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Abstract

In the paper boundary value problem of three-dimensional asymmetrical microp-

olar, momental elasticity theory with free rotation is investigated for thin shell. It

is established that the general stress-deformed state is formed by the interior stress-

deformed state and boundary layers. For the approximate definition of interior stress-

deformed state and boundary layers the asymptotic method of integration of three-

dimensional boundary value problem of asymmetrical elasticity theory with free rotation

is applied. For the set problem of three-dimensional elasticity theory with free rotation

depending on the values of dimensionless physical constants of shell material there

are built three different asymptotics. The initial approximation, correspondingly, for

the first asymptotics leads to the theory of micropolar shell with free rotation, for the

second asymptotics leads to the theory of micropolar shells with constraint rotation

and for the third asypmtotics leads to the so-called theory of micropolar shells with

”small shift rigidity”. Corresponding micropolar boundary layers are built and studied.

The fields of application of each of the constructed theories of micropolar shell are

listed.
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1 Introduction

The construction of elasticity theory of thin plates and shells was real-
ized with the help of three main methods: a) method of hypothesis, b)
method of expansion along the thickness of coordinates of plates and shells
c) the asymptotic method. Alongside with the classic theory of thin plates
and shells built according to Kirchhoff- Love hypothesis, Ambartsumyan-
Reissner-Timoshenko refined theory of plates and shells is generally ac-
knowledged [1]. In [2] for the construction of the theory of micropolar
plates and shells symbiosis of main principles of asymmetrical elasticity
theory and refined theory of plates and shells is used. The power series
expansion method with respect to the thickness of plates and shells, which
was first stated in the works of Cauchy and Poisson, was further developed
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in several other works (see e.g. [3]). In the works of I.N. Vekua, we see
rather a perspective method of expansion on the thickness coordinates and
also the method for constructing the theory of plates and shells without
Kirchhoff-Love hypothesis [4]. Great perspectives for the construction of
the general theory of thin plates and shells were opened by the development
of the methods of immediate asymptotic integration of equations of three-
dimensional elasticity theory (Green A. [5], Vorovich I. [6], Goldenveizer
A. [7], Agalovyan L. [8], Sargsyan S. [9], etc.) In [10], on the basis of the
asymptotic method of integration of equations of three-dimensional elas-
ticity theory depending on the values of dimensionless constants of plate’s
material, there are built the theories of generalized flat stress state and
the theories of bending of micropolar plates with both free rotations, with
constraint rotation and with small shift rigidity. Here the corresponding
boundary layer theories are also built and investigated. In the present paper
the results obtained in [11], [12] are generalized and systemized. On the ba-
sis of the asymptotic of integration of equations of asymmetrical elasticity
theory depending on the values of dimensionless elastic constants of shell’s
material, three types of general applied two-dimensional theories of microp-
olar shells are constructed: the general applied two-dimensional theories of
micropolar shells with free rotation, the general applied two-dimensional
theories of micropolar shells with constraint rotation and the general ap-
plied two-dimensional theories of micropolar shells with small shift rigidity.
Micropolar boundary layers around the shell’s lateral surface are also built
and investigated. Here the problems of matching of interior and boundary
value problems are investigated and there are also obtained boundary condi-
tions for applied two-dimensional theory of micropolar shells and boundary
conditions for boundary layer problems.

2 Statement of the problem

Let us consider a shell with constant thickness 2h as a three-dimensional
elastic body. Tensor equations of static problem of asymmetrical elasticity
theory with independent fields of transition and rotation (ATE with IFTR)
look as follows [13]:

Balance equations:

∇jσ
ji = 0, ∇jµ

ji + eijkσjk = 0. (1.1)

Elasticity correlations:
{

σji = (µ + α)γji + (µ− α)γij + λγkkδij ,
µji = (γ + ε)χji + (γ − ε)χij + βχkkδij ;

(1.2)
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Geometrical correlations:

γji = ∇jui − ekjiω
k, χji = ∇jωi. (1.3)

Here σij , µij are the corresponding components of force and momental
stress tensor; γji,χji– are the corresponding components of deformation
and bending-torsion tensors; ~u–is the transition vector; ~ω is the vector of
free turning; λ, µ, α, β, γ, ε are the elastic constants of the shell’s micropolar
material; i, j, k = 1, 2, 3.

Further, we shall use three-dimensional orthogonal coordinate system
αi(i = 1, 2, 3) which is accepted in the theory of shells[7]. Afterwards, we
shall attach the corresponding boundary conditions to the defining equa-
tions of ATE with IFTR (1.1)-(1.3). For the boundary conditions on the
shell’s facial surface we shall accept boundary conditions of the first bound-
ary value problem of ATE with IFTR, which can be presented as follows:

σ3i = ∓q±i , µ3i = ∓m±
i when α3 = ±h (i = 1, 2, 3). (1.4)

The boundary conditions on the shell’s lateral surface Σ = Σ1 ∪ Σ2

(which represents itself a closed end α1 = α10 ) will be considered as given
in general case of boundary conditions with mixed boundary value problems
of ATE with IFTR.

σji·nj = p∗i , µji·nj = m∗
i in Σ1(i, j, k = 1, 2, 3), ~u = ~u∗, ~ω = ~ω∗ in Σ2,

(1.5)
where p∗i ,m

∗
i (i = 1, 2, 3) are the components of the given exterior force

and moments on Σ1 ; ~u∗, ~ω∗ are the given vectors of transition and free
turning on Σ2 .

It is supposed that the shell’s thickness is small in comparison with the
characteristic curvature radiuses of shell’s midplane.

We shall proceed from the following general conception: in the static
case thin three-dimensional body’s general stress-deformable state (SDS)
which forms the shell, consists of interior SDS embracing the whole shell
and the boundary layer located near the shell’s lateral surface. For the
approximate definition of both interior and lateral SDS we will apply the
asymptotic method [10].

For the construction of the interior iteration process we shall introduce
new free variables:

αi = Rλ−pξi, α3 = Rλ−lζ (i = 1, 2), (1.6)

where R is the characteristic curvature radius of midplane, p, l are whole
numbers satisfying to inequalities l > p ≥ 0; λ is a large constant dimen-
sionless geometrical parameter, which is defined by formula h = Rλ−l.
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While defining the shell’s interior and lateral SDS, the values of physical
constants of the shell’s micropolar material play an important role. For this
purpose we shall introduce the following dimensionless parameters:

α

µ
,

β

R2µ
,

γ

R2µ
,

ε

R2µ
. (1.7)

It is convenient to introduce the asymmetrical tensor τij of force stress [7]
and the analogues tensor vij for momental stress [11].

τii =
(

1 +
α3

Rj

)
σii, τij =

(
1 +

α3

Rj

)
σij , τi3 =

(
1 +

α3

Rj

)
σi3(i ↔ 3),

τ33 =
(

1 +
α3

R1

) (
1 +

α3

R2

)
σ33, vii =

(
1 +

α3

Rj

)
µii,

vij =
(

1 +
α3

Rj

)
µij , vi3 =

(
1 +

α3

Rj

)
µi3(i ↔ 3),

v33 =
(

1 +
α3

R1

)(
1 +

α3

R2

)
µ33,

2. The applied two-dimensional theory of micropolar elastic
thin shells with free fields of transition and rotation.

We suppose that the dimensionless physical constants (1.7) have the
following values:

α

µ
∼ 1,

β

R2µ
∼ 1,

ε

R2µ
∼ 1,

γ

R2µ
∼ 1. (2.1)

Following the asymptotic method while constructing the interior problem,
our aim is to approximately bring the three-dimensional equations (with
free variables ξ1, ξ2, ζ) (1.1)-(1.6) to the two-dimensional equations (with
free variables ξ1 and ξ2). So, at first it is important to get rid of differen-
tiation on ζ in (1.1)-(1.6) and afterwards, in the obtained equations, their
dependence on ζ and the asymptotic order on the large parameter λ must
be underlined.

For the interior problem in case of asymptotic approximation O(λp−l)
in (2.1) for the searched values in the three-dimensional thin shell’s plane
we shall receive the following representations:

τii = µλl(τ0
ii + λ−l+cζτ1

ii), vii = Rµλl−c(v0
ii + λ−l+cζv1

ii),

τij = µλl(τ0
ij + λ−l+cζτ1

ij), vij = Rµλl−c(v0
ij + λ−l+cζv1

ij),
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τi3 = µλl−p+c(τ0
i3 + λ−l+2p−cζτ1

i3) (i ↔ 3),
vi3 = Rµλl−p(v0

i3 + λ−l+2p−cζv1
i3) (i ↔ 3),

(2.2)

τ33 = µλc(τ0
33+ζτ1

33+λ−l+2p−cζ2τ2
33), v33 = Rµλ0(v0

33+ζv1
33+λ−l+2p−cζ2v2

33),

Vi = Rλl−p(V 0
i + λ−l+cζV l

i ), ωi = λl−p−c(ω0
i + λ−l+cζω1

i ),

V3 = Rλl−2p+c(V 0
3 + λ−l+2p−cζV 1

3 ), ω3 = λl−2p(ω0
3 + λ−l+2p−cζω1

3).

While describing ATE of the interior problem, there only remains to find
out the role of variables (ξ η), which show the place of points on the shell’s
midplane surface.

From this point of view, instead of force and momental stresses it
is expedient to introduce their equivalent forces, moments and hypermo-
ments[10,11].

Tii =
∫ h

−h
(1 + α3/Rj)σiidα3, Lii =

∫ h

−h
(1 + α3/Rj)µiidα3,

Sij =
∫ h

−h
(1 + α3/Rj)σijdα3, Lij =

∫ h

−h
(1 + α3/Rj)µijdα3,

Gii = −
∫ h

−h
(1 + α3/Rj)σiiα3dα3, Λii = −

∫ h

−h
(1 + α3/Rj)µiiα3dα3,

Hij =
∫ h

−h
(1 + α3/Rj)σijα3dα3, Λij =

∫ h

−h
(1 + α3/Rj)µijα3dα3,

N3i = −
∫ h

−h
(1 + α3/Rj)σ3idα3, L3i = −

∫ h

−h
(1 + α3/Rj)µ3idα3,

Ni3 = −
∫ h

−h
(1+α3/Rj)σi3dα3, Li3 = −

∫ h

−h
(1+α3/Rj)µi3dα3, (2.3)

M3i = −
∫ h

−h
(1 + α3/Rj)σ3iα3dα3, Λ3i = −

∫ h

−h
(1 + α3/Rj)µ3iα3dα3,

Mi3 = −
∫ h

−h
(1 + α3/Rj)σi3α3dα3, Λi3 = −

∫ h

−h
(1 + α3/Rj)µi3α3dα3,

N33 =
∫ h

−h
(1 + α3/R1)(1 + α3/R2)σ33dα3,

L33 =
∫ h

−h
(1 + α3/R1)(1 + α3/R2)µ33dα3,
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M33 =
∫ h

−h
(1 + α3/R1)(1 + α3/R2)σ33α3dα3,

Λ33 =
∫ h

−h
(1 + α3/R1)(1 + α3/R2)µ33α3dα3.

We shall as well use the concepts of transition and turnings of points on
the shell’s midplane surface.

ui = Vi|ζ=0, w = −V3|ζ=0, Ωi = ωi|ζ=0, Ω3 = −ω3|ζ=0.

Here, as the main result, we shall introduce the defining system of two-
dimensional equations on the level of asymptotic accuracy O(λp−l), which
is a mathematical model of micropolar shell with independent fields of
transition and rotation:

Balance equations:

1
Ai

∂Tii

∂αi
+

1
AiAj

∂Aj

∂αi
(Tii−Tjj)+

1
Aj

∂Sji

∂αj
+

1
AiAj

∂Ai

∂αj
(Sji+Sij)−(q+

i −q−i ) = 0,

1
Ai

∂Lii

∂αi
+

1
AiAj

∂Aj

∂αi
(Lii − Ljj) +

1
Aj

∂Lji

∂αj
+

1
AiAj

∂Ai

∂αj
(Lji + Lij)+

+(−1)j(N3j −Nj3)− (m+
i −m−

i ) = 0, (2.4)

T11

R1
+

T22

R2
+

1
A1A2

[
∂(A2N13)

∂α1
+

∂(A1N23)
∂α2

]
+ (q+

3 + q−3 ) = 0,

L11

R1
+

L22

R2
+

1
A1A2

[
∂(A2L13)

∂α1
+

∂(A1L23)
∂α2

]
−(S12−S21)+(m+

3 +m−
3 ) = 0.

Elasticity correlations:

Tii =
2Eh

1− ν2
[Γii + νΓjj ] , Sij = 2h[(µ + α)Γij + (µ− α)Γji],

Lii = 2h
[

4γ(β+γ)
β+2γ χii + 2γβ

β+2γ χjj

]
− h β

β+2γ m,

Lij = 2h[(γ + ε)χij + (γ − ε)χji],
(2.5)

Ni3 = −2h
4αµ

α + µ
Γi3 − α− µ

α + µ
N3i, Li3 = −2h

4γε

γ + ε
χi3 +

γ − ε

γ + ε
L3i.

Geometrical correlations:

γi = − 1
Ai

∂w

∂αi
− ui

Ri
, Γi3 = γi + (−1)jΩj , χi3 = − 1

Ai

∂Ω3

∂αi
− Ωi

Ri
,

Γii = 1
Ai

∂ui
∂αi

+ 1
AiAj

∂Ai
∂αj

uj − w
Ri

,

Γij = 1
Ai

∂uj

∂αi
− 1

AiAj

∂Ai
∂αj

ui + (−1)jΩ3,
(2.6)
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χii =
1
Ai

∂Ωi

∂αi
+

1
AiAj

∂Ai

∂αj
Ωj − Ω3

Ri
, χij =

1
Ai

∂Ωj

∂αi
− 1

AiAj

∂Ai

∂αj
Ωi,

where
N3i = h(q+

i − q−i ), L3i = h(m+
i −m−

i ).

Here, Tii(i = 1, 2), Sij(i, j = 1, 2; i 6 =j), Ni3(i = 1, 2) are the averaged
forces, Lii(i = 1, 2), Lij(i, j = 1, 2; i 6 =j), Li3(i = 1, 2) averaged moments,
Γii(i = 1, 2), Γij(i, j = 1, 2; i 6 =j), Γi3(i = 1, 2) are the components of
deformation tensor on the shell’s midplane surface, χii(i = 1, 2), χij(i, j =
1, 2; i 6 =j), χi3(i = 1, 2) are the components of bending-torsion tensor on
the midplane surface of shell.

If we found the solution of equations (2.4)-(2.7) of applied two-dimensional
theory of micropolar shell with independent fields of transition and rotation
then the rest of the averaged values and the wanted values of the three-
dimensional theory on the three-dimensional shell’s plane will be defined
by the corresponding formulae.

While studying the boundary micropolar elastic phenomena, we shall
proceed from the equations of three-dimensional theory of ATE with IFTR
(1.1)- (1.3). We shall consider that the shell’s boundary, around which we
shall have to investigate the stress state, is given by the equation α1 = α10

and we shall change the free variables by the formulae:
α1−α10 = Rλ−lξ1, α2 = Rλ−pξ2, α3 = Rλ−lζ, where R, λ, l, p have the

same meaning as in (1.6).
We shall consider that in the boundary stress-deformed state the wanted

values do not change their asymptotic behavior while differentiating on
ξ1, ξ2, ζ.

The four boundary layer problems (plane and anti-plane, force and
momental) are defined by separate differential equations. Studying the
boundary layers on ATE with IFTR and their corresponding properties,
we shall obtain several equations which satisfy to the attenuating character
of boundary solutions.

General SDS in the shell is defined by the following structural formula:

(SDS)complete = (SDS)interior + λr (SDS)a
boundary + λΘ(SDS)n

boundary

numbers r,Θ are the indices of micropolar boundary layer’s intensity.
Boundary layer equations are homogeneous. Numbers r and Θ are to be
chosen in such a way that they could satisfy to the boundary conditions
(1.5) on the shell’s lateral surface. Considering the problem of matching the
interior iteration process and micropolar boundary layers, we shall obtain
the following boundary conditions on the boundary contour of the shell’s
midplane on the level of asymptotic approximation O(λp−l) for the system
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of equations of applied two-dimensional theory of micropolar shells (in case
of the first variant of boundary conditions (1.5)):

T11|α1=α10 =
∫ h

−h
p∗1dα3, S12|α1=α10 =

∫ h

−h
p∗2dα3,

L11|α1=α10 =
∫ h

−h
m∗

1dα3, L12|α1=α10 =
∫ h

−h
m∗

2dα3, (2.8)

N13|α1=α10 = −
∫ h

−h
p∗3dα3, L13|α1=α10 = −

∫ h

−h
m∗

3dα3.

Equations (2.4)-(2.7) and boundary condition (2.8) are mathematical
models of micropolar shell with free fields of transition and rotation. This
is the equation of the twelfth order with six boundary conditions on each
boundary cut. Plane and anti-plane force and momental boundary lay-
ers will be defined by separate differential equations with corresponding
boundary conditions.

3. Applied two-dimensional theory of micropolar elastic thin shells
with constraint rotation.

Let’s suppose that the dimensionless physical constants of the shell’s
material (1.7) are now expressed in the following way:

α

µ
∼ 1,

β

R2µ
∼ λ−2lβ∗,

γ

R2µ
∼ λ−2lγ∗,

ε

R2µ
∼ λ−2lε∗ (β∗, γ∗, ε∗,∼ 1).

(3.1)
For the interior problem, in this case, on the order of asymptotic ap-

proximation O(λp−l) for the wanted sizes in the three-dimensional thin shell
plane we shall obtain the following asymptotic representations:

τii = µλl(τ0
ii + λ−l+2p−cζτ1

ii), τij = µλl(τ0
ij + λ−l+2p−cζτ1

ij + λ−l+2p−cτ̃ij),

τ3i = µλp(τ0
3i + ζτ1

3i + λ−l+2p−cζ2τ2
3i + λ−l+2p−cτ̃3i),

τi3 = µλp(τ0
i3 + ζτ1

i3 + λ−l+2p−cζ2τ2
i3 + λ−l+2p−c(τ̃i3 + τ̃ i3)),

τ33 = µλc(τ0
33 + ζτ1

33 + λ−l+2p−cζ2τ2
33 + λ−2l+4p−2cζ3τ3

33

+λ−2l+4p−2c(τ̃33 + τ̃33)),
(3.2)

vii = Rµλ−l+2p−c(v0
ii + ṽii), vij = Rµλ−l+2p−cv0

ij ,

v33 = Rµλ−l+2p−c(v0
33 + ṽ33),

vi3 = Rµλ−l+p(v0
i3 + λ−l+2p−cζv1

i3 + λ−l+2p−c(ṽi3 + ṽi3)) (i ↔ 3),
ωi = λl+p−cω0

i ,
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Vi = Rλl−p(V 0
i + λ−l+2p−cζV 1

i ), V3 = Rλl−cV 0
3 ,

ω3 = λl(ω0
3 + λ−l+2p−cζω1

3 + λ−l+2p−cω̃3).

Asymptotics (3.1), (3.2) have the following peculiarities:
1) components of vector rotation in the points of the shell’s midplane

surface are expressed by the components of transition vector at these points
as in the elasticity theory;
2) part of the values are connected and form a two-dimensional theory,
and the definition of the other values µ31, µ32, µ33 are brought to separate
boundary value problems for differential equations of second order (as ordi-
nary differential equations) with free variable ζ, where variables ξ1 and ξ2

are entered as parameters. The main result is the defining system of two-
dimensional equations, which is represented as a defining system of applied
two-dimensional theory of micropolar shells with constraint rotation:

Balance equations:

1
Ai

∂Tii

∂αi
+

1
AiAj

∂Aj

∂αi
(Tii−Tjj)+

1
Aj

∂Sji

∂αj
+

1
AiAj

∂Ai

∂αj
(Sji+Sij)−(q+

i −q−i ) = 0,

1
Ai

∂(Gii − (−1)jLij)
∂αi

+
1

AiAj

∂Aj

∂αi

[
(Gii − (−1)jLij)− (Gjj + (−1)jLjj)

]−

− 1
Aj

∂

∂αj
(Hji+(−1)jLij)− 1

AiAj

∂Ai

∂αj

[
(Hji − (−1)jLjj) + (Hij − (−1)jLii)

]−
(3.3)

−Ni3 + h(q+
i − q−i ) + (−1)j(m+

j −m−
j ) = 0,

T11

R1
+

T22

R2
+

1
A1A2

[
∂(A2N13)

∂α1
+

∂(A1N23)
∂α2

]
+ (q+

3 + q−3 ) = 0.

Elasticity correlations

Gii = − 2Eh3

3(1− v2)
[Kii + vKjj ] ,

Hij =
Eh3

3(1 + v)
[K12 + K21] + (−1)j 1

2

(
1− hk1

th(hk1)

)
L̃33,

Tii = 2Eh
1−v2 [Γii + vΓjj ] ,

Sij = Eh
1+v [Γ12 + Γ21] + (−1)j 1

2

(
m+

3 + m−
3

)
,

(3.4)

Lii = 4hγχii +
β

β + 2γ
L̃33, Lij = 2h [(γ + ε)χij + (γ − ε)χji] ,

L̃33 =
th(hk1)

k1

[
4γ(χ11 + χ22)− (m+

3 −m−
3 )

]
, k1 =

√
4α

β + 2γ
.
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Geometrical correlations

Γii =
1
Ai

∂ui

∂αi
+

1
AiAj

∂Ai

∂αj
uj − w

Ri
, Γij =

1
Ai

∂uj

∂αi
− 1

AiAj

∂Ai

∂αj
ui,

βi =
1
Ai

∂w

∂αi
+

ui

Ri
,

Kii = 1
Ai

∂βi

∂αi
+ 1

AiAj

∂Ai
∂αj

βj , Kij = 1
Ai

∂βj

∂αi
− 1

AiAj

∂Ai
∂αj

βi,

Ωi = (−1)iβi,
(3.5)

Ω3 =
1
2
(Γ21 − Γ12), χii =

1
Ai

∂Ωi

∂αi
+

1
AiAj

∂Ai

∂αj
Ωj − Ω3

Ri
,

χij =
1
Ai

∂Ωj

∂αi
− 1

AiAj

∂Ai

∂αj
Ωi.

If the solution to the two-dimensional equations (3.3)-(3.5) of the ap-
plied two-dimensional theory of micropolar shells with constraint rotation
is known then all the calculated values of the three-dimensional theory in
the shell’s three-dimensional plane are defined by corresponding formula.

Studying the micropolar boundary layers (which are two plane and anti-
plane mixed force-momental boundary layers), their corresponding proper-
ties and the matching of interior problem and the boundary layer we shall
obtain boundary conditions of two-dimensional theory (in case of the first
variant of boundary conditions (1.5)):

T11|α1=α12 =
∫ h

−h
p∗1dα3, S12|α1=α12 =

∫ h

−h
p∗2dα3,

[L12 −G11] |α1=α10 =
∫ h

−h
(m∗

2 + α3P
∗
1 )dα3,

[
−N13 + 1

A2

∂
∂α2

(H12 − L11)
]∣∣∣

α1=α10

=
∫ h
−h

[
P ∗

3 + 1
A2

∂
∂α2

(α3P
∗
2 −m∗

1)
]
dα3.

(3.6)

Equations (3.3)-(3.5) and boundary conditions (3.6) are mathematical mod-
els of micropolar shell with constraint rotation. This system of equations
is of eighth order with four boundary conditions on each boundary cut.

The mentioned boundary layer problems are defined as separate differ-
ential equations and by corresponding boundary conditions.

4. Applied two-dimensional theory of micropolar shell with small
shift rigidity.
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Now let’s consider that the physical constants of shell material (1.7) are
presented as follows:

α

µ
= λ−2l+2pα∗,

β

R2µ
= β∗,

ε

R2µ
= ε∗,

γ

R2µ
= γ∗, (4.1)

where α∗, β∗, ε∗, γ∗ ∼ 1.
For the values of interior problem on the level of asymptotic accuracy

O(λp−l) in the three-dimensional thin shell plane we shall obtain the fol-
lowing asymptotic presentation:

τii = µλl(τ0
ii+λ−l+2p−cζτ1

ii), τij = µλl(τ0
ij+λ−l+2p−cζτ1

ij), vii = Rµλl+2p−cv0
ii,

τi3 = µλp(τ0
i3 + ζτ1

i3 + λ−l+2p−cζ2τ2
i3) (i ↔ 3), vij = Rµλl+2p−cv0

ij ,

τ33 = µλc(τ0
33 + λ−cζτ1

33 + λ−l+2p−cζ2τ2
33 + λ−2l+4p−2cζ3τ3

33), (4.2)

vi3 = Rµλl+p(v0
i3 + λ−l+2p−cζv1

i3) (i ↔ 3),
v33 = Rµλ2p(v0

33 + ζv1
33 + λ−l+2p−cζ2v2

33),

Vi = Rλl−p(V 0
i + λ−l+2p−cζV 1

i ), V3 = Rλl−cV 0
3 ,

ωi = λl+p−cω0
i , ω3 = λl(ω0

3 + λ−l+2p−cζω1
3).

Let’s mention that in case of asymptotics (4.1), (4.2) in the two-dimensional
equations of micropolar shell the values of ”pure momental” character get
separated and form separate system of equations. For the ”stress” part
we shall obtain a shift theory of shells, where the corners of turning are
conditioned by ”pure momental” part of the problem.

Let’s formulate the following separate groups of equations.
Equations of ”pure momental” part of micropolar shell problem:
Balance equations

1
Ai

∂Lii

∂αi
+

1
AiAj

∂Aj

∂αi
(Lii − Ljj) +

1
Aj

∂Lji

∂αj
+

+
1

AiAj

∂Ai

∂αj
(Lji + Lij)− (m+

i −m−
i ) = 0,

L11

R1
+

L22

R2
+

1
A1A2

[
∂(A2L13)

∂α1
+

∂(A1L23)
∂α2

]
+ (m+

3 + m−
3 ) = 0. (4.3)

Elasticity correlations

Lii = 2h

[
4γ(β + γ)

β + 2γ
χii +

2γβ

β + 2γ
χjj

]
,
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Lij = 2h [(γ + ε)χij + (γ − ε)χji] , Li3 = −2h
4γε

γ + ε
χI3+

γ − ε

γ + ε
h(m+

i −m−
i ).

(4.4)
Geometrical correlations

χi3 = − 1
Ai

∂Ω3

∂αi
− Ωi

Ri
, χii =

1
Ai

∂Ωi

∂αi
+

1
AiAj

∂Ai

∂αj
Ωj − Ω3

Ri
,

χij =
1
Ai

∂Ωj

∂αi
− 1

AiAj

∂Ai

∂αj
Ωi. (4.5)

Equations of ”pure force” part of micropolar shell problem:
Balance equations

1
Ai

∂Tii

∂αi
+

1
AiAj

∂Aj

∂αi
(Tii−Tjj)+

1
Aj

∂Sji

∂αj
+

1
AiAj

∂Ai

∂αj
(Sji+Sij)−(q+

i −q−i ) = 0,

T11

R1
+

T22

R2
+

1
A1A2

[
∂(A2N13)

∂α1
+

∂(A1N23)
∂α2

]
+ (q+

3 + q−3 ) = 0, (4.6)

−N3i +
1
Ai

∂Gii

∂αi
+

1
AiAj

∂Aj

∂αi
(Gii −Gjj)−

− 1
Aj

∂Hji

∂αj
− 1

AiAj

∂Ai

∂αj
(Hji + Hij) + h(q+

i − q−i ) = 0

Elasticity correlations

Tii =
2Eh

1− v2
(Γii +vΓjj), Sij = Sji = 2hµ(Γij +Γji), Ni3 = N3i−8hαΓi3,

Gii = − 2Eh3

3(1− v2)
(Kii + vKjj), Hij = Hji =

2µh3

3
(Kij + Kji). (4.7)

Geometrical correlations

βi =
1
Ai

∂w

∂αi
+

ui

Ri
, Γi3 = −βi+(−1)jΩj , Γii =

1
Ai

∂ui

∂αi
+

1
AiAj

∂Ai

∂αj
uj− w

Ri
,

Γij =
1
Ai

∂uj

∂αi
− 1

AiAj

∂Ai

∂αj
ui, Kii =

1
Ai

∂βi

∂αi
+

1
AiAj

∂Ai

∂αj
βj ,

Kij =
1
Ai

∂βj

∂αi
− 1

AiAj

∂Ai

∂αj
βi.

(4.8)

If we treat the coefficient 8hα with shift-momental rigidity (the phys-
ical constant α is the shift module like the classical module µ ) then the
presented theory (4.6)-(4.8) with the account of (4.1) we can treat as shell
theory ”with small shift rigidity”.
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On the basis of construction of corresponding micropolar boundary lay-
ers and the study of interaction problem of interior problem with boundary
layer problem we shall obtain separate boundary conditions for the system
of equations (4.3)-(4.5) and (4.6)-(4.8):

L11|α1=α10 =
∫ h

−h
m∗

1dα3, L12|α1=α10 =
∫ h

−h
m∗

2dα3,

L13|α1=α10 =
∫ h

−h
m∗

3dα3,

(
−N13 +

1
A2

∂H12

∂α2

)∣∣∣∣
α1=α10

=
∫ h

−h
p∗3dα3 +

1
A2

∂

∂α2

∫ h

−h
p∗2α3dα3, (4.9)

T11|α1=α10 =
∫ h

−h
p∗1dα3, S12|α1=α10 =

∫ h

−h
p∗2dα3,

G11|α1=α10 = −
∫ h

−h
p∗1α3dα3.

System of equations (4.3)-(4.5) and (4.6)-(4.8) with corresponding bound-
ary conditions of (4.9) form a mathematical model of micropolar shell with
”small shift rigidity”.

3 Conclusion

Here the asymptotic approach of constructing the mathematical models of
thin shells on the basis of asymmetrical elasticity with free fields of tran-
sition and rotation is presented. The essential point consists in the fact
that certain mathematical model of micropolar shell depends on values of
physical dimensionalless parameters of shell material, where scale factor is
also included. This means that depending on the mentioned scale factor
and the shell’s thin-walledness, the constructed mathematical models of
micropolar shell can be used in the investigation of problems of structural
mechanics and particularly for problems of micro- and nano-mechanics.
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