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Abstract

We consider a variant of the mixture theory of two isotropic elastic rigid materials.

In the case of plane deformation, analytic solutions of the following static problems

are obtained: the Flaman problem (concentrated force is applied to a point of the

half-plane boundary), the Kelvin problem (concentrated force is applied to a point of

a half-plane) and the problems where on a plane segment, partial displacements of

two mixture components undergo a constant discontinuity and they are continuous

everywhere except the considered segment. The obtained singular solutions are used

in constructing numerical solutions of various boundary value problems of the mixture

theory by the boundary element methods, namely by the method of fictitious loads

and the method of displacements discontinuity.
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1. A system of equilibrium equations in the complex form. The
considered model of an elastic binary mixture is called the Green-Naghdi-
Steel model [1], [2]. In this case, the elastic medium is characterized by
two displacement vectors and two stress and strain tensors corresponding
to two mixture components.

Let z = x + iy be a point of a complex plane. In the case of plane
deformation, a system of equilibrium equations in terms of displacement
vector components ux = (u′x, u′′x)T , uy =

(
u′y, u′′y

)T has the form

4A (u+),zz + 2Bθ,z + f+ = 0, (1.1)

where

z̄ = x− iy, (·),z =
1
2

[
(·),x − i (·),y

]
, (·),z̄ =

1
2

[
(·),x + i (·),y

]
,
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(.),x =
∂

∂x
, (.),y =

∂

∂y
; u+ = ux + iuy, θ = (u+),z + (ū+),z̄ ;

A =
(

µ1 − λ5 µ3 + λ5

µ3 + λ5 µ2 − λ5

)
,

B =




λ1 + λ5 + µ1 − α2ρ2

ρ
λ3 − λ5 + µ3 − α2ρ1

ρ

λ4 − λ5 + µ3 − α2ρ2

ρ
λ2 + λ5 + µ2 − α2ρ1

ρ


 ;

λ1, λ2, λ3, λ4, λ5, µ1, µ2, µ3 are the elasticity constants, α2 = µ3 − µ4; ρ1, ρ2

are the densities of the mixture components, ρ = ρ1 + ρ2; f+ = fx + ify,
fx = (f ′x, f ′′x )T , fy =

(
f ′y, f ′′y

)T are the mass force components.
A general solution of the homogeneous system (1.1) is given by an ana-

logue of the Kolosov-Muskhelishvili formula [3], [4]

2u+ = A∗ϕ (z)− zϕ′ (z)− ψ (z), (1.2)

where A∗ = I+2B−1A, I is a 2×2 unit matrix; ϕ (z) = (ϕ1 (z) , ϕ2 (z))T ,
ψ (z) = (ψ1 (z) , ψ2 (z))T are the matrix columns consisting of arbitrary
analytic functions.

The stress vector components σαβ =
(
σ′αβ , σ′′αβ

)T
, where α and β de-

note x or y, are expressed through the introduced functions as follows:

σyy − σxx + i (σxy + σyx) = 2M [zΦ′ (z) + Ψ (z)] ,

σxx + σyy + i (σxy − σyx) = 2
[
(A− λ5SA∗)Φ (z) + MΦ(z)

]
,

(1.3)

where Φ (z) = (ϕ′1 (z) , ϕ′2 (z))T , Ψ (z) = (ψ′1 (z) , ψ′2 (z))T .

M =
(

µ1 µ3

µ3 µ2

)
, S =

(
1 −1
−1 1

)
.

2. Statement of the problems. Problem 2.1. Let S be a half-plane y
< 0 filled with a binary mixture, L be its boundary. It is assumed that the
external loads are given on the boundary L (t is a boundary point affix)

σxx = T (t) = (T1 (t) , T2 (t))T , σyy = N (t) = (N1 (t) , N2 (t))T , (2.1)

where Tα(t), Nα(t), α = 1,2, are functions of the Hölder class including a
point at infinity; besides,
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Tα (t) = O

(
1
t

)
, Nα (t) = O

(
1
t

)
, α = 1, 2.

It is assumed that stresses and rotations tend to zero as z →∞.
Problem 2.2. In this problem we have an infinite domain with a

circular hole of radius R and center at the origin. It is assumed that the
polar components of the stress tensor (z = reiϑ) are given on the hole
contour:

σrr − iσrϑ = − 1
2πR

(Fx − iFy) eiϑ, (2.2)

where Fx = (F ′
x, F ′′

x )T , Fy =
(
F ′

y, F
′′
y

)T are the matrix columns consisting
of constant values.

Problem 2.3. Assume that we have an infinite solid medium filled with
the considered binary mixture and having a crack on a segment |x| ≤ a, y
= 0. A point of this segment is denoted by t. The surface of the crack lying
on the positive side of the axis y = 0 is denoted by y=0+, and the surface
lying on the negative side of the axis y = 0 by y = 0-. Let on the two sides
of the segment, the displacements be given in the following manner:

(ux + iuy)
± = (ux + iuy) (t, 0±) =

{
± I

2 + i
2π

(
I − 2 (A∗ + I)−1

)

× ln
∣∣∣ t−a
t+a

∣∣∣
}

(Dx + Dy) ,

(2.3)

where Dx = (D′
x, D′′

x)T , Dy =
(
D′

y, D
′′
y

)T are the matrix columns consisting
of constant positive values.

From the boundary conditions (2.3) we see that when passing from one
side of the segment onto the other side, displacements experience a given
constant change Dx , Dy .

In problems (2.1) and (2.3) it is also assumed that stresses and rotations
at infinity are equal to zero.

3. Solution of the stated problems. We will first deal with the
boundary value problem (1.1), (2.1). With formulas (1.3) taken into ac-
count, this problem is reduced to the following boundary value problem:
define the holomorphic functions Φα(z ), Ψα(z ), α = 1,2, in the domain S,
which satisfy the boundary condition

MΦ(t) + (A− λ5SA∗)Φ (t) + MtΦ′ (t) + MΨ(t) = N (t)− iT (t) . (3.1)

Taking the basic properties of Cauchy type integrals into account, from the
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boundary conditions (3.1) we find the desired holomorphic functions

Φ (z) = −M−1A

2πi

∫

L

N − iT

t− z
dt,

Ψ(z) = −M−1

2πi

∫

L

N + iT

t− z
dt +

M−1A

2πi




∫

L

N − iT

t− z
dt

+z

∫

L

N − iT

(t− z)2
dt


 ,

(3.2)

where we have introduced the notation A = M (A− λ5SA∗)−1.
The corresponding displacements and stresses are defined by the sub-

stitution of formulas (3.2) into equalities (1.2) and (1.3), respectively. For
instance, for the stress components σxx and σxy we obtain the formulas

σxx = − 1
π

∫

L

{
2Ay (x− t) N (t) +

[(
I + A

)
(x− t)2 +

(
I −A

)
y2

]
T (t)

}

×(x− t) dt

r4
,

σxy = − 1
π

∫

L

{[(
I + A

)
y2 +

(
I −A

)
(x− t)2

]
N (t) + 2Ay (x− t) T (t)

}

×(x− t) dt

r4
,

where r2 = (x− t)2 + y2.
As an example we can consider the case in which only the normally

distributed force is applied to a part of the boundary, while the rest of
the boundary is stress-free. From the solution of the latter boundary value
problem we can obtain a solution of the Flaman problem for a binary mix-
ture when the concentrated force Py =

(
P ′

y, P
′′
y

)T is applied to a boundary
point t = 0. Stresses in a half-plane y ≤ 0 are defined by the following
expressions:

σxx = − 2
π

[
x2y

(x2 + y2)2
A

]
Py, σyy = − y

π

[(
I + A

)
y2 +

(
I −A

)
x2

(x2 + y2)2

]
Py,

σyx = − 2
π

[
y2x

(x2 + y2)2
A

]
Py, σxy = −x

π

[(
I + A

)
y2 +

(
I −A

)
x2

(x2 + y2)2

]
Py.
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The displacements associated with these stresses are given by the formulas

ux =
1
2π

{
1
2

[
A∗M−1A−M−1

] (
arctan

y

x
+

π

2

)
+ M−1A

xy

x2 + y2

}
Py,

uy =
1
2π

{
−1

2
[
A∗M−1A + M−1

]
ln

(
x2 + y2

m2

)1/2

+ M−1A
y2

x2 + y2

}
Py,

where m is an arbitrary constant.
Let us now proceed to the consideration of the boundary value problem

(1.1), (2.2). This problem is reduced to the following boundary value prob-
lem for the holomorphic functions Φα, Ψα, α = 1,2, in an infinite domain
with a circular hole

MΦ(z) + (A− λ5SA∗) Φ (z)−M [zΦ′ (z) + Ψ (z)] e2iϑ

= − 1
2πR

(Fx − iFy) eiϑ = 0 , r = R,

whose solution has the form

Φ (z) =
a1

z
, Ψ(z) =

b1

z
+

b3

z3
.

where a1 = − 1
2π

(I + A∗)−1 A−1 (Fx + iFy) , b1 = −A∗a1, b3 = 2R2a1.

Assuming that R → 0 and the stresses σrx, σry increase infinitely so
that the principal vector remains invariable, we obtain

Φ (z) =
a1

z
, Ψ(z) =

b1

z
= −A∗

z
a1. (3.3)

From formula (1.2), taking into account the expressions obtained for
Φ(z) and Ψ(z), we have

u+ = − 1
4πA∗ (I + A∗)−1 A−1 (Fx + iFy) ln zz + 1

4π (I + A∗)−1 A−1

× (Fx − iFy)
z

z
.

Separating in the latter formula the real and imaginary parts and rejecting
the summands corresponding to rigid displacement, we obtain

ux = (A∗G− xG,x) Fx + (−yG,x) Fy,
uy = (−xG,y) Fx + (A∗G− yG,y)Fy,

where
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G (x, y) = − 1
2π

(I + A∗)−1 A−1 ln
(
x2 + y2

)1/2
.

The substitution of values (3.3) into formulas (1.3) gives us the expressions
for stresses:

σxx = [(Λ + 2M) (A∗ − I)G,x − 2MxG,xx] Fx + [Λ (A∗ − I) G,y

−2MyG,xx] Fy,

σyy = [Λ (A∗ − I) G,x − 2MxG,yy] Fx + [(Λ + 2M) (A∗ − I) G,y

−2MyG,yy] Fy,

σxy = [A0G,y − 2MxG,xy] Fx + [B0G,x − 2MyG,xy] Fy,

σyx = [B0G,y − 2MxG,xy]Fx + [A0G,x − 2MyG,xy] Fy,

where

Λ =




λ1 − α2ρ2

ρ
λ3 − α2ρ1

ρ

λ4 +
α2ρ2

ρ
λ2 +

α2ρ1

ρ


 ,

A0 = (B − Λ)A∗ −A, B0 = AA∗ −B + Λ.

Thus we have obtained the solution of the Kelvin problem for a binary
mixture.

Let us now consider the boundary value problem (1.1), (2.3). It is
reduced to a boundary value problem for four functions Φα, Ψα, α = 1,2,
which are holomorphic all over the plane except the ends of a segment
|x| ≤ a, y = 0 and vanishing at infinity. We write the solution of the stated
problem omitting details of its derivation:

Φ (z) =
1
π

(A∗ + I)−1 (−Dy + iDx)
(

1
z − a

− 1
z + a

)
,

Ψ(z) =
1
π

(A∗ + I)−1

[
(−Dy − iDx)

(
1

z − a
− 1

z + a

)

+ (−Dy + iDx)
(

a

(z − a)2
+

a

(z + a)2

)]
.

(3.4)

Integrating these expressions, we obtain respectively the values of ϕ (z)
and ψ (z). Substituting the functions ϕ (z) and ψ (z) into formula (1.2) and
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separating the real and imaginary parts, we obtain the following expressions
for displacements:

ux =
[
1
2

(A∗ + I) F,y − IyF,xx

]
Dx +

[
−1

2
(A∗ − I) F,x − IyF,xy

]
Dy,

ux =
[
1
2

(A∗ − I) F,x − IyF,xy

]
Dx +

[
1
2

(A∗ + I) F,y − IyF,yy

]
Dy.

By the substitution of formulas (3.4) into (1.3) we find the expressions
for stresses:

σxx = {[4M − λ5S (A∗ + I)]F,xy + 2MyF,xyy}Dx

+ {[2M − λ5S (A∗ + I)]F,yy + 2MyF,yyy}Dy,

σyy = {−λ5S (A∗ + I)F,xy − 2MyF,xyy}Dx

+ {[2M − λ5S (A∗ + I)]F,yy − 2MyF,yyy}Dy,

σyx = {[2M − λ5S (A∗ + I)]F,yy + 2MyF,yyy}Dx

+ {λ5S (A∗ + I) F,xy − 2MyF,xyy}Dy,

σxy = {[2M + λ5S (A∗ + I)]F,yy + 2MyF,yyy}Dx

+ {−λ5S (A∗ + I) F,xy − 2MyF,xyy}Dy,

where F (x, y) denotes the function (2×2 matrix)

F (x, y) = − 1
π

(A∗ + I)−1

[
y

(
arctan

y

x− a
− arctan

y

x + a

)

− (x− a) ln
√

(x− a)2 + y2 + (x + a) ln
√

(x + a)2 + y2

]
.

In the case of a classical elastic medium, the solution of the correspond-
ing problem was obtained by Crouch [5]. Therefore we call the solution
obtained by us the solution of the Crouch problem for a binary mixture.

4. Numerical solutions of some boundary value problems. Let
us first consider some applications of the Flaman problem. Using the super-
position principle, this solution can be generalized for a more complicated
distribution of stresses on the half-plane boundary. An elementary case is
when concentrated forces F 1

y , F 2
y , ..., F k

y are applied at the boundary points
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ξ1, ξ2, ..., ξk. “Moving” the above-given solution so that it would correspond
to the point of load application and performing summation, we obtain the
solution of our problem. For instance, for the displacement component uy
we have

uy =
k∑

i=1

Y (x− ξi, y) F i
y,

where

Y
(
x− ξi, y

)
=

1
2π

{
−1

2
[
A∗M−1A + M−1

](
ln

√
(x− ξi)2 + y2

− ln
∣∣m− ξi

∣∣) + M−1A
y2

(x− ξi)2 + y2

}
, i = 1, 2, ..., k.

In the case of continuous load distribution

σyx = 0, −∞ ≤ x ≤ ∞, y = 0 ,

σyy =





Py (x) , b1 ≤ x ≤ b2, y = 0,

0, at other points for y = 0,

for uy we obtain the formula

uy =
1
2π

∫ b2

b1

{
−1

2
[
A∗M−1A + M−1

](
ln

√
(x− ξ)2 + y2

− ln |m− ξ|) + M−1A
y2

(x− ξ)2 + y2

}
Py (ξ) dξ.

(4.1)

Analogous formulas are obtained for the other displacement and stress com-
ponents.

For most distributions Py(x), integrals of form (4.1) have no analytic
expressions. But if we consider a discrete approximation of the real distri-
bution of stresses on the boundary, then the problem can be solved numer-
ically. For this, the loaded part is splitted into N segments, the so-called
boundary elements. Normal stresses on each boundary element are assumed
to have constant values. Using the results obtained above, the solution of
the problem is defined as a sum of N individual solutions.

Let us consider the so-called problem of a rigid die. In the case of a
half-plane, for the elastic mixture we consider the following mixed boundary
value problem:

uy = −u0 = − (u′0, u
′′
0)

T , |x| ≤ b, y = 0,
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σxy = 0 |x| < ∞, y = 0,

σyy = 0 |x| > b y = 0,

where u′0>0, u′′0>0 are constants.
This is the problem on impression of a rigid die with the “lubricated”

contact into a half-plane. It can be formulated as follows: find a distribution
of normal stresses σyy on |x| ≤ b, y = 0, such that normal displacements
on this part would be equal to −u′0, −u′′0. .

A numerical solution of the rigid die problem is given by the following
system of 2N linear equations with 2N unknowns

ui
y = −u0 =

N∑

i=1

BijT j
y , i = 1, 2, ..., N, (4.2)

where ui
y is the displacement on the part

∣∣x− xi
∣∣ ≤ a, y=0; T j

y is the sought
constant normal stress in the j -th boundary element; Bij are the influence
coefficients,

Bij = − 1
4π

(
A∗M−1A + M−1

) {(
xi − xj + a

)
ln

∣∣xi − xj + a
∣∣

− (
xi − xj − a

)
ln

∣∣xi − xj − a
∣∣ +

(
m− xj − a

)
ln

(
m− xj − a

)

− (
m− xj + a

)
ln

(
m− xj + a

)}
.

System (4.2) is solved by means of the standard methods of numerical
analysis.

The solution of the Kelvin problem underlies the numerical solution
of various boundary value problems by the so-called method of fictitious
loads. Domains may be both finite and infinite. In that case, the boundary
is approximated by N segments adjoining each other and it is assumed that
the constant normal and tangential stresses P i

s and P i
n (fictitious loads) are

acting on each of N segments. Using a singular solution and coordinate
transformation formulas, we calculate the real stresses σi

s, σi
n at the mid-

point of each segment, i = 1, ..., N. As a result we obtain the following
system of algebraic equations [6], [7]:

σi
s =

N∑
j=1

Aij
ssP

j
s +

N∑
j=1

Aij
snP j

n

σi
n =

N∑
j=1

Aij
nsP

j
s +

N∑
j=1

Aij
nnP j

n





, i = 1, 2, ..., N,
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where Aij
ss,. . . , Aij

nn are the boundary coefficients of stress influence. They
are calculated a priori. After finding the fictitious loads and substituting
them into the respective formulas, we can define stresses and displacements
at any point of the body except the point lying inside a circle with center
at the midpoint of a boundary element and radius equal to the length of
this element, certainly not counting its midpoint.

As an example we will consider several simple problems and compare
the numerical solution with the analytic one.

5. Examples. Below, using the method of boundary elements we give
the solution of two boundary value problems for an elastic body consisting
of a binary mixture. The first of them is an external problem for an infinite
domain with a circular hole when the contour is stress-free, while unilat-
eral tensile stresses are acting at infinity. The second problem concerns a
circular semi-ring when stresses are given on two opposite semicircles, and
the symmetry and antisymmetry conditions on two opposite segments [8].

Problem 1. This is a boundary value problem, i.e. a search for elastic
equilibrium in the domain Ω = {r1 < r < ∞, 0 < α < 2π} with the
following boundary conditions:

when r = r1: σrr = (0, 0)T , σrα = (0, 0)T ,

when r →∞.: σxx = p = (p′, p′′)T , σyy = σxy = σyx = (0, 0)T .

Since the problem has two axes of symmetry, the numerical solution is
obtained if a quarter of the circular boundary is divided into 50 elements
and λ1 = 0.1; λ2 = 0.2; λ3 = 0.3; λ4 = 0.4; λ5 = 0.5; µ1 = 0.6; µ2 = 0.7;
µ3 = 0.8; ρ1 = 0.15; ρ2 = 0.25; p′/E′ = 10−3, p′′/E′′ = 15 · 10−4, r1 = 16;
0 < α < 2π.

An analytic solution for stresses along the circular hole boundary has
the form [9]

when r = r1: σαα =
{

I−
[
I + M(A− λ5SA∗)−1

]
cos 2α

}
p,

σαr = −
{[

I−M(A− λ5SA∗)−1
]
sin 2α

}
p,

where the angle α is counted from the x-axis. These functions are shown
in Fig. 1 together with numerical results.
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Fig.1. a) Tangential (σαα) and b) shearing (σαr) stresses on the hole
boundary.

Problem 2. The elastic equilibrium of this problem is considered in
the domain

Ω = {r1 < r < r2, 0 < α < π} with the following boundary conditions:

a) when r = r1: σrr =
(
p′ cos

α

2
, p′′ cos

α

2

)T
, σrα = (0, 0)T ,

b) when r = r2: σrr = (0, 0)T , σrα = (0, 0)T ,

c) when α = 0: v = (0, 0)T , σrα = (0, 0)T ,

d) when α = π.: u = (0, 0)T , σαα = (0, 0)T .

The problem is solved by the method of boundary elements. Given the
data λ1 = 0.1; λ2 = 0.2; λ3 = 0.3; λ4 = 0.4; λ5 = 0.5; µ1 = 0.6; µ2 = 0.7;
µ3 = 0.8; ρ1 = 0.15; ρ2 = 0.25; p′/E′ = 10−3, p′′/E′′ = 15 · 10−4, r1 = 16;
r2 = 4, we obtain the stress values at the characteristic points of the con-
sidered domain. The semi-circles of radii r = r1 and r = r2 are divided
into 180 equal arcs, while the linear parts of the boundary are divided into
40 equal segments. Fig. 2 shows the diagrams for the stresses σαα/p =
(σ′αα/p′, σ′′αα/p′′)T , σαr/p = (σ′αr/p′, σ′′αr/p′′)T , σrα/p = (σ′rα/p′, σ′′rα/p′′)T ,
σrr/p = (σ′rr/p′, σ′′rr/p′′)T when r1 < r < r2, α = π/3.
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Fig.2. a) Tangential (σαα), b),c) shearing (σαr and σrα) and d) normal (σrr)
stresses in the semi-ring along α = π/3.
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