.i) (1 + ;;z) K33,

2. The applied two-dimensional theory of micropolar elastic
thin shells with free fields of transition and rotation.

We suppose that the dimensionless physical constants (1.7) have the
following values:

o g £ 8l

. ~1, R ~1, R ~1, R ~ 1. (2.1)
Following the asymptotic method while constructing the interior problem,
our aim is to approximately bring the three-dimensional equations (with
free variables £1,&2,() (1.1)-(1.6) to the two-dimensional equations (with
free variables & and &3). So, at first it is important to get rid of differen-
tiation on ¢ in (1.1)-(1.6) and afterwards, in the obtained equations, their
dependence on ( and the asymptotic order on the large parameter A must
be underlined.

For the interior problem in case of asymptotic approximation O()\p_l )

in (2.1) for the searched values in the three-dimensional thin shell’s plane
we shall receive the following representations:

Tii = pAL (T + A7), vy = RuA ¢ (v) + A\,
Ti; = pA (7] + A7), vij = RuA e (0l + A7 eCu)),
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Ti3 = M)\l—p“(ﬂ% 4 )\—l+2p—cc7_i13) (i > 3), .
Vi3 = Rpc)\l—zo(vlo3 + )\—l-l—?p—cc,uilg) (i = 3), .

Ta3 = P (T8 +CTaa AT TP TR), vz = RuA (v +Cuga+ AT 0gy),

Vi = RATP(VP + ATV, wi = AP + ATCW)),

‘/'3 _ R)\l72p+c(v30 + )\flJrQPfCCVél)7 w3 = )\l72p<wg + Afl+2pfcgw§).

While describing ATE of the interior problem, there only remains to find
out the role of variables (£ ), which show the place of points on the shell’s
midplane surface.

From this point of view, instead of force and momental stresses it

is expedient to introduce their equivalent forces, moments and hypermo-
ments[10,11].

h
Tii —/ (1+ az/Rj)osdas,
—h

h
Sij:/ (1—1—053/Rj)0'ijd043,
—h

h
Gii = —/ (1 + Oég/Rj)O’iiagdag,
—h

h
Hij = / (1 + Oé3/Rj)0’ijOz3da3,
—h

h
Ngz‘ = —/ (1 + 043/Rj)037;d063,
—h

h
Niz = —/ (14 as/Rj)oizdas,
—h

h
M3s; = —/ (1+ az/Rj)oziazdas,
—h

h
M;s = —/ (1 + Oég/Rj)O’igangég,
“h

h
Li; = / (1+ a3/Rj)pidas,
—h

h
Lij = /h(l +043/Rj)uijd043,

h
Ay = —/ (1 + a3/Rj)piiozdas,
—h

h
Ay = / (1+ as/Rj)pijasdas,
~h

h
L3 = — /h(l + a3/ R;j)puzidas,

h
Lz = _/h(1+a3/Rj)Mi3d0¢37 (2.3)

h
As; = _/ (1 + a3/ Rj)psiazdas,
—h

h
A3 = —/ (1 + ag/Rj)MiSOZSda&
—h

h
Nyy = /‘@+angu+ayRQQMm»

—h

h
Lyy = /h(l+a3/R1)(1+a3/R2)H33da3,
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h
Mss = /(1+a3/R1)(1+043/R2)U33013da3,
—h

h
Asg = /(1+a3/R1)(1+a3/R2)u33a3da3-
—h

We shall as well use the concepts of transition and turnings of points on
the shell’s midplane surface.

u; = Vile=o, w=-Vslc=0, Qi = wil¢=o, Q3 = ~wsl¢=o-

Here, as the main result, we shall introduce the defining system of two-
dimensional equations on the level of asymptotic accuracy O(AP~!), which

is a mathematical model of micropolar shell with independent fields of
transition and rotation:

Balance equations:

10T 1 04, 10S; 1 oA .
L i Ty—T; L ji ] ‘S”L S@ (gt — 0

1 OLj; 1 0A4; 1 0L 1 0A.
- Lii — Ljj) + —— - “(Lj; + L
A; 0oy + AiAj 8az( JJ) + Aj 804]' AiAj aaj( ji j)+

+(=1)! (N3j = Nj3) — (m{” —m;") =0, (2.4)
Ty T 1 9(AaN13)  O(A1N23) N N
Ry * RQ A1A2 [ 8011 T aaz + (q3 + a3 ) - 07

Ly Lo 1 [3(A2L13)+3(A1L23)

oy e _ _ + =\ —
R1 + RQ +AlAQ 3041 0042 :| (312 S21)+(m3 +m3) 0-

Elasticity correlations:

2FEh
Ti=1— s Wu+vlyl, Sy =2h[(n+a)ly + (= a)lyl,
L B+ . 298 | _p_ B
Lii = 2n { Bray Xii + By Xii | ~ R (2.5)
Lij = 2h[(y + €)x45 + (v — €)x5il,
dap o — 4ve ¥—e€
N;3 = —2h Tis — N3; L3 = —2h ; Ls;.
i3 at i3 at 3i i3 ’7+5X13+’y+6 34
Geometrical correlations:
1 0w wy ; 1003 @
gt Dia — ~: _1Y Q. Yy — _ .
P)/z Az 8az ia 3 FY’L + ( ) Va X”L?) Az 8@1 Ri’
_ 1 Ouy 1 0A;,, .
1 j 1 0A; 1 '
Tij = 4 0. — T, a U + (=1) Qs
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1O 1 0 Q109 104
Xii = Al 80@ AzA] 8aj J Ri7 XU - AZ aOéi AlA] 8aj

where

Qi)

Ns; = h(q" —q;), L = h(m;” —m;).

Here, Tj(i = 1,2), Sij(i,5 = 1,2;¢ /=j), Ni3(i = 1,2) are the averaged
forces, L;i(i = 1,2), Lij(i,j = 1,2;1 /&j), Liz(i = 1,2) averaged moments,
Li(i = 1,2), T'y;(4,5 = 1,2;4¢ /=j), I'is(i = 1,2) are the components of
deformation tensor on the shell’s midplane surface, x4 (i = 1,2), x4j(4,7 =
1,254 ~j), xi3(i = 1,2) are the components of bending-torsion tensor on
the midplane surface of shell.

If we found the solution of equations (2.4)-(2.7) of applied two-dimensional
theory of micropolar shell with independent fields of transition and rotation
then the rest of the averaged values and the wanted values of the three-
dimensional theory on the three-dimensional shell’s plane will be defined
by the corresponding formulae.

While studying the boundary micropolar elastic phenomena, we shall
proceed from the equations of three-dimensional theory of ATE with IFTR
(1.1)- (1.3). We shall consider that the shell’s boundary, around which we
shall have to investigate the stress state, is given by the equation a; = aqg
and we shall change the free variables by the formulae:

i —ang = RATYEL, ag = RA P&, a3 = RATIC, where R, \, [, p have the
same meaning as in (1.6).

We shall consider that in the boundary stress-deformed state the wanted
values do not change their asymptotic behavior while differentiating on
&1, 82, C.

The four boundary layer problems (plane and anti-plane, force and
momental) are defined by separate differential equations. Studying the
boundary layers on ATE with IFTR and their corresponding properties,
we shall obtain several equations which satisfy to the attenuating character
of boundary solutions.

General SDS in the shell is defined by the following structural formula:

(SDS) (SDS) + A" (SDS) +\9(SDS)}:

complete — interior boundary boundary

numbers 7, © are the indices of micropolar boundary layer’s intensity.
Boundary layer equations are homogeneous. Numbers r and © are to be
chosen in such a way that they could satisfy to the boundary conditions
(1.5) on the shell’s lateral surface. Considering the problem of matching the
interior iteration process and micropolar boundary layers, we shall obtain
the following boundary conditions on the boundary contour of the shell’s
midplane on the level of asymptotic approximation O(AP~!) for the system
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of equations of applied two-dimensional theory of micropolar shells (in case
of the first variant of boundary conditions (1.5)):

h h
* >k
Tll‘cuioqo :/ plda?n Sl?’Oq:Oqo = / p2da37
—h —h
h h
L11|a1=a10 = / deOZIS; L12|a1:a10 :/ mZda37 (28)
—h —h
h h
* *
N13‘041:O<10 = _/ padas, L13|a1:a10 = _/ madas.
—h —h

Equations (2.4)-(2.7) and boundary condition (2.8) are mathematical
models of micropolar shell with free fields of transition and rotation. This
is the equation of the twelfth order with six boundary conditions on each
boundary cut. Plane and anti-plane force and momental boundary lay-
ers will be defined by separate differential equations with corresponding
boundary conditions.

3. Applied two-dimensional theory of micropolar elastic thin shells
with constraint rotation.

Let’s suppose that the dimensionless physical constants of the shell’s
material (1.7) are now expressed in the following way:

oy b

7 ~ )\_QZﬁ*, Y ~ )\_2l’y*, € A_2l6* (ﬁ*,’y*,é*,N 1)
[ [

R?y R2y ~
(3.1)

For the interior problem, in this case, on the order of asymptotic ap-
proximation O(\P~!) for the wanted sizes in the three-dimensional thin shell
plane we shall obtain the following asymptotic representations:

T = M)\Z(Tg + )\—l+2p—cc7_i1i), Tij = ﬂ)‘l(Tz‘Oj + )‘_H_Qp_CCTilj + )\—l+2p—c7~_ij)7
T3 = AP (T3 + (T + AT 4 AT Oy,

Tiz = PNP(Th + (T + ATP2PeC2 2 4 AT (7 1 F ),

_ 0 1 —l+2p—cp2.2 | \—20+4p—2c,/3. 3
733 = PAY(T35 + Crgg + AT T T + ATy

~ 3.2
+/\721+4p72c(7_33 _1_?33))’ ( )
vii = RN 4+ Ty), v = Rua TPl
vy = RpX TPPT(0y + Uag),
vis = RpATTP(uly + AT Cul + AT + i) (i 3),
w; = )\Hp_cwio,

94



General Theory of Elastic ... AMIM Vol.13 No.1, 2008

V. = R}\l*p(‘/'i0+)\fl+2pfc<vi1)’ V?,:R)\lfc‘/éo,
w3 = )\l(wg + )\71+2p70Cw§ + )\7H2p*cc~u3),

Asymptotics (3.1), (3.2) have the following peculiarities:

1) components of vector rotation in the points of the shell’s midplane

surface are expressed by the components of transition vector at these points
as in the elasticity theory;
2) part of the values are connected and form a two-dimensional theory,
and the definition of the other values ps1, ps2, pss are brought to separate
boundary value problems for differential equations of second order (as ordi-
nary differential equations) with free variable ¢, where variables & and &
are entered as parameters. The main result is the defining system of two-
dimensional equations, which is represented as a defining system of applied
two-dimensional theory of micropolar shells with constraint rotation:

Balance equations:

10T, 1 0A;

1 n 1 8Sji+ 1 0A4;
Ai 8ai AZA] 3ai

il 18— (gT—g7) =
A] aaj AZA] 80[] (S]1+SZ]) (qz Qz ) O?

(Toi—Tj5)+

ia(G“ — (—1)jLij) 1 04;

i — —lei‘ _ . 1V L] —
1 0 . 1 0A; . .
—— —(Hy+(=1)L;;)— 7 Hi; — (=1L, H;; — (1) Ly;)] —
(3.3)
—Nis + h(g = ¢;7) + (=1)/(m] —m}) =0,
Ty | T 1 [0(A2N13) = O(A1Na3) R
-, T2 =0
R1 R2 A1A2 80&1 80&2 + (q3 + q3 )
Elasticity correlations
w 3(1 - UQ) g J31>
ER3 1 hkq ~
H, = ——[K K —1)Y=({1- L33,
j 30 +0) (K12 + K] + (1) 5 ( th(hk1)> 33
Tii = 220 Ty +oly5] . (3.4)
Sij = % [Ti2 4+ To1] + (=1)75 (m3 +m3),
B~
Lii = 4hyxsi + 25 L33, Lij = 2h ij —€)Xjil »
i+ g Las i [(v +&)xis + (v =€)l
~ th(hky) n _ 4o
L33 = 4 — (ma — m. k1= .
33 o [47(x11 + x22) — (m3 —m3)], 1 s
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Geometrical correlations

1 8uz 1 8AZ w _iau]' 1 8AZ

Ui = — — = L= - Ui
Az‘ 804,- + AZA] 6aj uj Rz J Az 8ai iAj 8aju
1 ow
pi = A; Doy + R,
1 861- 1 _ 1908 1
Kii = 4,80, T XA 8a S8, K= A 90 T A4 80@@’ (3.5)
Qi = (-1)
1 1 08 1 0A4; Q3
Q3 = —(Ty—T = g, 8
3 2( 21 12)7 X Al 80@ + AZA] 80lj J Rz
1 09, 1 0A4;

Ai aai AiAj 80éj

If the solution to the two-dimensional equations (3.3)-(3.5) of the ap-
plied two-dimensional theory of micropolar shells with constraint rotation
is known then all the calculated values of the three-dimensional theory in
the shell’s three-dimensional plane are defined by corresponding formula.

Studying the micropolar boundary layers (which are two plane and anti-
plane mixed force-momental boundary layers), their corresponding proper-
ties and the matching of interior problem and the boundary layer we shall
obtain boundary conditions of two-dimensional theory (in case of the first
variant of boundary conditions (1.5)):

h h
Tl].’oq:oqz :/ pida& Sl2|a1:a12 :/ p;da&
—h

h
[Li2 — G11] lay=a1o = / (m3 4+ a3 Pf)das,
—h

1 0
[—Nl?, + ,LTQT.@(HH o Lll)} al1=aio (3'6)
__rh * 1 0 * 1
_ f_h [Pg + TQ%(OQPQ — ml)] dC(S.

Equations (3.3)-(3.5) and boundary conditions (3.6) are mathematical mod-
els of micropolar shell with constraint rotation. This system of equations
is of eighth order with four boundary conditions on each boundary cut.
The mentioned boundary layer problems are defined as separate differ-
ential equations and by corresponding boundary conditions.
4. Applied two-dimensional theory of micropolar shell with small
shift rigidity.
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Now let’s consider that the physical constants of shell material (1.7) are
presented as follows:

a —204+2p ﬁ _ e Y
; — )\ O[*, R2'LL - ﬂ*a R2'LL - 6*7 (41)
where o, Bx, €4, Y& ~ 1.

For the values of interior problem on the level of asymptotic accuracy
O(N7Y) in the three-dimensional thin shell plane we shall obtain the fol-
lowing asymptotic presentation:

Tii = PN (TAATTPC), Ty = pAN (AT, v = RuNT PO,

Ti3 = PP (1 + (i + AT (i 3), vy = RNt o,

T33 = PA(Ta3 + AT (T3 + AT TR 4 A TIP3, (4.2)
vis = RpATP(vly + AP Col) (i o 3),
v33 = RM)\ZP(Ugg + Cvgl)g + >\7Z+2p76€2v§3)’

V. = RAl_p(‘/iO+>\_l+2p_C<‘/il)a Va :R)\Z_CV})O;
wi = AP s = AW+ AT e,

Let’s mention that in case of asymptotics (4.1), (4.2) in the two-dimensional
equations of micropolar shell the values of ”pure momental” character get
separated and form separate system of equations. For the ”stress” part
we shall obtain a shift theory of shells, where the corners of turning are
conditioned by ”pure momental” part of the problem.

Let’s formulate the following separate groups of equations.

Equations of ”pure momental” part of micropolar shell problem:

Balance equations

1 OLj 1 0A 1 OLj;
- Lii — Ljj) + — =~
Ai 80@ + AzAJ 6%- ( j]) * Aj 8aj

1 aAz + -\

V4 g (Bt L) = O =) =0,

L L 1 [0(A2L O0(A1L
i 2 (213)+(123)
Ry Ry AjA

Elasticity correlations

T +my)=0. (4
o) Q) e ) =0, (43

(B + ) 2v0 ]
Li; = 2h i T ij
[ B2y T 3oy
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4rve — _
Lij =2h[(v+e)xij + (v —e)xj), Liz= _Qh’y n 6X13+’y n Eh(mf—mi ).
(4.4)
Geometrical correlations
o LYoy & 100 1 04,
Xi3 = AZ' 8042' Rz‘? it = Ai (9042‘ AiAj aOdj J Ri’
1 09, 1 0A4;
i = — — Q;. 4.5
X J A,; 8041' AZ'Aj 8aj ( )
Equations of ”pure force” part of micropolar shell problem:
Balance equations
1 0713 1 0A4; 1 05 1 0A; _
il Tyi—Ti:)+— Jt ¢ Si+S;i)— t_a)Y=0
Ai 8ai AzA] 80[1‘ ( ]J)+Aj aaj AzAj 80[]‘( J + J) (qz 4q; ) ;
Ty | T 1 [0(A2N13) | O(A1Na3) L,
— + = =0 4.6
Rl R2 A1A2 aal + 6052 + (QS + Q3 ) 9 ( )
1 0Gy; 1 0A;
—Ng; + ——= LGy — Gii)—
3 + Ai 6@1' A»L'Aj 80&1 (G ij)
1 0Hj; 1 0A4;

Aj aOéj B AZA] aOéj

Elasticity correlations

(Hji + Hij) + h(g —q7) =0

2Eh
Ty = m(rii+vrjj)a Sij = Sji = 2hpu(lyj+T;), Niz = N3; —8hals,
2Fh3 21k
Gii = g gy e + oK), Hij = Hyi = == (K + Ki). (47)
Geometrical correlations
1 ow w; - 1 Ou; 1 0A; w
i = — = Tia=—0i+(-1)Q;, Ti=-——-— “Uj—
B Al 8aZ+RZ 3 ﬂ +( ) J AZ 6051_'_14114] aOéj U] RZ
AZ' ﬁai AZAJ 804- AZ 8041' AZ'A]' 60(]'
Kij = Bi.

E@ai B AZAJ 6%-

If we treat the coefficient 8ha with shift-momental rigidity (the phys-
ical constant « is the shift module like the classical module p ) then the
presented theory (4.6)-(4.8) with the account of (4.1) we can treat as shell

theory ”with small shift rigidity”.
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On the basis of construction of corresponding micropolar boundary lay-
ers and the study of interaction problem of interior problem with boundary
layer problem we shall obtain separate boundary conditions for the system
of equations (4.3)-(4.5) and (4.6)-(4.8):

h h
* *
Lll‘alialo == / mlda3) Ll?’oq:oalo - / dea37
—h —h

h
%
L13‘011:Oq() == / dea3)
—h

h 1 b h
= *d _—— sosd 4.9
B /hps a3+A2 Doy /_hpzoé:a az, (4.9)

a1=010 -

h h
Tll‘alzalo = / pfd@?n 512|a1:a10 = / p;da&
—h —h

h
Gillai=ars, = —/ piasdas.
“h

System of equations (4.3)-(4.5) and (4.6)-(4.8) with corresponding bound-
ary conditions of (4.9) form a mathematical model of micropolar shell with
”small shift rigidity”.

3 Conclusion

Here the asymptotic approach of constructing the mathematical models of
thin shells on the basis of asymmetrical elasticity with free fields of tran-
sition and rotation is presented. The essential point consists in the fact
that certain mathematical model of micropolar shell depends on values of
physical dimensionalless parameters of shell material, where scale factor is
also included. This means that depending on the mentioned scale factor
and the shell’s thin-walledness, the constructed mathematical models of
micropolar shell can be used in the investigation of problems of structural
mechanics and particularly for problems of micro- and nano-mechanics.
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