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Abstract

Using the Laplace transform, the formulated problems are reduced to auxiliary

problems for pseudooscillation equations. We have general representations of the

solutions of these equations by means of metaharmonics functions. Representations

of metaharmonics functions are used for the circle. Problems of pseudooscillations

are solved approximately, deviations are estimated. Conditions providing the use of

Laplaces inverted theorem are determined.
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Let us consider the case when strong, permanent magnetic H0 = (0, 0,H0
3 )

field acts perpendicularly to elastic flatness of K+ (x2
1 + x2

2 ≤ R2) circle.
In case of flat bulge, equations of dynamics are of the following type [1]:

µ∆u + (λ + µ + α0) grad div u− ρ∂2
t u = 0, (1)

h(x, t) = rot[u×H0], e(x, t) = −µe[∂tu×H0], (2)
j = roth, x ∈ K+,

where α0 = µe(H0
3 )2, h = (0, 0, h3), h3 = −H0

3 div u, j-is electric current
density, h and e-accordingly are fields of magnetic and electric intensities.
u(x, t) = (u1, u2)-is a vector of displacement;

We consider problems for equations (1): Let us find such regular solution
u(x, t) of equation (1), which satisfies the initial conditions:

u(x, 0) = 0, ∂tu(x, 0) = 0 (3)

and one of the following conditions of K+ circle on L circumference:

u+
n (z, t) = f (1)(z, t), [Mu]+s = f (2)(z, t)− problem (A),

u+
s (z, t) = f (1)(z, t), [Mu]+n = f (2)(z, t)− problem (B),
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where f (1) = (f (1)
1 , f

(1)
2 , 0) and f (2) = (f (2)

1 , f
(2)
2 , 0)-are functions given at

boundary; Mu = T (∂x, n)u + Q(h)-is a vector of magnetoelasticity stress,

T (∂x, n)-is a vector of elastic stress, Q(h) =
1
2
µe[H0×[h×n]], n = (n1, n2, 0)

is an exterior normal and s = (−n2, n1, 0)-is a tangent. Its obvious from
(2) that if we know u vector components values, than we can determine h
and e vectors and j.

Using the Laplace transform relative to time the formulated problems
are reduced to auxiliary problems for pseudooscillation equations:

µ∆ũ + (λ + µ + α0) grad div ũ− ρτ2ũ = 0, (4)

h̃(x, t) = rot[ũ×H0], ẽ(x, t) = −µeτ [ũ×H0], x ∈ K+

and on the L circumference we will have:

(A)τ : ũ+
n (z, τ) = f̃ (1)(z, τ), {Mũ(z, τ)}+

s = f̃ (2)(z, τ); (5)

(B)τ : ũ+
s (z, τ) = f̃ (1)(z, τ), {Mũ(z, τ)}+

n = f̃ (2)(z, τ); (6)

If we act with div operation on equation (4) we will obtain:

(∆ + ω2
1)ϕ1 = 0, (7)

where

ω2
1 =

ρτ2

λ + 2µ + α0
, ϕ1 = div ũ (8)

By acting with rot on the (4) we obtain:

(∆ + ω2
2)ϕ2 = 0, (9)

where

ω2
2 = −ρτ2

µ
, ϕ2 = rot ũ. (10)

From the (4) we obtain: ũ = C1 grad div ũ− C2 rot rot ũ, where

C1 =
λ + 2µ + α0

ρτ2
, C2 = − µ

ρτ2
. (11)

By using the (8) and the (10):

ũ = C1 gradϕ1 + C2 rot ϕ2, (12)

where ϕ1 and ϕ2 are metaharmonics functions: they satisfy (7) and (9)
equations. By verifying we are convinced that the (12) satisfies equation
(4).
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We know that in K+ circle [2] ϕk(z, τ) metaharmonics function is rep-
resented in the following way:

ϕk(z, t) =
∞∑

m=1

Jm(ωkr)(Amk cosmψ + Bmk sinmψ), (13)

where x = (r, ψ), Jm-is Bessel’s function with complex argument, Amk,
Bmk-are the constants to be found, k = 1, 2.

(A)τ and (B)τ problems have the only solution [3]. Let us use the
known formulae:

∂1 = n1∂r − n2

r
∂ψ, ∂2 = n2∂r − n1

r
∂ψ. (14)

From the (12) we obtain:

ũn = C1∂rϕ1 +
C2

r
∂ψϕ2, ũs =

C1

r
∂ψϕ1 − C2∂rϕ2, (15)

{M(ũ)}n =
(
λ + 2µ +

1
2
α0

)
∂rũn − 1

r

(
λ +

1
2
α0

)
∂ψũs,

{M(ũ)}s = µ
(
∂rũs +

1
r
∂ψũn

)
, (16)

where α0 = µe(H0
3 )2, ũn and ũs are determined by (15) formulae.

(A)τ problem. In the (5) decompose the functions f̃ (1) (analogously
f̃2) in Fourier series (e.g. [4]) and separate the particular sum from these
series:

f̃ (k)(z, τ) =
1
2
α0k(τ)+ (17)

+
m0∑

m=1

[αmk(τ) cosmψ + βmk(τ) sinmψ] + Mm0k(z, τ), k = 1, 2,

where

αmk(τ) =
1
π

∫ 2π

0
f̃ (k)(ϕ, τ) cos mϕdϕ

βmk(τ) =
1
π

∫ 2π

0
f̃ (k)(ϕ, τ) sin mϕdϕ, 0 ≤ ϕ ≤ 2π,

Mm0k(z, τ) =
∞∑

m=m0+1
[αmk(τ) cos mψ + βmk(τ) sin mψ]-is an error which,

while f̃ (k) ∈ C2(L), will be estimated (e.g. [4]):

|Mm0(z, τ)| < C ′

m
3
2
0

, C ′ = const . (18)
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Mm0(z, τ) ≡ max |Mm0k(z, τ)|, m0-is a sufficiently big number. For the big
m (m = m0 + 1, . . .) because of the Mm0k error slightness we can remove
it.

Insert representation (13) in the (15), the (16). Regarding the (17) and
passing on boundary, when r → R. For each m towards the Amk and Bmk

values (k = 1, 2) we obtain a system of algebraic equations:

C1ω1J
′
0(ω1R)A01 =

1
2
α01, −C2µω2

2J
′′
0 (ω2R)A02 =

1
2
α02, (19)

C1ω1J
′
m(ω1R)

(
Am1

Bm1

)
+

C2

R
mJm(ω2R)

(
Bm2

−Am2

)
=

(
αm1

βm1

)
,

C1

[2µmω1

R
J ′m(ω1R)− µm

R2
Jm(ω1R)

]
Bm1−

−C2

[
µω2

2J
′′
m(ω2R) +

µm2

R2
Jm(ω2R)

]
Am2 = αm2,

C1

[
− 2µmω1

R
J ′m(ω1R) +

µm

R2
Jm(ω1R)

]
Am1−

−C2

[
µω2

2J
′′
m(ω2R) +

µm2

R2
Jm(ω2R)

]
Bm2 =βm2, m=1, 2, . . . , m0, (20)

where J ′m(ζ) is a derivative of Jm(ζ) by ζ argument:

J ′m(ωkr) =
1
ωk

∂rJm(ωkr), J ′′m(ωkr) =
1
ω2

k

∂2
rJm(ωkr).

from the (19) we obtain:

A01 =
α01

2C1ω1J ′0(ω1R)
, A02 = − α02

2C2µω2
2J

′′
0 (ω2R)

. (21)

From the (20) we can see that it is possible to separate a system towards
the unknowns Am1 and Bm2. The main determinant of which is:

∆′
m = −C1C2µ

{
ω1J

′
m(ω1R)

[
ω2

2J
′′
m(ω2R) +

m2

R2
Jm(ω2R)

]
+

+
m2

R2

[
− 2ω1J

′
m(ω1R) +

1
R

Jm(ω1R)
]
Jm(ω2R)

}
.

We have a system towards the unknowns Am2 and Bm1, main determinant
of which is:

∆′′
m = −C1C2µ

{
ω1J

′
m(ω1R)

[
ω2

2J
′′
m(ω2R) +

m2

R2
Jm(ω2R)

]
−

−m2

R2

[
− 2ω1J

′
m(ω1R) +

1
R

Jm(ω1R)
]
Jm(ω2R)

}
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∆′
m and ∆′′

m determinants differ from zero because of the only solution of
the problem.

Let us insert the found Am1, Bm1, Am2, Bm2 values of the systems
(19) and (20) in the (13), then in the (12). We will obtain problem (A)τ

solution. Reasoning analogously we will obtain problem (B)τ solution.
Let us require the agreement conditions to be completed.

∂k
t f (i)(z, 0) = 0, k = 0, 1, 2, 3, i = 1, 2 (22)

and simultaneously for the big t the conditions are satisfied:

|∂k
t u(x, t)| < Meξ0t, |∂q

t f
(i)(z, t)| < Meξ0t, (23)

where ξ0 ≥ 0, M > 0-are constants, k = 0, 1, 2; q = 0, 1, 2, 3, 4. In these
conditions by analyzing the Amj , Bmj solutions of system (20), on the basis
of asymptotical conditions of Bessel’s functions (e.g. [5]),

Jm(ζ) ∼
√

2
πζ

cos
(
ζ − mπ

2
− π

4

)

we conclude that from the conditions f (i) ∈ C4 t ≥ 0 and f (i) ∈ C2(L)
occurs the following estimation for ũ(x, t) vector.

|ũ(x, t)| ≤ C

|τ |4 , C = const (24)

for every t equally toward each x.
In these conditions we may use the Laplace inverted transform. The

original is given with the following formula:

u(x, t) =
1

2πi

∫ ξ+i∞

ξ−i∞
eτtũ(x, τ)∂τ,

where Re τ = ξ > ξ0 ≥ 0, ξ0-is an original growth indicator. The condition
(24) is also sufficient for the existence of ∂tu(x, t) and ∂2

t u(x, t) originals.
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