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Abstract

Jacobi type iterative process is proposed for approximate solution of Dirichlet

boundary-value problem for the system of I.Vekua equations of a spherical shell. The

essence of the process consists in that at each iteration step are solved three indepen-

dent equations with operator a1∂
2
xx + a2∂

2
yy − a3I, where a1, a2 and a3 are positive

constants. It is proved that this iterative process converges with geometric progression

rate, if ratio of shell thickness to sphere radius satisfies a certain condition.
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Let us consider the system of I.Vekua equations for a spherical shell
(see [1]):

(A0 + A1)u(x, y) =
2(1 + σ)

E
f(x, y), (x, y) ∈]− 1, 1[×]− 1, 1[, (1)

with the Dirichlet boundary conditions:

u |∂Ω= 0, ∂Ω : |x| = |y| = 1, (2)

where
A0 + A1 =
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= −




2(1−σ)
1−2σ

∂2

∂x2 + ∂2

∂y2 − ε2 0 0

0 ∂2

∂x2 + 2(1−σ)
1−2σ

∂2

∂y2 − ε2 0
0 0 ∂2

∂x2 + ∂2

∂y2 − 4ε2 1−σ
1−2σ




−




0 1
1−2σ

∂2

∂x∂y −ε3−2σ
1−2σ

∂
∂x

1
1−2σ

∂2

∂x∂y 0 −ε3−2σ
1−2σ

∂
∂y

ε3−2σ
1−2σ

∂
∂x ε 2σ

1−2σ
∂
∂y 0


 ,

where f = (f1, f2, f3)T is the known continuous vector function, u =
(u1, u2, u3)T is the unknown twice continuously differentiable vector func-
tion, ε = 2R−1h , h is the shell half-thickness, R is the sphere radius, σ is
Poisson’s coefficient, E is Young’s modulus.

We introduce the following spaces:
L2(Ω) is the space of square-integrable functions in the domain Ω (Hilbert

space);
H = [L2(Ω)]3 is the Hilbert space with the scalar product

((u, v)) = (u1, v1) + (u2, v2) + (u3, v3),

and the norm
‖u‖ = (‖u1‖2

L2
+ ‖u2‖2

L2
+ ‖u3‖2

L2
)

1
2 ,

where u = (u1, u2, u3) and v = (v1, v2, v3) are the vector functions with
components from L2(Ω) ; (., .) and ‖·‖L2 are respectively the scalar product
and the norm in the Hilbert space L2(Ω) ;

C2(Ω) is the space of twice continuously differentiable functions in the
closure of the domain Ω ;

[C2(Ω)]3 is the space of twice continuously differentiable vector func-
tions in the domain Ω ;

The definition domain of the operator A0 is represented as follows:

D(A0) = {u ∈ [C2Ω]3 : u|∂Ω = 0}.

As is known, A0 is a symmetric and positive definite operator (see [2],
[3]). A1 is a symmetric operator.

Instead of equation (1) we consider the equation:

(Ã0 + Ã1)u = f, f ∈ H, (3)

where Ã0 is the extension of the operator A0 to the self-conjugate operator,
and Ã1 is the closure of the operator A0.
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The following theorem is true.
Theorem. Assume the following condition is fulfilled:

ε ≤ (1− 2σ)π
4

·
√

1− q1

1− σ
,

where 0 < q1 < 1. Then the iterative process

Ã0un = Ã1un−1 + f (n = 1, 2, . . .) (4)

is convergent for any initial vector u0 ∈ D(Ã0) and the following estimate
is valid:

‖Ã0
1/2

u∗ − Ã0
1/2

un‖ ≤ qn‖Ã0
1/2

u∗ − Ã0
1/2

u0‖, (5)

where u∗ is an exact solution, q = (1 + λ1)−1,

λ1 = max

(√
2((1− q1)π2 + 2ε2)

2εc
− 1, 2(1− 2σ)

√
q1

)
, c =

3− 2σ

1− 2σ
.

To prove the theorem we need the following lemma.
Lemma. The inequality

((A0u, u)) + (1 + λ1)((A1u, u)) ≥ 0, ∀u ∈ D(A0) (6)

is valid.
Proof. We have:

A0u± (1− λ1)A0u =

= −



a∂2
xx + ∂2

yy − ε2 0 0
0 ∂2

xx + a∂2
yy − ε2 0

0 0 ∂2
xx + ∂2

yy − 4bε2







u1

u2

u3




±(1 + λ1)




0 b∂2
xy −εc∂x

b∂2
xy 0 −εc∂y

εc∂x εc∂y 0







u1

u2

u3




= −



a∂2
xxu1 + ∂2

yyu1 − ε2u1 ± (1 + λ1)b∂2
xyu2 ∓ (1 + λ1)εc∂xu3

∂2
xxu2 + a∂2

yyu2 − ε2u2 ± (1 + λ1)b∂2
xyu1 ∓ (1 + λ1)εc∂yu3

∂2
xxu3 + ∂2

yyu3 − 4bε2u3 ± (1 + λ1)εc∂xu1 ± (1 + λ1)εc∂yu2


 ,
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where

∂x =
∂

∂x
, ∂2

xy =
∂2

∂x∂y
, a =

2(1− σ)
1− 2σ

, b =
1

1− 2σ
.

Let us calculate the scalar product in the left-hand side of the inequality
(6). Obviously we have:

((A0u, u))± (1 + λ1)((A1u, u))

= −[a(∂2
xxu1, u1) + (∂2

yyu1, u1)− ε2(u1, u1)

±(1 + λ1)b(∂2
xyu2, u1)∓ (1 + λ1)εc(∂xu3, u1)

+(∂2
xxu2, u2) + a(∂2

yyu2, u2)− ε2(u2, u2)

±(1 + λ1)b(∂2
xyu1, u2)∓ (1 + λ1)εc(∂yu3, u2)

+(∂2
xxu3, u3) + (∂2

yyu3, u3)− 4bε2(u3, u3)

±(1 + λ1)εc(∂xu1, u3)± (1 + λ1)εc(∂yu2, u3)].

If u ∈ D(A0), then, using formula of integration by parts, we obtain:

((A0u, u))± (1 + λ1)((A1u, u))

= (a‖∂xu1‖2
L2

+ ‖∂yu1‖2
L2

) + (‖∂xu2‖2
L2

+ a‖∂yu2‖2
L2

)

+(‖∂xu3‖2
L2

+ ‖∂yu3‖2
L2

) + ε2(‖u1‖2
L2

+ ‖u2‖2
L2

+ 4b‖u3‖2
L2

)

±2b(1+λ1)(∂xu1, ∂yu2)±2(1+λ1)εc·(∂xu3, u1)±2(1+λ1)εc·(∂yu3, u2). (7)

If we take into account that a = b + 1 and (∂xu1, ∂yu2) = (∂yu1, ∂xu2),
then from (7) we obtain:

((A0u, u))± (1 + λ1)((A1u, u))

= b(‖∂xu1 ± ∂yu2‖2
L2

+ 4ε2‖u3‖2
L2

)

+[‖∂xu3‖2
L2

+ ε2‖u1‖2
L2
± (1 + λ1)2εc · (∂xu3, u1)]

+[‖∂yu3‖2
L2

+ ε2‖u2‖2
L2
± (1 + λ1)2εc · (∂yu3, u2)]

+[q1(‖∂xu1‖2
L2

+ ‖∂yu2‖2
L2

)± bλ1(∂xu1, ∂yu2)]

+[q1(‖∂yu1‖2
L2

+ ‖∂xu2‖2
L2

)± bλ1(∂yu1, ∂xu1)]

+(1− q1)(‖∂xu1‖2
L2

+ ‖∂yu2‖2
L2

)

+(1− q1)(‖∂xu2‖2
L2

+ ‖∂yu2‖2
L2

), (8)

where 0 < q1 < 1.
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As is known, the inequality

‖∂xui‖2
L2

+ ‖∂yui‖2
L2
≥ π2

2
‖ui‖2

L2
, i = 1, 2, 3 (9)

is valid (see [3], p. 195).
According to Schwartz inequality and inequality (9), from (8) we obtain:

((A0u, u))± (1 + λ1)((A1u, u)) ≥ b(‖∂xu1 ± ∂yu2‖2
L2

+ 4ε2‖u3‖2
L2

)

+
[
‖∂xu3‖2

L2
+ ((1− q1)

π2

2
+ ε2)‖u1‖2

L2
− (1 + λ1)2εc · ‖∂xu3‖L2 · ‖u1‖L2

]

+
[
‖∂yu3‖2

L2
+ ((1− q1)

π2

2
+ ε2)‖u2‖2

L2
− (1 + λ1)2εc · ‖∂yu3‖L2 · ‖u2‖L2

]

+
[
q1(‖∂xu1‖2

L2
+ |∂yu2‖2

L2
)− bλ1‖∂xu1‖L2 · ‖∂yu2‖L2

]

+
[
q1(‖∂yu1‖2

L2
+ |∂xu2‖2

L2
)− bλ1‖∂yu1‖L2 · ‖∂xu2‖L2

]
. (10)

It is obvious that on the right-hand side of inequality (10) the expres-
sions in the square brackets are non-negative if the inequalities

(1 + λ1)2(εc)2 − ((1− q1)
π2

2
+ ε2) ≤ 0,

(bλ1)2 − 4q1 ≤ 0.

are satisfied.
The latter inequality holds when:

λ1 ≤
√

2((1− q1)π2 + 2ε2)− 2εc

2εc
,

λ1 ≤
2
√

q1

b
= 2(1− 2σ)

√
q1.

In addition, it is obvious that the condition should be fulfilled:

2εc ≤
√

2((1− q1)π2 + 2ε2),

from here

2ε2(c− 1)(c + 1) ≤ (1− q1)π2.

If we make substitution c = 2b + 1, we obtain:

ε ≤
√

(1− q1)π2

8b(b + 1)
=

(1− 2σ)π
4

·
√

1− q1

1− σ
.
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Therefore, if parameters ε and λ1 satisfy conditions of the Theorem,
then from (10) it follows:

((A0u, u))± (1 + λ1)((A1u, u)) ≥ b‖∂xu1 + ∂yu2‖2
L2

+ 4bε2‖u3‖2
L2

.

which clearly implies inequality (6).2
Proof of Theorem. Formula (4) clearly implies the dependence:

vn = Svn−1 + Ã0
−1/2

f, (11)

where vn = Ã0
−1/2

un, S = −Ã0
−1/2

Ã1Ã0
−1/2

.
From the lemma proved above it follows that:

|((Ã1u, u))| ≤ 1
1 + λ1

((Ã0u, u)), ∀u ∈ D(Ã0),

or, which is the same, that

− 1
1 + λ1

((Ã0u, u)) ≤ ((Ã1u, u)) ≤ 1
1 + λ1

((Ã0u, u)), u ∈ D(A0).

Hence we obtain:

− 1
1 + λ1

((v, v)) ≤ ((Sv, v)) ≤ 1
1 + λ1

((v, v)),

where v = Ã0
1/2

u.
This implies that (see for example [4])

‖S̃‖ ≤ 1
1 + λ1

< 1,

where S̃ is an extension of S.
From this it obviously follows that vn = Ã0

1/2
un is fundamental. Since

Ã0 is positive definite, in turn it follows that the sequence un is fundamen-
tal.

Assume that un → u∗. We will show that u∗ is a solution of equation
(3).

Let us note that operator A0 + A1 is positive definite (see [5]). Obvi-
ously, from here it follows that equation (3) has unique solution. In the
work [6], for approximate solution of equation (3), it is proposed iterative
process of type (4), where the first addend (the main operator) consists of
operator of plane elasticity theory and the Laplacian, perturbed by oper-
ator (−γ0ε

2I) (I is an identity operator, γ0 a positive constant), and the
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second addend consists of the first order derivative with regards to spatial
variables (±εγ1) with multiplier (γ1 is also positive constant). It is proved
that this iterative process is convergent and the limit vector satisfies equa-
tion (3). From this fact (taking into account uniqueness) it follows that u∗
will be solution of equation (3). As regards to estimate (5), it is obtained
in the usual way.
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