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Abstract

The main objective of this article is construction and justification of the new math-
ematical models for anisotropic nonhomogeneous visco-poro-elastic, piezo-electric and
electrically conductive binary mixture and their application in case of thin-walled struc-
tures based on works [12,13] with variable thickness in thermodynamic and stationary
nonlinear problems of definition of stress-strain states for same ones. This investi-
gation could have interesting applications in the areas of pseudo-xsantoma, medical
tomography and land mine detection and possible could have an impact in the fields
of geophysics, energy exploration, composite manufacturing, earthquake engineering,
biomechanics, and many other areas. For the relevant applications it would be neces-
sary to develop and justify new projective numerical-analytical methods. These new
methods will be compared with existing methods for problems of that kind and used
for recomputating of Basic Elements of Aircrafts. Above proposed models in abstract
settings may be presented by the operator equation

a
d2

dt2
A1u + b

d

dt
A2u = A3 u + A4 (t, u) + f, t ∈ [0; T ] .

Here A1, A2, A3- are linear strongly positive operators, A4- nonlinear operator of

Monge-Ampere type acting in some Banach space; a, b - matrices with constant co-

efficients, T ≤ ∞ , u - unknown vector. For different choices of parameters one

can obtain equations of various types. We are concern with abstract linear parabolic,

hyperbolic with damping and nonlinear variant of such equations. Numerical methods

for these problems will be developed and studied (they will be closed to and based on

works [6,7,–9,12]). Recently constructed methods by Makarov (see f.e. [4,8.10]), pro-

vide an exponentially convergence or convergence without accuracy saturation. These

methods lead to sequence of stationary problems which will be solved by FEM and

FVEM developed for example in [6,7].
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1 New Mathematical Models for Thin-walled Solid
Structures

1.1. Spatial nonlinear governing equations for poro-elastic
media

Let us consider the problem of constructing 3D model with respect to
spatial variable for poro-elastic media. We denote the domain in the three-
dimensional Euclidean space by R3. In the Cartesian coordinates the point
is denoted by Ω, time interval - (0, T ). Thus, in each point of the mixture
(macro-point) we consider the following average quantities of tensors of
stresses and strains and displacement vectors, respectively:

σ = (σ11, σ22, σ33, σ32, σ31, σ12)T , ε = (ε11, ε22, ε33, ε32, ε31, ε12)T ,

u = (u1, u2, u3)T ,p = (p11, p22, p33, p32, p31, p12)T ,

ζ = (ζ11, ζ22, ζ33, ζ32, ζ31, ζ12)T , w = (v1, w2, w3)T ,

εij =
1
2

(ui,j + uj,i + uk,iuk,j), ζij =
1
2

(wi,j + wj,i + wk,iwk,j). (1)

The equilibrium equations for the mixture are of the following form

∂j(σij + σkj · ui,k) = ∂tt(ρ1ui + ρ2wi) + fi ,

∂j(pij + pkj · wi,k) = ∂tt(ρ2ui + ρ3wi) +
η

µ
∂twi + ϕi , (x, t) ∈ QT .

(2)

Here f = (f1, f2, f3)T , ϕ = (ϕ1, ϕ2, ϕ3)T are the vectors of volume forces,
ρi - densities, and the quantity η/µ is defined analogously as in [2].

Instead of law (5.1) from [3] we define the Hooke type low as follows:

σ = Bε + Cζ, (3)
p = Cε + Mζ, (4)

where B,A = B−1 - are rigidity and compliance 6× 6 symmetric matrices,
respectively, C = {cij}6×6, M = {mij}6×6 are also symmetric matrices.

As we have mentioned above, we assume, that in each point of the body
passes at least one plane of flexible symmetry, which is parallel to Ox1x2
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plane, i.e. in matrices C and M at most 13 constants do not equal to zero
and

bi4 = bi5 = b16 = b56 = Ci4 = Ci5 = C46 = C56 = mi4 = mi5 = m46 = b56 = 0.
(5)

From (3) and (4) we have

σii = Biε + Ciζ, pii = Ciε + Miζ, σij = B9−(i+j)ε + C9−(i+j)ζ,

σij = B9−(i+j)ε + C9−(i+j)ζ, pij = C9−(i+j)ε + M9−(i+j)ζ,

where Bi, Ci,Mi are i-th rows of the corresponding matrices.
Let us introduce the following denotations

τij = (σij , pij)T , εij = (εij , ζij)T , Ui = (uij , wij)T .

On the basis of introduced denotations and assumptions (5) the equilib-
rium equations (2) and relations (3), (4) are written in the following form
(see [13]):

∂j

(
τij + τkj ⊕ Ui,k

)
= ρ∂ttUi + ρ0∂tUi + Fi,

τii = Ai1ε11 + Ai2ε22 + Ai3ε33 + A16ε12,

τα3 = A6−α 4ε32 + A6−α 5ε33 + A66ε12,

τ12 = A61ε11 + A62ε22 + A63ε33 + A66ε12,

(6)

where

Amn =
(

bmn Cmn

Cmn mmn

)
, ρ =

(
ρ1 ρ3

ρ3 ρ2

)
, ρ0 =

(
0 0
0

η

µ

)
, Fi = (fi, ϕi)T .

Here a symbol ⊗ denotes the following operation: (a1, a2)T ⊗ (b1, b2)T =
(a1b1, a2b2)T .

Analogous three-dimensional nonlinear model for anisotropic binary
mixtures are presented in the work [10], which generalizes previously known
model for poro-elastic and binary mixtures. The constructed models to-
gether with certain independent scientific interest represent such form of
spatial models, which allow not only to construct, but also to justify von
Karman-Mindlin-Reissner (KMR) type systems of differential equations
as in the stationary, as well in nonstationary cases. Under justification
we mean assumption of “Physical Soundness” to these models in view of
Truesdell-Ciarlet (see for example details in [1], [5, ch.5]). As is known,
even in case of isotropic elastic plate with constant thickness the subject of
justification constituted an unsolved problem. The point is that von Kar-
man, Love, Timoshenko, Landau & Lifshits and others considered one of

40



+ New Mathematical Models for ... AMIM Vol.12 No.2, 2007

the compatibility conditions of Saint-Venant-Beltrami as one of the equa-
tions of the corresponding system of differential equations. This fact was
verified also by Podio-Guidugli [11] recently. In the presented model is
constructed a correct equation that is especially important for dynamic
problems. The corresponding system in this case contains wave processes
not only in the vertical, but also in the horizontal direction. The equation
has the following form:

(
∆2− 1− v2

E
ρ∆∂tt

)
Φ = −E

2
[w, w]+

ν

2

(
∆− 2ρ

E
∂tt

) (
g+
3 +g−3

)
+

1 + ν

2h
f.

(7)
The precision of the presented mathematical model is also conditioned

by a new quantity, introduced by Vashakmadze, which describes an effect of
boundary layer. Existence of this member not only explains a set of para-
doxes in the two-dimensional elasticity theory (Babushka, Lukasievicz), but
also is very important for example for process of generating cracks and holes
(details see in [12], ch.1, par. 3.3). Further, let us note that in works [13]
equations of (1.7) type are constructed with respect to certain components
of stress tensor by differentiation and summation of two differential equa-
tions. Also other equations of KMR type, which differ from (1.7) type
equation, are equivalent to the system, where the order of each equation is
not higher than two. Above proposed models in abstract settings may be
presented as

a
d2

dt2
A1u + b

d

dt
A2u = A3u + A4(t, u) + f, t ∈ [0;T ], (8)

where A1, A2, A3 are linear strong positive operators, A4 - nonlinear oper-
ator of Monge-Ampere type acting in some Banach space; a, b - matrices,
T ≤ +∞, u - unknown vector. For different choices of parameters one can
obtain equations of various types. We concern on abstract linear parabolic,
hyperbolic with damping and nonlinear variation of such equations. Nu-
merical methods for these problems will be based on works of Lazarov [6,7],
Makarov [4,8–10], Vashakmadze [12].

Recently constructed methods by Makarov with co-authors, provide
an exponentially convergence or convergence without accuracy saturation.
These methods lead to sequence of stationary problems which will be solved
by FEM and FVEM developed by Lazarov with co-authors.

1.2. Conclusions

Thus, we intend to obtain the following new results:
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1. New nonlinear mathematical models for poro-elastic and elastic (with
piezo-electric and electrically conductive viscous processes) binary mixtures
will be created and justified;

2. Questions of solvability of stationary and thermo-dynamical mod-
els (spatial case) will be investigated both in the linear and nonlinear
anisotropic cases(it should be noted that even in the linear case in the
elasticity theory when at least one plane of elastic symmetry exists at each
point of body, a question of strong elliptic of system of differential equa-
tions(DE) of spatial elasticity theory is yet an unsolved problem);

3. New two-dimensional with respect to spatial coordinates mathemati-
cal models of KMR type will be created and justified for poro-elastic binary
mixtures when it represents a thin-walled structure; These models even in
isotropic elastic case contain and justify (in sense of physical soundness)
the well-known von Karman system of DE for elastic plates;

4. Optimal models especially for nonhomogeneous systems of KMR
type will be created and chosen without contracting a class of admissible
solutions even in classical (only elastic) case;

5. Effective numerical methods will be constructed and justified; ques-
tions of convergence and error estimate will be studied for problems for
thermo-poro elastic structures;

6. Questions of influence of new terms (which firstly were introduced
by Vashakmadze in poroelastic case) in the equation of form (1.7) will
be investigated. Presence of these terms are very important, especially for
seismic problems: in nonstationary problems these terms are of type ∂tt∆Φ,
in stationary problems there are of type ∆(g+

3 + g−3 );
7. In case when the problem (1.8) is splitting into two such equations,

that one of them is stationary and nonlinear, effective numerical method
for compute eigenvalues would be proposed.

8. Problem of influence of new boundary value effect (firstly introduced
by Vashakmadze) in problems of thermo poro-elasticity will be investigated
and analyzed;

Using above mentioned we formulate the Basic problems and Innova-
tions for “Re-computation of principal elements of aircraft’s”.

1.3. Re-computation of principal elements of aircraft’s

I. Objectives:
For realization of these purposes the foundation is the possibility of

investigation and decision of the following problems:

1. a. Conducting of perfect comparatively analysis of well-known meth-
ods designing of principal elements of aircrafts.
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b. Creation of new mathematical theory, corresponding numerical
schemes and software with a view to refinement and justification
(recomputation) of designing databases.

c. Discover and experimentally confirmation of new effects of stati-
cal and thermo-dynamical behavior of principal elements of con-
structions of aircrafts by means of mathematical theory and
technology basing on exact nonlocal representations of main
characteristics of a stress-strain state of thin-walled structures.

1. Main goals of the Project are:

1. 1.1. Study and analysis of the main prerequisites for constructions of
models;

1.2. The main computation elements - decomposition of construction
of aircrafts;

1.3. Geometry of basic surfaces of elements;

1.4. Physical - mechanical properties (including f.e.a possibility to
obtain datatables for anisotropic materials);

1.5. Distribution fields of forces (power and temperature loads)

2. Mathematical statement of boundary-value and variational problems
of thermomechanics for elements of aircraft constructions in different
cases.

1. 2.1. Isotropy and anisotropy,

2.2. Piecewise nonhomogeneity of geometry and physical-mechanical
properties, homogeneous and heterogeneous structures.

2.3. Constant and variable thickness.

3. Numerical schemes by finite and boundary element methods for el-
ements of an aircraft constructions. Analysis and development of
explicit methods of solution of corresponding linear and nonlinear
systems of algebraic equations.

1. 3.1. Construction and analysis of systems of differential and finite-
difference equations of computation of principal elements of air-
craft constructions by varialtional setting of problems of theory
of plates and shells, using exact nonlocal representations (cases
of statics and dynamics, finite and semifinite time intervals).

3.2. Creation of oriented computing center with modern hardware
and software.
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4. Carrying out numerical experiments and comparative analysis.

1. 4.1. Calculation of elements of constructions and junctions of air-
crafts according to different refined theories of thin-walled struc-
tures in limits of equal approach.

4.2. Analysis of obtained results and their comparison with the ex-
perimental data.

II. Innovation
Application of mathematical theory of plates and shells, constructed on

the basis of exact nonlocal representations (free of simplifying hypotheses of
geometric and physical character) for calculation and comparative analysis
of the existing theories as applied to investigations with thermodynamic
behavior of the principal elements of aircrafts.

Mathematical theory of plates and shells by means of precise nonlocal
representations show that the equations of existing refined theories lack
members which can have very important influence on behavior of thin-
walled structures in certain conditions:

1. In the nonlinear dynamic equations of von-Karman type there is ab-
sent a member describing a wave propagation in the longitudinal di-
rection. The influence of this member can appear very important at
the description of behavior of wings and tail parts of aircraft con-
struction. Analogous event holds in the statistical problems too. In-
troduction of the corresponding summands explains the essence of
the well-known problem of Trusdell-Ciarlet.

2. The theory allows to refine the description of thermo-poro-pieso-
electric and electrical-conductive processes in composites and binary
mixtures.

3. The equations of the theory point to presence of the two-dimensional
soliton waves of sound frequences, which can cause significant changes
in the calsulation of the stress-strain state of the principal elements
of aircraft, especially in junctions of wings with fuselage.

4. The possibility of applications of this theory must be especially em-
phasized at presence of inhomogeneities , anisotropy,piecewise hetero-
geneities in the thin-walled structures.

5. The correction, introduced according to this theory, in the average
boundary conditions, is a refinement of the influence of boundary
layer. It can cause significant changes in the neighborhood of cuts
(porthole, doors and etc.).
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Introduction of this member also explains a set of paradoxes, usu-
ally characteristic to existing refined theories (f.e. Kirchhof-von Karman-
Mindlin-Reissner and all other one).

2 Exponentially Convergent Algorithms for the
Operator Exponential with Applications to In-
homogeneous Problems in Banach Spaces

2.1. Introduction

We consider the problem

du(t)
dt

+ Au(t) = f(t), u(0) = u0, (9)

where A is a strongly positive operator in a Banach space X, u0 ∈ X is a
given vector, f(t) is a given and u(t) is the unknown vector valued function.
A simple example of a partial differential equation covered by the abstract
setting (9) is the classical inhomogeneous heat equation

∂u(t, x)
∂t

− ∂2u(t, x)
∂x2

= f(t, x)

with corresponding boundary and initial conditions, where the operator A
is defined by

D(A) =
{
v ∈ H2(0, 1) : v(0) = 0, v(1) = 0

}
,

Av = −d2v

dx2
for all v ∈ D(A).

The homogeneous equation

dT (t)
dt

+ AT (t) = 0, T (0) = I, (10)

where I is the identity operator and T (t) is an operator valued function
defines the semi-group of bounded operators T (t) = e−At generated by
A (called also the operator exponential or the solution operator of the
homogeneous equation (9)). Given the solution operator, the initial vector
u0 and the right-hand side f(t), the solution of the homogeneous initial
value problem (9) can be represented by

u(t) = uo(t) = T (t)u0 = e−Atu0 (11)

and the solution of the inhomogeneous problem by

u(t) = e−Atu0 + up(t) (12)
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with

up(t) =
∫ t

0
e−A(t−ξ)f(ξ)dξ. (13)

We can see that an efficient approximation of the operator exponential is
needed in order to get an efficient discretization of both (11) and (12).
Further, having in mind a discretization of the second summand in (12)
by a quadrature sum we need an efficient approximation of the operator
exponential for all t ≥ 0 including the point t = 0.

A convenient representation of the operator exponential is the one pro-
vided by the improper Dunford-Cauchy integral

e−At =
1

2πi

∫

ΓI

e−tz(zI −A)−1dz, (14)

where ΓI is an integration path enveloping the spectrum of A. After
parametrizing Γ we get an improper integral of the type

e−At =
1

2πi

∫

ΓI

e−tz(zI −A)−1dz =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ. (15)

The last integral can be discretized by a quadrature rule (desirable exponen-
tially convergent) involving a short sum of resolvents. Such an algorithm
inherits a two-level parallelism with respect to both the computation of
resolvents and the treatment of different time values.

In contrast to various other approximation methods with a polynomial
convergence rate for the problem (9) using finite differences or the Padé
fractions (both discrete in time), the Cayley transform (continuous in time)
and other ideas, we present and analyzes new efficient exponentially conver-
gent algorithms for the operator exponential including t = 0 which are also
applied to inhomogeneous problems with certain holomorphic right-hand
sides. The algorithms under consideration are parallelizable in an evident
way.

2.2. New algorithm for the operator exponential with an
exponential convergence estimate including t = 0

We consider the following representation of the operator exponential

u(t) =
1

2πi

∫

ΓI

e−zt(zI −A)−1u0dz. (16)

Our aim is to approximate this integral by a quadrature with exponential
convergence rate including t = 0. It is of great importance having in
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mind the representation of the solution of the non-homogeneous initial value
problem (9) by

u(t) = e−Atu0 +
∫ t

0
e−A(t−ξ)f(ξ)dξ, (17)

where the argument of the operator exponential under the integral becomes
zero for ξ = t. We can represent

u(t) =
1

2πi

∫

ΓI

e−zt

[
(zI −A)−1 − 1

z
I

]
u0dz (18)

instead of (16) (for t > 0 the integral from the second summand is equal
to zero due to the analyticity of the integrand inside of the integration
path) and this integral represents the solution of the problem (9) for u0 ∈
D(Aα), α > 0. We call the hyperbola

Γ0 = {z(ξ) = a0 cosh ξ − ib0 sinh ξ : ξ ∈ (−∞,∞), b0 = a0 tanϕ} (19)

the spectral hyperbola, which pathes through the vertex (a0, 0) of the spec-
tral angle and possesses asymptotes which are parallel to the rays of the
spectral angle Σ. We choose the following hyperbola as an integration path

ΓI = {z(ξ) = aI cosh ξ − ibI sinh ξ : ξ ∈ (−∞,∞)}. (20)

aI = a0 cos
(π

4
− ϕ

2

)
− b0 sin

(π

4
− ϕ

2

)

=
√

a2
0 + b2

0 cos
(π

4
+

ϕ

2

)
= a0

cos
(

π
4 + ϕ

2

)

cosϕ
,

bI = a0 sin
(π

4
− ϕ

2

)
+ b0 cos

(π

4
− ϕ

2

)

=
√

a2
0 + b2

0 sin
(π

4
+

ϕ

2

)
= a0

sin
(

π
4 + ϕ

2

)

cosϕ
,

(21)

After parametrizing of the integral (18) by (20) we get

u(t) =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ (22)

with

F(t, ξ) = FA(t, ξ)u0,

FA(t, ξ) = e−z(ξ)t(aI sinh ξ − ibI cosh ξ)
[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
.

(23)

We approximate integral (22) by the following Sinc-quadrature

uN (t) =
h

2πi

N∑

k=−N

F(t, z(kh)) (24)
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x

y

φ

a
0

b
0

y=(tanφ)*x

x2/a
0
2−y2/b

0
2=1

Figure 0.1: Spectral characteristics of the operator A.

Theorem 2.1 Let A be a densely defined strongly positive operator and
u0 ∈ D(Aα), α ∈ (0, 1), then Sinc-quadrature (24) represents an approx-
imate solution of the homogeneous initial value problem (9) (i.e. u(t) =
e−Atu0) and possesses a uniform with respect to t ≥ 0 exponential conver-
gence rate with estimate which is of the order O(e−c

√
N ) uniformly in t ≥ 0

provided that h = O(1/
√

N) and of the order
O (

max
{
e−πdN/(c1 ln N), e−c1aI tN/2−c1α ln N

})
for each fixed t ≥ 0 provided

that h = c1 lnN/N .

Remark 2.2 Note that taking (zI − A)−1 instead of (zI − A)−1 − 1
z I in

(18) we remain with a difference given by

DI(t) = − 1
2πi

∫

ΓI

e−zt 1
z
u0dz. (25)

For the integration path ΓI and t = 0 this difference can be calculated ana-
lytically. Actually, taking into account that the real part is an odd function
and the integral of it in the sense of Cauchy is equal to zero we further get
for the integral of the imaginary part

DI(0) = − 1
2πi

∫

ΓI

1
z
u0dz = − 1

2π

∫ ∞

−∞

aIbIdξ

a2
I cosh2 ξ + bI sinh2 ξ

u0

=
aIbI

2π

∫ ∞

−∞

d(tanh ξ)
a2

I + b2
I tanh2 ξ

u0 =
1
π

arctan
bI

aI
u0 =

1
π

(π

4
+

ϕ

2

)
u0,

(26)

where the factor in the front of u0 is less then 1/2. It means that one
can expect a large error for t small enough when using (zI − A)−1 instead
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of (zI − A)−1 − 1
z I in (18). This phenomena can be observed in the next

example. Note that for t > 0 integral (25) is equal to 0 due to the analyticity
of the integrand inside of the integration path.

Example 2.3 Let us choose a0 = π2, ϕ = 0.8π/2, then the next Table 2.3
gives the values of ‖DI(t)‖/‖u0‖ for various t.

t ‖DI(t)‖/‖u0‖
0 0.45

0.1 · 10−8 0.404552
0.1 · 10−7 0.081008
0.1 · 10−6 0.000257
0.1 · 10−5 0.147153 · 10−6

Table 2.1: The unremovable error when using the resolvent instead of (zI−
A)−1 − 1

z I.

2.3. Inhomogeneous differential equation

In this section we consider the inhomogeneous problem (9) with the solution

u(t) = uo(t) + up(t), (27)

where

uo(t) = e−Atu0, up(t) =
∫ t

0
e−A(t−s)f(s)ds. (28)

Note that there exist algorithms for convolution integrals of the type like the
ones from previous sections and also based on Sinc quadratures (F.Stenger).
Since these algorithms use the inverse Laplace transformation combined
with Tikhonov’s regularization their justification is rather complicated and
the convergence order is O(

√
Ne−c

√
N ). In order to shake off the factor

√
N

in the front of the exponential we propose in this section a discretization
different from F.Stenger.

Using representation (18) of the operator exponential we get

up(t) =
∫ t

0

1
2πi

∫

ΓI

e−z(t−s)[(zI −A)−1 − 1
z
I]f(s)dzds

=
1

2πi

∫

ΓI

[
(z(ξ)I −A)−1 − 1

z(ξ)
I

] ∫ t

0
e−z(ξ)(t−s)f(s)dsz′(ξ)dξ,

z(ξ) = aI cosh ξ − ibI sinh ξ.

(29)
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The image of the strip 
t=10, nu=Pi/6

–3

–2

–1

0

1

2

3

v

2 4 6 8 10
u

Figure 0.2: The image of the strip for t = 10, ν = π/6.

Replacing here the first integral by quadrature (24) we get

up(t) ≈ uap(t) =
h

2πi

N∑

k=−N

z′(kh)
[
(z(kh)I −A)−1 − 1

z(kh)
I

]
fk(t) (30)

with

fk(t) =
∫ t

0
e−z(kh)(t−s)f(s)ds, k = −N, . . . , N. (31)

In order to construct an exponentially convergent quadrature for these in-
tegrals we change the variables by

t

2
− s =

t

2
tanh ξ (32)

and get instead of (31)

fk(t) =
∫ ∞

−∞
Fk(t, ξ)dξ, (33)

where

Fk(t, ξ) =
t

2 cosh2 ξ
exp[−z(kh)t(1 + tanh ξ)/2]f(t(1− tanh ξ)/2). (34)

Note that with the complex variables z = ξ + iν and w = u + iv equation
(32) represents the conformal mapping w = ψ(z) = t[1 − tanh z]/2, z =
φ(w) = 1

2 ln t−w
w of the strip Dν onto the domain Aν . The integrand can
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be estimated on the real axis by

‖ Fk(t, ξ)‖ ≤ t

2 cosh2 ξ
exp[−aI cosh (kh)t(1 + tanh ξ)/2]‖f(t(1− tanh ξ)/2)‖

≤ 2te−2|ξ|‖f(t(1− tanh ξ)/2)‖.
(35)

Lemma 2.4 Let the right hand side f(t) in (9) for t ∈ [0,∞] can be ana-
lytically extended into the sector Σf = {ρeiθ1 : ρ ∈ [0,∞], |θ1| < ϕ} and
for all complex w ∈ Σf we have

‖f(w)‖ ≤ ce−δ|<w| (36)

with δ ∈ (0,
√

2a0] , then the integrand Fk(t, ξ) can be analytically extended
into the strip Dd1 , 0 < d1 < ϕ/2 and belongs to the class H1(Dd1) with
respect to ξ, where a0, ϕ are the spectral characterizations of A.

The assumptions of Lemma 2.4 can be weakened if we consider problem
(9) on some finite interval (0, T ].

Lemma 2.5 Let the right hand side f(t) in (9) for t ∈ [0, T ] can be ana-
lytically extended into the domain A(T ), then the integrand Fk(t, ξ) can
be analytically extended into the strip Dd1 , 0 < d1 < ϕ/2 and belongs to
the class H1(Dd1) with respect to ξ.

Let the assumptions of Lemma 2.4 hold, then we can use the following
quadrature rule to compute the integrals (33)

fk(t) ≈ fk,N (t) = h

N∑

p=−N

µk,p(t)f(ωp(t)), (37)

where

µk,p(t) =
t

2
exp{− t

2
z(kh)[1 + tanh (ph)]}/ cosh2 (ph),

ωp(t) =
t

2
[1− tanh (ph)], h = O(1/

√
N),

z(ξ) = aI cosh ξ − ibI sinh ξ.

(38)

Substituting (37) into (30) we get the following algorithm to compute an
approach uap,N (t) to uap(t)

uap,N (t) =
h

2πi

N∑

k=−N

z′(kh)[(z(kh)I−A)−1− 1
z(kh)

I]h
N∑

p=−N

µk,p(t)f(ωp(t)).

(39)
The next theorem characterizes the error of this algorithm.

51



AMIM Vol.12 No.2, 2007 V. Makarov, T. Vashakmadze +

Theorem 2.6 Let A be a densely defined strongly positive operator with the
spectral characterization a0, ϕ and the right hand side f(t) ∈ D(Aα), α > 0
for t ∈ [0,∞] can be analytically extended into the sector Σf = {ρeiθ1 : ρ ∈
[0,∞], |θ1| < ϕ} where the estimate

‖Aαf(w)‖ ≤ cαe−δα|<w|, w ∈ Σf (40)

with δα ∈ (0,
√

2a0] holds, then algorithm (39) converges with the error
estimate

‖EN (t)‖ = ‖up(t)− uap,N (t)‖ ≤ ce−c1
√

N (41)

uniformly in t with positive constants c, c1 depending on α, ϕ, a0 and
independent of N .

Example 2.7 We consider the inhomogeneous problem (9) with the oper-
ator A defined by

D(A) = {u(x) ∈ H2(0, 1) : u(0) = u(1) = 0},
Au = −u′′(x) ∀u ∈ D(A).

(42)

The initial function is u0 = u(0, x) = 0 and the right hand side f(t) is
given by

f(t, x) = x3(1− x)3
1− t2

(1 + t2)2
− 6t

1 + t2
x(1− x)(5x2 − 5x + 1). (43)

it is easy to see that the exact solution is u(t, x) = x3(1 − x)3 t
1+t2

. The
algorithm (39) was implemented for t = 1, x = 1/2 in Maple 8 with Digits =
16. The next table shows an exponential decay of the error εN = |u(1, 1/2)−
uap,N (1)| with growing N .

N εN

8 0.485604499
16 0.184497471
32 0.332658314 e-1
64 0.196729786 e-2
128 0.236757688 e-4
256 0.298766899 e-7

Table 2.2: The error of algorithm (39) for t = 0, x = 1/2.
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3 Exponentially Convergent Algorithm for Non-
linear Equations

We consider the problem

∂u(t)
∂t

+ Au(t) = f(t, u(t)), t ∈ (0, 1],

u(0) = u0,
(44)

where u(t) is an unknown vector valued function with values in a Banach
space X, u0 ∈ X is a given vector, f(t, u) : (IR+ × X) → X is a given
function (nonlinear operator) and A is a linear densely defined closed oper-
ator with the domain D(A) acting in X. The abstract setting (44) covers
many applied problems such as nonlinear heat conduction or diffusion in
porous media, the flow of electrons and holes in semiconductors, nerve axon
equations, chemically reacting systems, equations of the population genet-
ics theory, dynamics of nuclear reactors, Navier-Stokes equations of the
viscous flow etc. This fact together with theoretical interest are important
reasons to study efficient discrete approximations of problem (44).

Given a discretization parameter N we are interesting in approximations
possessing an exponential convergence rate with respect to N →∞ which
for a given tolerance ε provide algorithms of optimal or low complexity.

Problem (44) is equivalent to the nonlinear Volterra integral equation

u(t) = uh(t) + unl(t), (45)

where
uh(t) = T (t)u0, (46)

T (t) = e−At is the operator exponential (the semi-group ) generated by A
and the nonlinear term is given by

unl(t) =
∫ t

0
e−A(t−s)f(s, u(s))ds. (47)

3.1. A discretization scheme of Chebyshev type

Changing in (45) the variables by

t =
x + 1

2
(48)

we transform problem (45) to the following problem on the interval [−1, 1]

u(
x + 1

2
) = gh(x) + gnl(x, u) (49)
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with

gh(x) = e−A x+1
2 u0,

gnl(x, u) =
1
2

∫ x

−1
e−A x−ξ

2 f(
ξ + 1

2
, u(

ξ + 1
2

))dξ.
(50)

Using the representation of the operator exponential by the Dunford-
Cauchy integral along the integration path ΓI and enveloping the spectral
curve Γ0 we obtain

gh(x) = e−A x+1
2 u0 =

1
2πi

∫

ΓI

e−z x+1
2 [(zI −A)−1 − 1

z
I]u0dz,

gnl(x, u) =
1
2

∫ x

−1
e−A x−η

2 f(
η + 1

2
, u(

η + 1
2

))dη

=
1

4πi

∫ x

−1

∫

ΓI

e−z x−η
2 [(zI −A)−1 − 1

z
I]f(

η + 1
2

, u(
η + 1

2
))dzdη

(51)

(note, that P.V.
∫
ΓI

z−1dz = 0 but this term in the resolvent provides the
numerical stability of the algorithm below when t → 0). After parametriz-
ing the integrals in (51) we have

gh(x) =
1

2πi

∫ ∞

−∞
Fh(x, ξ)dξ (52)

with

Fh(x, ξ) = FA((x + 1)/2, ξ)u0 (53)

(in the case A = 0 we define FA(t, ξ) = 0).
We approximate integral (52) by the following Sinc-quadrature

gh,N1(x) =
h

2πi

N1∑

k=−N1

Fh(x, kh), h =

√
2πd

α(N1 + 1)
(54)

with the error

‖ηN1(Fh, h)‖ = ‖E((x + 1)/2)u0‖ ≤ c

α
exp

(
−

√
πdα

2
(N1 + 1)

)
‖Aαu0‖,

(55)
where

E((x− η)/2) =
1

2πi

∫ ∞

−∞
FA((x− η)/2, ξ)dξ − 1

2πi

N1∑

k=−N1

FA((x− η)/2, kh)

(56)
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and the constant c independent of x,N1. Analogously we transform the
second integral in (51)to

gnl(x, u) =
1

4πi

∫ x

−1

∫

ΓI

e−z x−η
2 [(zI −A)−1 − 1

z
I]f(

η + 1
2

, u(
η + 1

2
))dzdη

=
1

4πi

∫ x

−1

∫ ∞

−∞
Fnl(x, ξ, η)dξdη,

(57)

where
Fnl(x, ξ, η) = FA((x− η)/2, ξ)f(

η + 1
2

, u(
η + 1

2
)). (58)

Replacing the infinite integral by quadrature rule (54) we arrive at the
approximation

gnl,N1(x, u) =
h

4πi

∫ x

−1

N1∑

k=−N1

Fnl(x, kh, η)dη. (59)

In order to approximate the nonlinear operator gnl,N1(x, u) we choose
the mesh ωN = {xk,N = cos (2k−1)π

2N , k = 1, . . . , N} on [−1, 1] , where
xk,N are zeros of Chebyshev orthogonal polynomial of first kind TN (x) =
cos (N arccosx). For the step-sizes τk,N = xk,N − xk−1,N it is well known
that

τk,N = xk+1,N − xk,N < π
N , k = 1, . . . , N,

τmax = max1≤k≤N τk,N < π
N . (60)

Let

PN−1(x; f(·, u)) =
N∑

p=1

f((xp,N + 1)/2, u((xp,N + 1)/2))Lp,N−1(x) (61)

be the interpolation polynomial for the function f(x, u(x)) on the mesh ωN ,
i.e. PN−1(xk,N ; f(·, u)) = f((xk,N + 1)/2, u((xk,N + 1)/2)), k = 1, 2, . . . , N ,
where Lp,N−1 = TN (x)

T ′N (xp,N )(x−xp,N )
, p = 1, . . . , N are the Lagrange fundamen-

tal polynomials. Given a vector y = (y1, . . . , yN ), yi ∈ X let

PN−1(x; f(·, y)) =
N∑

p=1

f((xp,N + 1)/2, yp))Lp,N−1(x) (62)

be the polynomial which interpolates f(x, y), i.e. PN−1(xk,N ; f(·, y)) =
f((xk,N + 1)/2, yk)), k = 1, 2, . . . , N . Substituting PN−1(t; f(·, y)) instead
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of f(t, u) into (58), (59) we get the approximation

gnl,N,N1(x, y) =
h

4πi

∫ x

−1

N1∑

k=−N1

FA((x− η)/2, kh)PN−1(η; f(·, y))dη. (63)

Substituting approximations (54) and (63) into (54) and collocating the
resulting equation on the grid ωN we arrive at the following

Algorithm A1 for solving problem (49): find y = (y1, . . . , yN ), yi ∈ X
such that

yj = gh,N1(xj,N ) + gnl,N,N1(xj,N , y), j = 1, . . . , N (64)

or

yj =
h

2πi

N1∑

k=−N1

Fh(xj,N , kh)

+
h

4πi

N1∑

k=−N1

∫ xj,N

−1
FA((xj,N − η)/2, kh)PN−1(η; f(·, y))dη,

j = 1, . . . , N.

(65)

Equations (64) or (65) define a nonlinear operator A so that

y = A(y) + φ, (66)

where
y = (y1, y2, . . . , yN ), yi ∈ X,

[A(y)]j =
h

4πi

N1∑

k=−N1

∫ xj,N

−1
FA((xj,N − η)/2, kh)PN−1(η; f(·, y))dη,

(φ)j =
h

2πi

N1∑

k=−N1

Fh(xj,N , kh) =
h

2πi

N1∑

k=−N1

FA((xj,N + 1)/2, kh)u0,

j = 1, . . . , N.

(67)

This is a system of nonlinear equations which can be solved by an iteration
method. Since the integrands in

Ij,k =
∫ xj,N

−1
FA((xj,N − η)/2, kh)PN−1(η; f(·, y))dη, (68)

j = 1, . . . , N, k = −N1, . . . , N1 are products of the exponential function
and polynomials, these integrals can be calculated analytically, for example,
by computer algebra tools.

Given the vector y = (y1, . . . , yN ) the interpolation polynomial ũ(x) =
PN−1(x; y) represents an approximation for u((x+1)/2) = u(t), i.e. u((x+
1)/2) = u(t) ≈ PN−1(x; y).
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3.2. The error analysis for a small Lipschitz constant

We assume that
(i)

f(t, u(t)) ∈ D(Aα) ∀ t ∈ [0, 1] and
∫ 1

0
‖Aαf(t, u(t))‖dt < ∞. (69)

(ii) the vector valued function Aαf(1+ξ
2 , u(1+ξ

2 )) of ξ can be analytically
extended from the interval B = [−1, 1] into the domain Dρ enveloped by
the so called Bernstein’s regularity ellipse Eρ = Eρ(B) (with the foci at
z = ±1 and the sum of semi-axes equal to ρ > 1):

Eρ = {z ∈ C : z =
1
2

(
ρeiϕ +

1
ρ
e−iφ

)
}

= {(x, y) :
x2

a2
+

x2

a2
= 1, a =

1
2

(
ρ +

1
ρ

)
, b =

1
2

(
ρ− 1

ρ

)
}

.
(iii) The function f(t, y) = f(t, y;N) in the domain G = {(t, y, N) :

0 ≤ t ≤ 1, |‖y − u|‖ < γ, N ≥ N0} in addition to (i), (ii) satisfies

|‖Aα[f(t, y1)− f(t, y2)]|‖ ≤ L|‖y1 − y2|‖ ∀y1, y2 ∈ G, (70)

for all (t, yi, N) ∈ G, i = 1, 2, where
|‖Z‖| = |‖y − u‖| = maxj=1,...,N ‖yj − u(tj)‖, γ is a positive real constant
and N0 is a fixed natural number large enough.

|‖Z‖| = |‖u− y‖| ≤ c

α− c∗L
ln N1e

−c1
√

N1

×
(
‖Aαu0‖+

∫ 1

0
‖Aαf(t, u(t))‖dt + sup

z∈Dρ

‖Aαf(z, u(z))‖
) (71)

in a more strong norm

|‖AαZ‖| = |‖Aα(u− y)‖| ≤ c

β − α− c∗L
ln N1e

−c1
√

N1

×
(
‖Aβu0‖+

∫ 1

0
‖Aβf(t, u(t))‖dt + sup

z∈Dρ

‖Aβf(z, u(z))‖
)

,

∀ β > α > 0, β − α > c∗L.

(72)
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Theorem 3.1 Let A be a densely defined, closed, strongly positive linear
operator with the domain D(A) in a Banach space X and the assumptions
(i), (ii), (iii) hold, then algorithm A1 defined by (65) for the numerical
solution of the nonlinear problem (44) possesses an uniform with respect
to t exponential convergence rate with estimates (71), (72) provided that
N ³ √

N1 and the Lipschitz constant L is sufficiently small.

Remark 3.2 The same result can be obtained if one uses the interpolation
polynomial on the Chebyshev-Gauss-Lobatto grid

ωCGL
N = {xk,N = xCGL

k,N = cos
(N − j)π

N
, k = 0, 1, . . . , N, } (73)

where the nodes are zeros of the polynomial (1− x2)T ′N (x).

3.3. Modified algorithm for arbitrary Lipschitz constant

In this section we show, how the algorithm above can be modified for a
nonlinearity with an arbitrary Lipschitz constant. To this end we suppose
that u(t) ∈ D(Aσ), σ > c∗L/2. We cover the interval [0, 1] by the grid
ωG = {ti = i · τ : i = 0, 1, . . . ,K, τ = 1/K} and consider problem (44)
on each subinterval [tk−1, tk], k = 1, . . . ,K. The substitution t = tk−1(1 −
ξ)/2 + tk(1 + ξ)/2, v(ξ) = u(tk−1(1 − ξ)/2 + tk(1 + ξ)/2) translates the
original equation into the differential equation

v′(ξ) + Ãv = f̃(ξ, v) (74)

on the reference interval [−1, 1] with Ã = τ
2A and with the function f̃(ξ, v) =

τ
2f(tk−1(1 − ξ)/2 + tk(1 + ξ)/2, u(tk−1(1 − ξ)/2 + tk(1 + ξ)/2)) satisfying
the Lipschitz condition with the Lipschitz constant L̃ = τL/2 which can
be made arbitrarily small by the appropriate choice of τ . We cover each
subinterval [tk−1, tk] by the Chebyshev-Gauss-Lobatto grid

ωCGL
k,N = {tk,j : tk,j = tk−1(1− xj,N )/2 + tk(1 + xj,N )/2, j = 0, 1, . . . , N},

xj,N = cos (π(N − j)/N)
(75)

and denote vk(xj,N ) = vk,j = u(tk,j), vk,0 = vk, u(tk,0) = u(tk) = uk, ~vk =
[vk,j ]j=1,...,N , ~uk = [u(tk,j)]j=1,...,N . Then, algorithm (65) with the corre-
sponding Chebyshev-Gauss-Lobatto interpolation polynomial can be ap-
plied which provides an exponential accuracy on the subinterval [tk−1, tk]
under the assumption that the initial vector uk−1 is known. This is exactly
the case for k = 1 and by algorithm (65) we obtain a value v1,N = v1 as
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an approximation for u(t1). Starting on the subinterval [t1, t2] with the
approximate initial value v1 we obtain an approximate solution for this
subinterval and so on.

In order to write down this idea as an algorithm we derive from (74)
the relation

vk,j = e−Ã(1+xj,N )uk−1 +
∫ xj,N

−1
e−Ã(xj,N−η)f̃(η, vk(η))dη. (76)

Denoting by yk,j approximations to vk,j , approximating the operator ex-
ponential with N1 nodes and the nonlinearity by the Chebyshev-Gauss-
Lobatto interpolation polynomial

PN (η,
~̃
f) =

N∑

l=0

f̃(xl,N , yk,l)Ll,N (η),

Ll,N (η) =
(1− η2)T ′N (η)

(η − xl,N ) d
dη [(1− η2)T ′N (η)]η=xl,N

,

~̃
f = [f̃(xj,N , yk,j)]Nj=0

(77)

we arrive at the following system of nonlinear equations (analogous to (65))

yk,j = e
−Ã(1+xj,N )
N1

yk−1 +
∫ xj,N

−1
e
−Ã(xj,N−η)
N1

PN (η,
~̃
f)dη, (78)

which expresses yk,j , j = 1, 2, . . . , N (in particular yk,N = yk+1) through
yk−1.

Now, we can formulate the following algorithm.
Algorithm A2.
Given K satisfying (79), and N1 computes the approximate solution of

nonlinear problem (44) with an arbitrary Lipschitz constant by solving of
the nonlinear discrete system (78) on each subinterval

1. Choose K satisfying (79) and N1 and set τ = 1/K, t0 = 0, y0 = u0.
2. For i := 1 step 1 to K do
2.1. Set ti = ti−1 + τ and find the approximate solution yi,j , j =

1, 2, . . . , N of problem (9) on the Chebyshev-Gauss-Lobatto grid (75) cov-
ering the interval [ti−1, ti] by algorithm (78) using yi−1 as the initial value.

2.2. Set yi = yi,N .

c∗

αk

Lτ

2
< 1 (79)
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max
1≤k≤K

|||Aα2~zk||| ≤ max{qK , q} ln N1e
−c1

√
N1

K∑

k=1

[∫ tk

tk−1

‖Aαkf(t, u(t))‖dt + ‖Aαku(tk−1)‖+
τ

2
sup

z∈Dρk

‖Aαkf(tk(z), u(tk(z)))‖
]

.

(80)

Theorem 3.3 Let A be a densely defined closed strongly positive linear
operator with the domain D(A) in a Banach space X and the assumptions
(i), (ii), (iii) hold. If the solution of the nonlinear problem (44) belongs to
the domain D(Aσ) with σ > c∗L/2 then algorithm A2 possesses an uniform
with respect to t exponential convergence rate with estimate (80), provided
that N ³ √

N1 and the chosen number of subintervals K satisfies (79).

Example 3.4 Let us consider the problem

∂u

∂t
+ Au = f(t, u(t)),

u(−1) = u0

(81)

with the linear operator A given by

D(A) = {w(x) ∈ H2(0, 1) : w′(0) = 0, w′(1) = 0},
Av = −w′′ ∀w ∈ D(A),

(82)

with the nonlinear operator f given by

f(t, u) = −2tu2 (83)

and with the initial condition given by

u0 = u(−1, x) = 1/2. (84)

Since the numerical algorithm above supposes that the operator coefficient
is strongly positive we shift its spectrum by the variables transform u(t, x) =
ed2tv(t, x) with a real number d. Then we obtain the problem

∂v

∂t
+ Adv = fd(t, v(t)),

v(−1) = v0

(85)

with the linear operator Ad given by

D(Ad) = D(A),

Adw = Aw + d2w ∀w ∈ D(Ad),
(86)

60



+ New Mathematical Models for ... AMIM Vol.12 No.2, 2007

with the nonlinear operator fd given by

fd(t, v) = −2ted2tv2 (87)

and with the initial condition

v0 = v(−1, x) = ed2
/2. (88)

It is easy to check that the exact solution of this problem is

v(t, x) = e−d2t/(1 + t2). (89)

The equivalent Volterra integral equation for v has the form

v(t, x) =
1
2
e−Ad(t+1)ed2 − 2

∫ t

−1
e−Ad(t−s)sed2s[v(s, ·)]2ds. (90)

Returning to the unknown function u the integral equation takes the form

u(t, x) =
1
2
e−Ad(t+1)ed2(t+1) − 2

∫ t

−1
e−Ad(t−s)se−d2s[u(s, ·)]2ds. (91)

Our algorithm was implemented in Maple with numerical results given
by Table 3 where εN = max1≤j≤N εj,N , εj,k,N = |u(xj,N , kh) − yj,k|, j =
1, . . . , N, k = −N1, . . . , N1. The numerical results are in a good agreement
with Theorem 3.1.

N εN It

4 0.8 e-1 12
8 0.7 e-3 10
16 0.5 e-6 11
32 0.3 e-12 12

Table 3.3: The error of algorithm (65).

Example 3.5 This example deals with the two-dimensional nonlinear prob-
lem

∂u

∂t
+ Au = f(t, u(t)),

u(0) = u0

(92)
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where

D(A) = {w(x, y) ∈ H2(Ω) : w|∂Ω = 0},
Av = −∆v ∀v ∈ D(A),
Ω = [0, 1]× [0, 1]

(93)

with the nonlinear operator f given by

f(t, u) = −u3 + e−6π2t sin3 πx sin3 πy (94)

and with the initial condition given by

u0 = u(0, x, y) = sinπx sinπy. (95)

The exact solution is given by u = e−2π2t sinπx sinπy. Algorithm (65) with
N =

√
N1 Chebyshev-Gauss-Lobatto nodes combined with the fixed point

iteration provides the error which is presented in Table 4.

N εN It

4 .3413e-6 12
8 .1761e-6 10
16 .8846e-7 14
32 .5441e-8 14

Table 3.4: The error εN of algorithm (65) for problem (92)- (95).

Example 3.6 Let us consider again the nonlinear initial value problem
and apply the algorithm A2 for various values of the Lipschitz constant
2µ. Numerical experiments indicate the convergence for µ > 0.4596747673
but beginning with µ ≈ 1 the process becomes divergent and algorithm A2
should be applied. The corresponding results for various µ are presented in
Table 3.6.

Here the degree of the interpolation polynomial is N = 16, K is the
number of subintervals of the whole interval [−1; 1], It denotes the number
of the iterations in order to arrive at the accuracy exp(−N) ∗ 0.01.

Conclusions

The present results are generalized to the cases when the operator coeffi-
cient is nonconstant and posses a variable domain.
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µ K It
0.9 1 22
1 2 20
10 32 20
20 50 25
50 128 25
100 256 24

Table 3.5: The results of algorithm A2 with various values of the Lipschitz
constant µ.
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