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Abstract

In the given work the evolution problem is discussed with the self-adjoint positive-

definite operator, which can be represented as a sum of addends m ≥ 2 (we call such

case as multi-dimensional). In addition, each addend is also self-adjoint and positive-

definite operator. For this problem there is constructed the fourth order accuracy

rational decomposition scheme of sequential type. The explicit a priori estimate is

obtained for the error of approximate solution.
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Introduction

Decomposition method is a general method for obtaining economical schemes
for the solution to multidimensional problems of mathematical physics.
This method allows to construct approximate solution to multidimensional
problem of mathematical physics by means of combination of solutions to
the corresponding one dimensional problems, numerical realization of which
obviously takes less resources. Working in this direction have begun in the
sixties of the twentieth century da continues intensively nowadays. Note,
that decomposition schemes considered in the works, which were published
till eighties of the last century, are of the first and second order of accuracy
(for example, see [1-3] and the references therein).

Important results with regard to construction of higher order decom-
position schemes are obtained in the works [4-7]. Automatically stable
decomposition schemes with the third and fourth accuracy order are con-
structed and investigated in the works [8-12].
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In the present work there is constructed the fourth order rational de-
composition scheme of sequential type. The explicit a priori estimate is
obtained for the error of approximate solution.

1 Statement of the problem and main result

Let us consider the Cauchy abstract problem in H Hilbert space:

du(t)
dt

+ Au(t) = f(t), t > 0, u(0) = ϕ, (1.1)

where A is a self-adjoint (generally unbounded), positive- definite operator
with the definition domain D (A), which is everywhere dense in H, D (A) =
H, A = A∗ and

(Au, u) ≥ a ‖u‖2 , ∀u ∈ D (A) , a = const > 0,

where by ‖·‖ and (·, ·) are defined correspondingly the norm and scalar prod-
uct in H; ϕ is a given vector from H; u (t) is a continuous and continuously
differentiable, searched function with values in H; f(t) ∈ C1 ([0;∞) ;H).

Let A = A1 + ... + Am , where A1, ..., Am are also self-adjoint positive-
definite operators. The solution of the problem (1.1) is given by the follow-
ing formula ([13]):

u(t) = U(t, A)ϕ +

t∫

0

U(t− s,A)f(s)ds, (1.2)

where U(t, A) = exp (−tA) is a strongly continuous semigroup.
As it is well-known, the main principle of decomposition method is split-

ting of the semigroup U (t, A) by means of semigroups U (t, Aj) (j = 1, ...,m).
In [12] there is constructed the following decomposition formula with the
local accuracy of fifth order:
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where α = 1
2 ± i 1

2
√

3

(
i =

√−1
)

and where

T (t, α) = U (t, αA1) ...U (t, αAm−1) U (t, αAm) ,

T (t, α) = U (t, αAm) ...U (t, αA2)U (t, αA1) .
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In [12] we have constructed the following semigroup approximation with
the local accuracy of the fifth order:

W (t, A) =
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2
tA

) (
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2
tA

)−1 (
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2
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) (
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2
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)−1
. (1.4)

The approximation defined by formula (1.4) in the scalar case represents
the Pade approximation for exponential function [15].

On the basis of formulas (1.3) and (1.4) we can construct the following
decomposition formula:
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where

S (t, α) = W (t, αA1) ...W (t, αAm−1) W (t, αAm) ,

S (t, α) = W (t, αAm) ...W (t, αA2) W (t, αA1) .

In the present work, on the basis of formula (1.5), a decomposition
scheme with the fourth order accuracy will be constructed for the solution
of problem (1.1).

Let us introduce the following grid domain:

ωτ = {tk = kτ, k = 0, 1, ..., τ > 0}.

According to formula (1.2), we have:

u(tk) = U(τ,A)u (tk−1) +

tk∫

tk−1

U(tk − s,A)f(s)ds.

Let us use Simpson’s formula and rewrite this formula in the following
form:

u (tk) = U (τ, A) u (tk−1) +
τ

6

(
f (tk) + 4U

(τ

2
, A

)
f

(
tk−1/2

)

+U (τ, A) f (tk−1)) + R5,k (τ) , (1.6)
u (t0) = ϕ, k = 1, 2, ... ,

where R5,k (τ) is a reminder term of Simpson’s formula.
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On the basis of formula (1.6), let us construct the following scheme:

uk = Ṽ (τ) uk−1

+
τ

6

(
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(τ

2

)
f
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+ Ṽ (τ) f (tk−1)

)
, (1.7)

u0 = ϕ, k = 1, 2, .... .

Let us carry out calculation of the scheme (1.7) by the following algo-
rithm:

uk = u
(0)
k +

2τ

3
u

(1)
k +

τ

6
f (tk) ,

where uk,0 (in case of m = 2) is calculated by the scheme:
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and uk,1 - by the scheme:
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Let us introduce the following notation:

‖ϕ‖A = ‖A1ϕ‖+ ‖A2ϕ‖ , ϕ ∈ D (A) ;
‖ϕ‖A2 =

∥∥A2
1ϕ

∥∥ +
∥∥A2

2ϕ
∥∥ + ‖A1A2ϕ‖+ ‖A2A1ϕ‖ , ϕ ∈ D

(
A2

)
,

where ‖·‖ is a norm in H. ‖ϕ‖As , (s = 3, 4, 5) is defined analogously.
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The following theorem takes place (below everywhere c denotes a posi-
tive constant).

Theorem. Let the following conditions be satisfied:
(a) A1, ..., Am are self-adjoint positive- definite operators and A = A1 +

... + Am is also self-adjoint operator on D (A) = D (A1) ∩ ... ∩D (Am);
(b) U (s,A) ϕ ∈ D

(
A5

)
for any s ≥ 0;

(c) f(t) ∈ C4([0,∞);X); f (t) ∈ D
(
A4

)
, f ′(t) ∈ D

(
A3

)
, f ′′(t) ∈

D
(
A2

)
, f ′′′(t) ∈ D (A) and U (s,A) f (t) ∈ D

(
A4

)
for any fixed t and

s (t, s ≥ 0) .
Then the following estimate holds:

‖u(tk)− uk‖ ≤ ctkτ
4

(
sup

s∈[0,tk]
‖U(s,A)ϕ‖A5 + tk sup

s,t∈[0,tk]
‖U(s,A)f (t)‖A5

+ sup
t∈[0,tk]

‖f(t)‖A4 + sup
t∈[0,tk]

∥∥f ′(t)
∥∥

A3 + sup
t∈[0,tk]

∥∥f ′′(t)
∥∥

A2

+ sup
t∈[0,tk]

∥∥f ′′′(t)
∥∥

A
+ sup

t∈[0,tk]

∥∥∥f (IV )(t)
∥∥∥
)

.

For proving this theorem we need the following lemma.
Lemma. [see [12]] Let the following conditions be satisfied:
(a) The operator A satisfies the conditions of Theorem;
(b) f(t) ∈ C4([0,∞);X), and f(t) ∈ D

(
A4

)
, f (k)(t) ∈ D

(
A4−k

)
(k = 1, 2, 3) for every fixed t ≥ 0.

Then the following estimate holds

‖R5,k (τ)‖ ≤ cτ5
4∑

i=0

max
s∈[tk−1,tk]

∥∥∥f (i) (s)
∥∥∥

A4−i
, (1.10)

where

R5,k (τ) =

tk∫

tk−1

U (tk − s,A) f (s) ds

−τ

6

(
f (tk) + 4U

(τ

2
, A

)
f

(
tk−1/2

)

+ U (τ, A) f (tk−1)) (1.11)

and where f (0) (s) = f (s).
Proof of the theorem. Let us return to the proof of the theorem.
Let us write formula (1.6) in the following form:

u(tk) = Uk(τ, A)ϕ +
k∑

i=1

Uk−i(τ, A)
(
F

(1)
i + R5,k (τ)

)
, (1.12)
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where

F
(1)
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τ
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f (tk) + 4U
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2
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)
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)
. (1.13)

Analogously let us present uk as follows:

uk = Ṽ k(τ)ϕ +
k∑

i=1

Ṽ k−i(τ)F (2)
i , (1.14)

where

F
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6
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2
, A
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. (1.15)

Equalities (1.12) and (1.14) yield:

u(tk)− uk =
[
Uk(τ, A)− Ṽ k(τ)

]
ϕ

+
k∑

i=0

[
Uk−i(τ, A)F (1)

i − Ṽ k−i(τ)F (2)
i

]

+
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=
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ϕ +
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[(
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(
F
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i − F
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Uk−i(τ, A)R5,k (τ) . (1.16)

From formulas (1.13) and (1.15) we have:

F
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k − F

(2)
k =

τ

6

(
4

(
U

(τ

2
, A

)
− Ṽ

(τ

2

))
f

(
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+
(
U (τ, A)− Ṽ (τ, A)

)
f (tk−1)

)
. (1.17)

To estimate this difference, we need to estimate W
(
τ, α

4 A
)

and W
(
τ, α

4 A
)
.

As is known, when the argument represents a self-adjoint bounded oper-
ator, the norm of the operator polynomial is equal to the C-norm of the
corresponding scalar polynomial on the spectrum (see, e.g., [14] Chapter
VII)

∥∥∥W
(
τ,

α

4
A

)∥∥∥ ≤ max
x≥0

∣∣∣∣∣
1− α2

8 τx

1 + α2

8 τx

1− αα
8 τx

1 + αα
8 τx

∣∣∣∣∣
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= max
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Analogously we obtain:
∥∥∥∥W

(
τ,

α

4
A

)∥∥∥∥ ≤ 1. (1.19)

From (1.18) and (1.19) we have:
∥∥∥Ṽ (τ)

∥∥∥ ≤ 1. (1.20)

If we take into consideration that W (τ,A) approximates the semigroup
U (τ, A) with fifth order local accuracy with regard to τ , with account of
inequalities (1.18) and (1.19), than, analogously to the estimate for (1.3)
(see [12]), we obtain:

∥∥∥
(
U (τ, A)− Ṽ (τ)

)
ϕ
∥∥∥ ≤ cτ s ‖ϕ‖As , ϕ ∈ D (As) , s = 4, 5. (1.21)

With account of this inequality, from (1.17) follows:
∥∥∥F

(1)
k − F

(2)
k

∥∥∥ ≤ cτ5 sup
t∈[tk−1,tk]

‖f(t)‖A4 . (1.22)

According to (1.21) we have:
∥∥∥∥∥

k∑

i=1

(
Uk−i(τ,A)− Ṽ k−i(τ)

)
F

(1)
i

∥∥∥∥∥
≤ ct2kτ

4 sup
s,t∈[0,tk]

‖U(s,A)f (t)‖A5 . (1.23)

From equality (1.16) according to inequalities (1.22), (1.23), (1.21),
(1.20) and the condition (a) of the Theorem we obtain sought estimation
¥

30



+ The fourth order of accuracy ... AMIM Vol.13 No.1, 2008

References

1. N. N. Ianenko, Fractional steps method of solving for multidimensional prob-
lems of mathematical physics, Novosibirsk, Nauka, 1967.

2. G. I. Marchuk, Split methods, Moscow: Nauka, 1988.

3. A. A. Samarskii, P. N. Vabishchevich, Additive schemes for mathematical
physics problems, Moscow, Nauka, 1999.

4. Q. Sheng, Solving linear partial differential equation by exponential spliting ,
IMA J. Numerical Anal., 9 1989, 199-212.

5. M. Schatzman Higher order alternate directions methods. Comput. Meth-
ods Appl. Mech. Engineering., 116 (1992), No 1-4, 219-225.

6. E. Hairer, C. Lubich, G. Wanner Geometric numerical integration. Structure-
preserving algorithms for ordinary differential equations. Second edition,
Springer, 2006.

7. Q. Sheng, A.Q.M. Khaliq and D.A. Voss, Numerical simulation of two-
dimensional sine-Gordon solitons via a split cosine scheme, Discrete Contin.
Dyn. Syst. 2005, 792-797

8. Z. Gegechkori, J. Rogava, M. Tsiklauri, High-degree precision decomposition
method for an evolution problem, Tbilisi, Reports of Enlarged Session of the
Seminar of I. Vekua Institute of Applied Mathematics, 14 (1999), No. 3,
45-48.

9. Z. Gegechkori, J. Rogava, M. Tsiklauri, Sequention-Parallel method of high
degree precision for Cauchy abstract problem solution , Minsk, Comput.
Methods in Appl. Math., 1 (2001), No. 2, 173-187.

10. Z. Gegechkori, J. Rogava, M. Tsiklauri, High degree precision decomposition
method for the evolution problem with an operator under a split form, Paris,
M2AN Math. Model. Numer. Anal., 36 (2002), No. 4, 693-704.

11. Z. G. Gegechkori, J. L. Rogava, M. A. Tsiklauri, The Fourth Order Accu-
racy Decomposition Scheme for an Evolution Problem, Paris, M2AN Math.
Model. Numer. Anal., 38 (2004), No. 4, 707-722.

12. J. Rogava, M. Tsiklauri, High order accuracy decomposition schemes for
evolution problem. Tbilisi, Lecture Notes of TICMI, Vol. 7 (2006) 164 pp.

13. Kato T., Perturbation theory for linear operators. Die grundlehren
der mathematischen wissenschaften, Band 132 Springer-Verlag New
York, Inc., New York (1966) 592 pp.

31



AMIM Vol.13 No.1, 2008 Z. Gegechkori, J. Rogava, M. Tsiklauri +

14. M. Reed, B. Simon Methods of modern mathematical physics. II. Fourier
analysis, self-adjointness, New York-London, Academic Press, 1975.

15. G. A. Baker Jr, P. Graves-Morris, Pade Approximations, Moscow: Mir,
1986.

32


