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Abstract

The initial boundary value problem is considered for a hyperbolic integro-differential

equation. The numerical method of its solution and the results of a method error are

presented.
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Let us consider the nonlinear equation

wtt(x, t) = ϕ

(∫ π

0
w2

x(x, t) dx

)
wxx(x, t), 0 < x < π, 0 < t ≤ T, (1)

with the initial boundary conditions

w(x, 0) = w0(x), wt(x, 0) = w1(x), (2)

w(0, t) = w(π, t) = 0,
0 ≤ x ≤ π, 0 ≤ t ≤ T.

(3)

Here ϕ(z), wi(x) are the known functions, i = 0, 1, where

ϕ(z) ≥ α > 0, 0 ≤ z < ∞, (4)

and T , α are some constants.
In 1876, when studying vibration G. Kirchhoff [1] obtained the equation

wtt(x, t)−
(

α0 + α1

∫ L

0
w2

x(x, t) dx

)
wxx(x, t) = 0, (5)

where α0, α1 and L are some positive integers. (5) is a particular case of
equation (1), when ϕ(z) is some linear function.
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The physical sense of equation (1) consists in modelling vibration for
material nonlinearities, i.e. for nonlinear stress-strain relations, while equa-
tion (5) itself obeys Hooke’s linear law. Equation (1) was for the first time
mathematically investigated by S. Bernstein [2] in 1940.

Equation (1) is usually called the Kirchhoff’s equation though there
exists its other name – the Kirchhoff-Bernstein equation. Equation (1)
together with (5) and their natural generalizations

wtt −
(

1 +
∫

Ω
|∇w|2dx

)
∆w = 0, x ∈ Rn, n > 1,

and
wtt(t) + a

(
‖A 1

2 w(t)‖2
)

Aw(t) = f(t),
a(s) ≥ a0 > 0, A = A∗ > 0,

had been the object of interest on the part of researchers - A. Arosio, J. Ball,
M. Böhm, G. Carrier, P. D’Ancona, R. Dickey, L. Medeiros, K. Nishihara,
S. Panizzi, S. Pohožaev, R. Rodriguez, S. Spagnolo and others. For the
literature on this topic see, for example, [3].

The subject of investigation was as a rule the local or global solvability,
the uniqueness of a solution and its continuous dependence on the initial
data, but insufficient attention was given to such an important problem
as the construction of an approximate solution and establishment of its
accuracy. Besides the works of F.Attigui, S.Bilbao, L.Liu, M.Rincon and
our, where this problem was to this extent or another touched upon, we
hardly know of any other works published in this direction. In this paper
we propose a numerical algorithm of the solution of problem (1)-(3) and
estimate its accuracy.

The algorithm consists of three parts.
First part-space discretization. An approximate solution of problem

(1)–(3) is written in the form

wn(x, t) =
n∑

i=1
wni(t) sin ix,

0 ≤ x ≤ π, 0 ≤ t ≤ T,

where the coefficients wni(t) are defined by Galerkin’s method from the
system of nonlinear differential equations

w′′ni(t) + ϕ

(
π

2

n∑

j=1

j2w2
nj(t)

)
i2wni(t) = 0, i = 1, 2, . . . , n, 0 < t ≤ T, (6)

with the conditions

wni(0) = a
(0)
i , w′ni(0) = a

(1)
i , i = 1, 2, . . . , n, (7)
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where

a
(p)
i =

2
π

(wp, sin ix)L2(0,π), p = 0, 1.

We introduce the functions

uni(t) = w′ni(t), vni(t) = iwni(t), i = 1, 2, . . . , n,

and replace system (6), (7) by an equivalent system of first order

u′ni(t) + ϕ

(
π

2

n∑

j=1

v2
nj(t)

)
ivni(t) = 0,

v′ni(t) = iuni(t), 0 < t ≤ T, i = 1, 2, . . . , n,

(8)

uni(0) = a
(1)
i , vni(0) = ia

(0)
i , i = 1, 2, . . . , n. (9)

Second part-time discretization. Now we proceed to solving problem
(8), (9) by means of the difference method. On the time interval [0, T ], let
us introduce the grid {tm | 0 = t0 < t1 < · · · < tM = T} with a generally
variable step τm = tm − tm−1 > 0, m = 1, 2, . . . , M .

Approximate values of uni(t) and vni(t) on the mth time layer, i.e. for
t = tm, m = 1, 2, . . . , M, denoted by um

ni and vm
ni are defined by the implicit

symmetric scheme

um
ni−um−1

ni
τm

+

[
π
2

n∑
j=1

(
(vm

nj)
2 − (vm−1

nj )2
)]−1

×
(

Φ

(
π
2

n∑
j=1

(vm
nj)

2

)
− Φ

(
π
2

n∑
j=1

(vm−1
nj )2

))
i
vm

ni+vm−1
ni

2 ,
vm

ni−vm−1
ni

τm
= i

um
ni+um−1

ni
2 ,

m = 1, 2, . . . , M, i = 1, 2, . . . , n,
(10)

u0
ni = a

(1)
i , v0

ni = ia
(0)
i , i = 1, 2, . . . , n, (11)

where Φ(z) is the primitive function of ϕ(z)

Φ(z) =

z∫

0

ϕ(ξ)dξ.

Third part-an iteration process. The last part of the algorithm is aimed
at solving the system of nonlinear equations (10), (11). It is assumed that
the counting is performed layerwise by iteration. After getting a solution
on the (m− 1)th layer, we proceed to the mth layer. Denote by um,k

ni and
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vm,k
ni the kth iteration approximation of um

ni and vm
ni, k = 0, 1, . . . . Let us

use the iteration method

um,k+1
ni = um−1

ni − τm

[
π
2

n∑
j=1

(
(vm,k

nj )2 − (vm−1
nj )2

)]−1

×
(

Φ

(
π
2

n∑
j=1

(vm,k
nj )2

)
− Φ

(
π
2

n∑
j=1

(vm−1
nj )2

))
i
vm,k

ni +vm−1
ni

2 ,

vm,k+1
ni = vm−1

ni + τmi
um,k

ni +um−1
ni

2 ,
m = 1, 2, . . . , M, k = 0, 1, . . . , i = 1, 2, . . . , n.

(12)

We calculate the components um,k
ni and vm,k

ni by formulas (12). Then,
for chosen n and for t = tm, the series

∑n
i=1 wm,k

ni sin ix, where

wm,k
ni =

1
i

vm,k
ni ,

gives, at the kth iteration step, an approximate value of the exact solution
w(x, tm) of the problem. Therefore we can characterize the error of the
algorithm by the difference

w(x, tm)−
n∑

i=1

wm,k
ni sin ix.

Now we formulate the result on the algorithm accuracy.
Theorem. Suppose that the restrictions (4) and ϕ(z) ∈ Cp[0,∞),

where the parameter p can be equal both to 1 and to 2, are fulfilled, w0(x)
and w1(x) are 2π-periodic functions of the form

wl(x) =
∞∑

i=1

a
(l)
i sin ix, l = 0, 1,

and there hold the inequalities

|a(0)
i | ≤ ω

ip+s+2,5
, |a(1)

i | ≤ ω

ip+s+1,5
, i = 1, 2 . . . ,

where ω and s are some positive constants, thereby ensuring the existence of
a local solution of problem (1)-(3), namely, for T, satisfying the requirement
[2]

0 < T < ρ. (13)
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Choose a value σ such that the inequalities 0 < σ < 1 are fulfilled.
Assume that for each m = 1, 2, . . . ,m0, 1 ≤ m0 ≤ M, the step τm is such
that for 0 < qm < 1 it satisfies the inequality

τm max
[
1,

1∑

l=0

(
4
3
(
max(z∗, zm−1

n )

+max(z∗, zm,m−1
n )

))l

max
z

∣∣∣∣
dlϕ

dzl
(z)

∣∣∣∣
]
≤ 2qm(1− σ)

n
,

(14)

where the following definitions are used

0 ≤ z ≤ max(z∗, zm−1
n , zm,m−1

n ), z∗ = 1
α

( ∥∥w1(x)
∥∥2

L2(0,π)
+ Φ

( ∥∥∥w0′(x)
∥∥∥

2

L2(0,π)

))
,

zm−1
n = 1

α

(
π
2

n∑
i=1

(
um−1

ni

)2 + Φ
(

π
2

n∑
i=1

(
vm−1
ni

)2
))

,

zm,m−1
n =

{
max

[(
π
2

n∑
i=1

((
um,0

ni

)2 +
(
vm,0
ni

)2))
1
2

,

(
π
2

n∑
i=1

((
um−1

ni

)2

+
(
vm−1
ni

)2))
1
2

+ τmnhm

]
+

((
π
2

n∑
i=1

((
um,0

ni − um−1
ni

)2 + (vm,0
ni − vm−1

ni

)2
)) 1

2

+τmnhm

)
qm

1−qm

}2

, hm = 1
2

[(
π
2

n∑
i=1

((
um,0

ni + um−1
ni

)2 + (vm,0
ni + vm−1

ni

)2
)) 1

2

+max
z̃
|ϕ(z̃)|

(
π
2

n∑
i=1

(
vm,0
ni + vm−1

ni

)2
) 1

2
]
,

0 ≤ z̃ ≤ max
π

2

( n∑

i=1

(
vm−1
ni

)2
,

n∑

i=1

(
vm,0
ni

)2
)

.

Then, with chosen n and for t = tm0 , the error of the algorithm at the kth
iteration step, k = 1, 2, . . . , is estimated by the relation

||w(x, tm0)−
n∑

i=1

wm0,k
ni sin ix||L2(0,π)

≤
√

π3

2

( 1∑

l=0

c2l+1

(
1

np+s+1

)2−l

+ c2e
λn

(
max

1≤m≤m0

τm

)p

+
qk
m0

1− qm0

×
(

π

2

n∑

i=1

((
um0,1

ni − um0,0
ni

)2 +
(
vm0,1
ni − vm0,0

ni

)2
))) 1

2

,

where cl, l = 1, 2, 3, λ and ρ from (13) are constants expressed through the
initial data of the problem.

Note that the step τm which satisfies inequality (14), can be found prior
to performing the iteration on the mth layer.
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The case of a global solution for equation (5) is studied in [4].
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