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Abstract

In this paper a unsteady problem of the motion of conductive liquid, caused by

rotation of infinite porous plate, when the suction velocity represents periodic function

of a time has, been studied.
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In paper [1] the problem was studied of unsteady flow of low-conductive
liquid along an infinite porous plate for the case when liquid was evently
infiltrated into the plate with constant velocity, where it has been under ac-
tion of constant magnetic field with taking into account a heat transferring.
The dynamic part of this problem, when the velocity changes with periodic
low, was generalized in work [2]. The influence of change of infiltrating
liquid’s velocity with periodic law on liquid’s temperature was investigated
in work [3].

Paper [4] deals with the unsteady flow of liquid along infinite rotary
porous plate when the coefficient of electro-conductivity is a periodic func-
tion of time.

In the present paper we consider the unsteady problem of low-conduc-
tive liquid flow caused by the rotation of infinite porous plate in constant
magnetic field, when liquid’s suction velocity is a periodic function of time.

For solution of the problem we use the equations of unsteady motion of
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low-conductive liquid in homogeneous magnetic field:
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where ∆ = ∂2

∂r2 + 1
r

∂
∂r + ∂2

∂z2 .
In general case the solution of system (1) must satisfy the following

initial and boundary conditions:




t = 0; vr = vϕ = vz = 0;
z = 0, vr = 0, vϕ = sωr, vz = vw(t),
z = ∞, vr = vϕ = 0.

(2)

Taking into account certain geometric and mechanical considerations,
we seek the solution of system (1) in the following form:





vr = ωrf(η, t′), vϕ = ωrϕ(η, t′), vz =
√

vω(ψ(η, t′) + vw(t′)),

P = −ρνωp(η), η =
√

ω

ν
z, t′ = ωt.

(3)

According to [5] and [6] let us consider the case, when the influence of
dissipative effects on liquid flow is small and intensive suction near a plate
causes significant decrease of the radial component of liquid’s velocity.

Due to this fact and that suction velocity changes by low

vw(t) = v0(1 + εA cosωt).

By putting (3) into system (1) gives the following system of equations:

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where m2 = σB2
0

ωρ .
Since the flow is periodic, then system (4) has only boundary conditions

{
η = 0, f = 0, ϕ = s, ψ = 0,

η = ∞, f = 0, ϕ = 0.
(5)

We seek the solution of problem (4)–(5) in the following form:
{

f(η, t) = f0(η) + ε[f1(η) cosωt + f2(η) sin ωt],
ϕ(η, t) = ϕ0(η) + ε[ϕ1(η) cosωt + ϕ2(η) sinωt].

(6)

If we put (6) into systems (4) and (5), neglecting summands which
contain ε2 as a factor and equating the coefficients of functions cosωt and
sinωt, we receive the following equations and corresponding boundary con-
ditions:

{
f ′′0 − v0f

′
0 −m2f0 = −ϕ2
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′
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(7)
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(9)

The solution of system (7) has the form:




f0 =
s2
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(e−kη − e−2kη),

ϕ0 = se−kη,
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2

(√
v2
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)
.

From systems (8) and (9), by some transformation, we receive new
system of equations with corresponding initial and boundary conditions:

{
F ′′ − v0F

′ − (m2 − iω)F =Av0f
′
0 − 2ϕ0Φ, F (0)=F (∞)=0,

G′′ − v0G
′ − (m2 + iω)G=Av0f

′
0 − 2ϕ0Q, G(0)=G(∞)=0,

(11)

{
Φ′′ − v0Φ′ − (m2 − iω)Φ = Av0ϕ

′
0, Φ(0) = Φ(∞) = 0,

Q′′ − v0Q
′ − (m2 + iω)Q = Av0ϕ

′
0, Q(0) = Q(∞) = 0.

(12)
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Here we introduce new functions: F = f1 + if2, G = f1− if2, Φ = ϕ1 + iϕ2,
Q = ϕ1 − iϕ2.

The solution of problem (12) has the form





Φ(η) = −Av0ks

iω
[e−kη − e−(a−ib)η],

Q(η) =
Av0ks

iω
[e−kη − e−(a+ib)η],

(13)

and the solution of problem (11) - the following form:




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where we use the following notations:
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,

b =
ω
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, α = 2b(k + a) + v0b− ω,

β = (k + a)2 + v0(k + a)− b2 −m2.

For unknown functions f1, f2, ϕ1, ϕ2 we have

ϕ1(η) = −Av0ks

ω
e−aη sin bη,

ϕ2(η) =
Av0ks

ω
(e−kη − e−aη cos bη),

f1(η) =
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(3m2 − 2v0k)ω
e−aη sin bη − 2Av0ks2
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e−aη(e−kη − 1)×

× (α cos bη − β sin bη),

f2(η) =
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(3m2 − 2v0k)ω
(e−kη − 2e−2kη + e−aη cos bη)+

+
2Av0ks2

ω(α2 + β2)
e−aη(e−kη − 1)(α sin bη + β cos bη).
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The received solutions are valid for an infinite plate, but for quite large
values of radius R it is possible to neglect the influence of the end of a plate
and to determine the moment of resistance force against rotation:

M = −2πρv

∫ R

0
r2

(
∂vϕ

∂z

)

z=0

dr =
−πρω

√
νω R4

2

{
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}
.

The coefficient of resistance moment

CM = − 2π√
Re

{
− ks + ε

Av0ks

ω
[(a− k) sin ωt− b cosωt]

}
,

where Re = R2ω
ν is Reinold’s number.

From formulas received above the influence of suction velocity, angular
velocity of rotation and magnetic field on physical characteristics of liquid
flow are clearly shown.

We can control the liquid flow and surface friction by changing the am-
plitude and frequency of oscillation motion, as wall as suction velocity v0

and parameter s of rotation.
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