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Abstract

Large time behavior of solutions and finite difference approximation of a nonlinear

system of integro-differential equations associated with the penetration of a magnetic

field into a substance are studied. Two initial-boundary value problems are investi-

gated - the first with homogeneous conditions on whole boundary and the second with

nonhomogeneous boundary data on one side of lateral boundary. The rates of con-

vergence are also established. The convergence properties of the corresponding finite

difference schemes are also given.
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1 Introduction

The nonlinear differential and integro-differential equations and their sys-
tems describe various processes in physics, economics, chemistry, technol-
ogy and so on. Study of qualitative and structural properties of the solu-
tions of initial-boundary value problems for such models are very important.
It is doubtless that construction and investigation of corresponding discrete
analogues and the study of numerical algorithms are significant as well.

One type of integro-differential system arises for mathematical mod-
elling of the process of penetrating of magnetic field into the substance.
In a quasistationary case the corresponding system of Maxwell’s equations
has the form [1]:

∂H

∂t
= −rot(νmrotH), (1.1)
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cν
∂θ

∂t
= νm (rotH)2 , (1.2)

where H = (H1,H2,H3) is a vector of the magnetic field, θ is temperature,
cν and νm characterize the thermal heat capacity and electroconductivity of
the substance. System (1.1) defines the process of diffusion of the magnetic
field and equation (1.2) – change of the temperature at the expense of Joule
heating without taking into account the heat conductivity.

If cν and νm depend on temperature θ, i.e., cν = cν(θ), νm = νm(θ),
then the system (1.1), (1.2) can be rewritten in the following form [2]:

∂H

∂t
= −rot


a




t∫

0

|rotH|2 dτ


 rotH


 , (1.3)

where function a = a(S) is defined for S ∈ [0,∞).
Note that the system (1.3) is complex. Equations and systems of type

(1.3) still yield to the investigation for special cases. The model of (1.3) type
was intensively studied by many authors and a large amount of literature
is devoted to its investigation (see, for example, [2-19]).

The existence, uniqueness and asymptotic behavior of the solutions of
the initial-boundary value problems for the equations of type (1.3) are
studied in the works [2-13,17,18]. The existence theorems, that are proved
in [2-4], [10] are based on Galerkin’s method and compactness arguments
as in [20, 21] for nonlinear problems.

If the magnetic field has the form H = (0, U, V ) and U = U(x, t), V =
V (x, t), then we have

rot(a(S)rotH) =
(

0, − ∂

∂x

(
a(S)

∂U

∂x

)
, − ∂

∂x

(
a(S)

∂V

∂x

))
.

So, from (1.3) we obtain the following system of nonlinear integro-differential
equations:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
,

∂V

∂t
=

∂

∂x

[
a(S)

∂V

∂x

]
, (1.4)

where

S(x, t) =

t∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]
dτ. (1.5)

In [7] some generalization of the system of type (1.4),(1.5) is proposed.
In particular, assuming the temperature of the considered body to be con-
stant throughout the material, i.e. depending on time, but independent
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of the space coordinates, the process of penetration of the magnetic field
into the material is modelled by the following averaged integro-differential
model

∂U

∂t
= a(S)

∂2U

∂x2
,

∂V

∂t
= a(S)

∂2V

∂x2
, (1.6)

where

S(t) =

t∫

0

1∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]

dxdτ. (1.7)

Our aim is to study long time behavior of solutions of the first bound-
ary value problems for the system (1.4),(1.5) and (1.6),(1.7) with zero con-
ditions in whole lateral boundary as well as the problem with non zero
conditions on one side of lateral boundary. The results presented show the
difference between stabilization character of solutions in these two cases.

The corresponding difference schemes are also given. The difference
schemes for (1.4),(1.5) and (1.6),(1.7) type equations are studied in [13-16].

2 Problem with nonhomogeneous Dirichlet con-
ditions on one side of the lateral boundary

Consider the following problem:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
,

∂V

∂t
=

∂

∂x

[
a(S)

∂V

∂x

]
,

(x, t) ∈ Q = (0, 1)× (0,∞),

(2.1)

U(0, t) = 0, U(1, t) = ψ1, V (0, t) = 0, V (1, t) = ψ2, t ≥ 0, (2.2)

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1], (2.3)

where

S(x, t) =

t∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]
dτ, (2.4)

or

S(t) =

t∫

0

1∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]
dxdτ, (2.5)

ψ1 = const ≥ 0, ψ2 = const ≥ 0.
In this paper everywhere we assume that a(S) = (1 + S)p. Restrictions

for the p will be concretized in the statements.
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It should be noted that boundary conditions (2.2) are used by taking
into account the physical problems considered in [19].

The following statement takes place [11].
Theorem 2.1. Suppose that 0 < p ≤ 1, U0, V0 ∈ H2(0, 1), U0(0) =

V0(0) = 0, U0(1) = ψ1, V0(1) = ψ2, ψ2
1 + ψ2

2 6= 0. Then for the solution of
the problem (2.1)-(2.4) the following asymptotic relations hold as t →∞:

∣∣∣∣
∂U(x, t)

∂x
− ψ1

∣∣∣∣ ≤ C
(
t−1−p

)
,

∣∣∣∣
∂V (x, t)

∂x
− ψ2

∣∣∣∣ ≤ C
(
t−1−p

)
,

∣∣∣∣
∂U(x, t)

∂t

∣∣∣∣ ≤ C
(
t−1

)
,

∣∣∣∣
∂V (x, t)

∂t

∣∣∣∣ ≤ C
(
t−1

)
,

uniformly in x on [0, 1].
Everywhere in this paper we use usual inner-product L2(0, 1), the cor-

responding norm and Sobolev spaces Hk(0, 1) and Hk
0 (0, 1). As to symbols

C, as well as Ci and c, in Sections 2 and 3, they denote various positive
constants, independent of t.

A series of lemmas is necessary to prove Theorem 2.1. We assume that
conditions of the Theorem 2.1 hold.

Lemma 2.1. For the solution of the problem (2.1)-(2.4) the following
estimates are true:

t∫

0

1∫

0

(
∂U

∂τ

)2

dxdτ ≤ C,

t∫

0

1∫

0

(
∂V

∂τ

)2

dxdτ ≤ C.

Lemma 2.2. For the function S the following estimates hold:

cϕ
1

1+2p (t) ≤ 1 + S(x, t) ≤ Cϕ
1

1+2p (t),

where

ϕ(t) = 1 +

t∫

0

1∫

0

(
σ2

1 + σ2
2

)
dxdτ (2.6)

and σ1 = (1 + S)p∂U/∂x, σ2 = (1 + S)p∂V/∂x.
Lemma 2.3. The following inequalities are true:

cϕ
2p

1+2p (t) ≤
1∫

0

(
σ2

1(x, t) + σ2
2(x, t)

)
dx ≤ Cϕ

2p
1+2p (t).

Lemma 2.4. The derivatives ∂U/∂t and ∂V/∂t satisfy the inequality

1∫

0

[(
∂U

∂t

)2

+
(

∂V

∂t

)2
]

dx ≤ Cϕ
− 2

1+2p (t).
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Lemma 2.5. For ∂S/∂x the following inequality is true

1∫

0

∣∣∣∣
∂S

∂x

∣∣∣∣ dx ≤ Cϕ
− p

1+2p (t).

It is not difficult to show that at p > 0 Lemmas 2.2, 2.3, and 2.4 are also
true for the solution of the problem (2.1)-(2.3), (2.5). From these lemmas,
according to the scheme used in [11], we get analogous theorem for the
problem (2.1)-(2.3), (2.5) (see [12]).

Theorem 2.2. Suppose that p > 0, U0, V0 ∈ H2(0, 1), U0(0) = V0(0) =
0, U0(1) = ψ1, V0(1) = ψ2, ψ2

1 + ψ2
2 6= 0. Then for the solution of the

problem (2.1)-(2.3), (2.5) the following asymptotic relations hold as t →∞:
∣∣∣∣
∂U(x, t)

∂x
− ψ1

∣∣∣∣ ≤ C
(
t−1−p

)
,

∣∣∣∣
∂V (x, t)

∂x
− ψ2

∣∣∣∣ ≤ C
(
t−1−p

)
,

∣∣∣∣
∂U(x, t)

∂t

∣∣∣∣ ≤ C
(
t−1

)
,

∣∣∣∣
∂V (x, t)

∂t

∣∣∣∣ ≤ C
(
t−1

)
,

uniformly in x on [0, 1].
Note that to obtain results given in this section, the scheme simi-

lar to [22], in which the adiabatic shearing of incompressible fluids with
temperature-dependent viscosity is studied, was used.

3 Problem with homogeneous Dirichlet boundary
conditions

Consider the following initial-boundary value problem:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
,

∂V

∂t
=

∂

∂x

[
a(S)

∂V

∂x

]
, (x, t) ∈ Q, (3.1)

U (0, t) = U (1, t) = V (0, t) = V (1, t) = 0, t ≥ 0, (3.2)

U (x, 0) = U0 (x) , V (x, 0) = V0 (x) , x ∈ [0, 1], (3.3)

where again

S(x, t) =

t∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]
dτ, (3.4)

or

S(t) =

t∫

0

1∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]
dxdτ. (3.5)
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It is easy to verify the following statement.
Lemma 3.1. If p > 0, then for the solution of the problems (3.1)-(3.4)

and (3.1)-(3.3), (3.5) the following estimate is true

‖U‖+ ‖V ‖ ≤ C exp(−t).

Therefore, Lemma 3.1 gives exponential stabilization of the solution
of the problems (3.1)-(3.4) and (3.1)-(3.3), (3.5) in the norm of the space
L2(0, 1). As it was shown in [12, 18], the stabilization takes place in the
norm of the space H1(0, 1) as well. In particular, the following statement
holds.

Theorem 3.1. Assume that U0, V0 ∈ H2(0, 1)∩H1
0 (0, 1). If 0 < p ≤ 1

then for the solution of the problem (3.1)-(3.4), and if p > 0 then for the
solution of the problem (3.1)-(3.3), (3.5), the following estimate is true as
t →∞ ∥∥∥∥

∂U

∂x

∥∥∥∥ +
∥∥∥∥
∂U

∂t

∥∥∥∥ +
∥∥∥∥
∂V

∂x

∥∥∥∥ +
∥∥∥∥
∂V

∂t

∥∥∥∥ ≤ C exp
(
− t

2

)
.

Let us strengthen the Theorem 3.1. Namely, let us show that stabiliza-
tion can be achieved in the stronger norm.

The main result of this section has the form
Theorem 3.2. Suppose that U0, V0 ∈ H2(0, 1)∩H1

0 (0, 1). If 0 < p ≤ 1
then for the solution of the problem (3.1)-(3.4), and if p > 0 then for the
solution of the problem (3.1)-(3.3), (3.5), the following estimates hold as
t →∞:

∣∣∣∣
∂U(x, t)

∂x

∣∣∣∣ ≤ C exp
(
− t

2

)
,

∣∣∣∣
∂V (x, t)

∂x

∣∣∣∣ ≤ C exp
(
− t

2

)
,

∣∣∣∣
∂U(x, t)

∂t

∣∣∣∣ ≤ C exp
(
− t

2

)
,

∣∣∣∣
∂V (x, t)

∂t

∣∣∣∣ ≤ C exp
(
− t

2

)
,

uniformly in x on [0, 1].
Theorem 3.1 helps us to deduce that Lemma 2.2 holds also for the

solution of the problem (3.1)-(3.4) and (3.1)-(3.3), (3.5). Therefore, using
this lemma, (2.6) and again Theorem 3.1, we obtain

dϕ(t)
dt

=

1∫

0

(1 + S)2p

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]

dx ≤ Cϕ
2p

1+2p (t) exp(−t).

After integrating this inequality, taking into account (2.6), we arrive at

1 ≤ ϕ(t) ≤ C.
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From this, keeping in mind Lemma 2.2, we get

1 ≤ 1 + S(x, t) ≤ C. (3.6)

From (3.6) and Theorem 3.1, by taking into account identities

σ2
1(x, t) =

1∫

0

σ2
1(y, t)dy +

1∫

0

x∫

y

∂σ2
1(ξ, t)
∂ξ

dξdy =

=

1∫

0

σ2
1(y, t)dy + 2

1∫

0

x∫

y

σ1(ξ, t)
∂U(ξ, t)

∂t
dξdy,

σ2
2(x, t) =

1∫

0

σ2
2(y, t)dy +

1∫

0

x∫

y

∂σ2
2(ξ, t)
∂ξ

dξdy =

=

1∫

0

σ2
2(y, t)dy + 2

1∫

0

x∫

y

σ2(ξ, t)
∂V (ξ, t)

∂t
dξdy,

we get

σ2
1(x, t) + σ2

2(x, t) ≤ 2

1∫

0

(1 + S)2p

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]

dx+

+

1∫

0

[(
∂U

∂t

)2

+
(

∂V

∂t

)2
]

dx ≤ C exp(−t).

(3.7)

At last, if we remind definition of σ1 and σ2, from (3.7), validity of the
first part of the Theorem 3.2 will be obvious.

Now let us estimate derivatives ∂U/∂t and ∂V/∂t. For this, differentiate
the first equation of the system (3.1) with respect to t

∂2U

∂t2
− ∂

∂x

[
∂(1 + S)p

∂t

∂U

∂x
+ (1 + S)p ∂2U

∂t∂x

]
= 0. (3.8)

Multiplying (3.8) by ∂U/∂t and carrying out integration by parts gives

1
2

d

dt

1∫

0

(
∂U

∂t

)2

dx +

1∫

0

(1 + S)p

(
∂2U

∂t∂x

)2

dx+

+p

1∫

0

(1 + S)p−1

(
∂U

∂x

)3 ∂2U

∂t∂x
dx+ (3.9)
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+p

1∫

0

(1 + S)p−1 ∂U

∂x

(
∂V

∂x

)2 ∂2U

∂t∂x
dx = 0.

Identity (3.9) yields

d

dt

1∫

0

(
∂U

∂t

)2

dx +

1∫

0

(1 + S)p

(
∂2U

∂t∂x

)2

dx ≤

≤ 2p2

1∫

0

(1 + S)p−2

(
∂U

∂x

)6

dx+

+2p2

1∫

0

(1 + S)p−2

(
∂U

∂x

)2 (
∂V

∂x

)4

dx.

(3.10)

Let us multiply (3.10) scalarly by exp(2t) and integrate it on (0, t).
Using (3.6), Theorem 3.1, and the first part of the Theorem 3.2, after
simple transformations we get

t∫

0

exp(2τ)
d

dτ

1∫

0

(
∂U

∂τ

)2

dxdτ +

t∫

0

exp(2τ)

1∫

0

(1 + S)p

(
∂2U

∂x∂τ

)2

dxdτ ≤

≤ 2p2

t∫

0

exp(2τ)

1∫

0

(1 + S)p−2

(
∂U

∂x

)2
[(

∂U

∂x

)4

+
(

∂V

∂x

)4
]

dxdτ,

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂x∂τ

)2

dxdτ ≤ − exp(2t)

1∫

0

(
∂U

∂t

)2

dx+

1∫

0

(
∂U

∂t

)2

dx

∣∣∣∣∣∣
t=0

+

+2

t∫

0

exp(2τ)

1∫

0

(
∂U

∂τ

)2

dxdτ + C

t∫

0

exp(−τ)dτ,

or
t∫

0

exp(2τ)

1∫

0

(
∂2U

∂x∂τ

)2

dxdτ ≤ C exp(t). (3.11)

Similarly,
t∫

0

exp(2τ)

1∫

0

(
∂2V

∂x∂τ

)2

dxdτ ≤ C exp(t). (3.12)
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Multiplying (3.8) scalarly by exp(2t)∂2U/∂t2, using the first part of the
Theorem 3.2, a priori estimates (3.6), (3.11), (3.12), we get

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂τ2

)2

dxdτ +
1
2

t∫

0

1∫

0

exp(2τ)(1 + S)p ∂

∂τ

(
∂2U

∂τ∂x

)2

dxdτ+

+p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1

(
∂U

∂x

)3 ∂

∂τ

(
∂2U

∂τ∂x

)
dxdτ+

+p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1 ∂U

∂x

(
∂V

∂x

)2 ∂

∂τ

(
∂2U

∂τ∂x

)
dxdτ = 0.

exp(2t)
2

1∫

0

(
∂2U

∂t∂x

)2

dx ≤ 1
2

1∫

0

(
∂2U

∂t∂x

)2

dx

∣∣∣∣∣∣
t=0

+

+

t∫

0

1∫

0

exp(2τ)(1 + S)p

(
∂2U

∂τ∂x

)2

dxdτ+

+
p

2

t∫

0

1∫

0

exp(2τ)(1 + S)p−1

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
](

∂2U

∂τ∂x

)2

dxdτ−

−p exp(2t)

1∫

0

(1 + S)p−1

(
∂U

∂x

)3 ∂2U

∂t∂x
dx + p

1∫

0

(
∂U

∂x

)3 ∂2U

∂t∂x
dx

∣∣∣∣∣∣
t=0

+

+2p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1

(
∂U

∂x

)3 ∂2U

∂τ∂x
dxdτ+

+p(p−1)

t∫

0

1∫

0

exp(2τ)(1+S)p−2

[(
∂U

∂x

)5

+
(

∂U

∂x

)3 (
∂V

∂x

)2
]

∂2U

∂τ∂x
dxdτ+

+3p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1

(
∂U

∂x

)2 (
∂2U

∂τ∂x

)2

dxdτ−

−p exp(2t)

1∫

0

(1+S)p−1 ∂U

∂x

(
∂V

∂x

)2 ∂2U

∂t∂x
dx+p

1∫

0

∂U

∂x

(
∂V

∂x

)2 ∂2U

∂t∂x
dx

∣∣∣∣∣∣
t=0

+
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+2p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1 ∂U

∂x

(
∂V

∂x

)2 ∂2U

∂τ∂x
dxdτ+

+p(p−1)

t∫

0

1∫

0

exp(2τ)(1+S)p−2

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]

∂U

∂x

(
∂V

∂x

)2 ∂2U

∂τ∂x
dxdτ+

+p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1

(
∂V

∂x

)2 (
∂2U

∂τ∂x

)2

dxdτ+

+2p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1 ∂U

∂x

∂V

∂x

∂2U

∂τ∂x

∂2V

∂τ∂x
dxdτ ≤

≤ C1 + C2 exp(t) + C3

t∫

0

exp(2τ) exp(−τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ+

+
exp(2t)

8

1∫

0

(
∂2U

∂t∂x

)2

dx + C4 exp(−t)+

+

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ + C5

t∫

0

exp(−τ)dτ+

+

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ + C6

t∫

0

exp(−3τ)dτ+

+C7

t∫

0

exp(2τ) exp(−τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ +
exp(2t)

8

1∫

0

(
∂2U

∂t∂x

)2

dx+

+C8 exp(−t) +

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ + C9

t∫

0

exp(−τ)dτ+

+

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ + C10

t∫

0

exp(−3τ)dτ+

+C11

t∫

0

exp(2τ) exp(−τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ+C12

t∫

0

exp(τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ+
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+C12

t∫

0

exp(τ)

1∫

0

(
∂2V

∂τ∂x

)2

dxdτ ≤ exp(2t)
4

1∫

0

(
∂2U

∂t∂x

)2

dx + C13 exp(t).

i.e.,
1∫

0

(
∂2U

∂t∂x

)2

dx ≤ C exp(−t). (3.13)

Analogously,
1∫

0

(
∂2V

∂t∂x

)2

dx ≤ C exp(−t). (3.14)

Using Theorem 3.1 from (3.13) and (3.14), taking into account the re-
lation

∂U(x, t)
∂t

=

1∫

0

∂U(y, t)
∂t

dy +

1∫

0

x∫

y

∂2U(ξ, t)
∂t∂ξ

dξdy,

we prove the second part of the Theorem 3.2.
Results of Theorems 2.1, 2.2, 3.1, and 3.2 show the difference between

stabilization character of solutions with homogeneous and nonhomogeneous
boundary conditions.

4 Finite difference schemes and numerical
solution

Now, assume that p = 1 and rewrite systems (2.1),(2.4) and (2.1),(2.5) in
the following forms

∂U

∂t
=

∂

∂x






1 +

t∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]
dτ


 ∂U

∂x



 ,

∂V

∂t
=

∂

∂x






1 +

t∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]
dτ


 ∂V

∂x





(4.1)
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and

∂U

∂t
=


1 +

t∫

0

1∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]
dxdτ


 ∂2U

∂x2
,

∂V

∂t
=


1 +

t∫

0

1∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2
]

dxdτ


 ∂2V

∂x2
.

(4.2)

For the systems (4.1) and (4.2) let us consider the following initial-
boundary value problem:

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0, t ≥ 0, (4.3)

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1], (4.4)

On [0, 1] × [0, T ] let us introduce a grid with mesh points denoted by
(xi, tj) = (ih, jτ), where i = 0, 1, ..., M ; j = 0, 1, ..., N , with h = 1/M, τ =
T/N . The initial line is denoted by j = 0. The discrete approximation at
(xi, tj) is denoted by uj

i , vj
i and the exact solutions to problems (4.1), (4.3),

(4.4) and (4.2)-(4.4) by U j
i , V j

i . We will use the following known notation:

rj
t,i =

rj+1
i − rj

i

τ
, rj

t̄,i
= rj−1

t,i =
rj
i − rj−1

i

τ
.

For problem (4.1), (4.3), (4.4) let us consider the finite difference scheme:

uj+1
i −uj

i
τ −

{(
1 + τ

j+1∑
k=1

[
(uk

x̄,i)
2 + (vk

x̄,i)
2
])

uj+1
x̄,i

}

x

= 0,

vj+1
i −vj

i
τ −

{(
1 + τ

j+1∑
k=1

[
(uk

x̄,i)
2 + (vk

x̄,i)
2
])

vj+1
x̄,i

}

x

= 0,

i = 1, 2, ..., M − 1; j = 0, 1, ..., N − 1,

uj
0 = uj

M = vj
0 = vj

M = 0, j = 0, 1, ..., N,

u0
i = U0,i, , v0

i = V0,i, i = 0, 1, ..., M.

(4.5)
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and the corresponding scheme for averaged problem (4.2)-(4.4):

uj+1
i −uj

i
τ −

(
1 + τh

M∑
i=1

j+1∑
k=1

[
(uk

x̄,i)
2 + (vk

x̄,i)
2
])

uj+1
x̄x,i = 0,

vj+1
i −vj

i
τ −

(
1 + τh

M∑
i=1

j+1∑
k=1

[
(uk

x̄,i)
2 + (vk

x̄,i)
2
])

vj+1
x̄x,i = 0,

i = 1, 2, ..., M − 1; j = 0, 1, ..., N − 1,

uj
0 = uj

M = vj
0 = vj

M = 0, j = 0, 1, ..., N,

u0
i = U0,i, , v0

i = V0,i, i = 0, 1, ..., M.

(4.6)

Theorem 4.1. If problems (4.1),(4.3),(4.4) and (4.2)-(4.4) have suf-
ficiently smooth solution U = U(x, t), V = V (x, t), then the solution
uj = (uj

1, u
j
2, . . . , u

j
M−1), vj = (vj

1, v
j
2, . . . , v

j
M−1), j = 1, 2, . . . , N of the

difference schemes (4.5) and (4.6) tend to the solution of continuous prob-
lems U j = (U j

1 , U j
2 , . . . , U j

M−1), V j = (V j
1 , V j

2 , . . . , V j
M−1), j = 1, 2, . . . , N ,

correspondingly as τ → 0, h → 0 and the following estimates are true

‖uj − U j‖h ≤ C(τ + h), ‖vj − V j‖h ≤ C(τ + h), j = 1, 2, . . . , N.

Note that in Theorem 4.1 C is independent of h and τ .
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