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Abstract

It is obtained a Fredholm property characterization for matrix Wiener-Hopf plus/

minus Hankel operators with piecewise almost periodic Fourier symbols. The condi-

tions that ensure the Fredholm property are mainly based on factorizations of certain

almost periodic matrix functions, and spectral properties of some others. In addition,

Fredholm index formulas are also obtained based on an extension of the Cauchy index

notion which is therefore applied to some new functions derived from the symbols of

the operators.
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1 Introduction

Motivated by the needs of different kinds of applications, there is presently
a growing interest in the study of Fredholm and invertibility properties of
the so-called Wiener-Hopf plus/minus Hankel operators (cf., e.g., [2, 3, 4,
7, 8, 12]). In fact, these operators occur in a natural manner e.g. in the
analysis of problems of wave diffraction by wedges (cf. [5, 6]). Therefore, an
eventual additional knowledge about the Fredholm characteristics of these
operators is welcome from both theoretical and practical reasons.

In the present paper we will consider matrix Wiener-Hopf plus/minus
Hankel operators of the form

WΦ ±HΦ : [L2
+(R)]N → [L2(R+)]N , (1.1)

1This work was supported in part by Unidade de Investigação Matemática e Aplicações
of University of Aveiro, and the Portuguese Science Foundation (FCT–Fundação para a
Ciência e a Tecnologia).
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with Wϕ and Hϕ being matrix Wiener-Hopf and Hankel operators defined
by

WΦ = r+F−1Φ · F : [L2
+(R)]N → [L2(R+)]N , (1.2)

HΦ = r+F−1Φ · FJ : [L2
+(R)]N → [L2(R+)]N , (1.3)

respectively. As usual, L2(R) and L2(R+) denote the Banach spaces of
complex-valued Lebesgue measurable functions ϕ, for which |ϕ|2 is in-
tegrable on R and R+, respectively. In (1.1)–(1.3), L2

+(R) denotes the
subspace of L2(R) formed by all functions supported in the closure of
R+ = (0, +∞), the operator r+ performs the restriction from L2(R) into
L2(R+), F denotes the Fourier transformation, J is the reflection operator
given by the rule JΦ(x) = Φ̃(x) = Φ(−x), x ∈ R, and Φ ∈ [L∞(R)]N×N is
the so-called Fourier symbol.

The main result in the present work (Theorem 7.4) provides a Fredholm
characterization and an index formula for the following diagonal matrix
operator:

DΦ = diag [WΦ + HΦ,WΦ −HΦ] , (1.4)

where Φ belongs to the piecewise almost periodic function class (which will
be defined below in a detailed way). Therefore, the present paper extends
the results of [3] where the Fredholm property and index of the operator DΦ

were described but only for Fourier symbols in the subclass of semi-almost
periodic matrix functions. In addition, it complements some other recent
results like the ones of [12].

In the next sections we will prepare the necessary material for the main
theorem which will only appear in the last section. In this sense, in the
previous sections to the last one, we will present some well-known results
and generalize some others to a corresponding matrix version.

2 Preliminary notation and results

In this section we present some additional notation and recall certain known
results that will be used throughout the paper.

For a Banach algebra B, BN×N will denote the Banach algebra of all
N ×N matrices with entries in B. Moreover, we are going to denote by GB
the group of all invertible elements in B.

Let C(Ṙ) (with Ṙ := R∪{∞}) represent the (bounded) continuous func-
tions ϕ on the real line for which the two limits ϕ(−∞) := limx→−∞ ϕ(x)
and ϕ(+∞) := limx→+∞ ϕ(x) exist and coincide. The common value of
these two limits will be denoted by ϕ(∞). Further, C0(Ṙ) will stand for

26



+ On the Fredholm Property AMIM Vol.12 No.1, 2007

the functions ϕ ∈ C(Ṙ) for which ϕ(∞) = 0. In addition, PC := PC(Ṙ)
denotes the C∗-algebra of all bounded piecewise continuous functions on
Ṙ, and we also put C(R̄) := C(R) ∩ PC. Use will be also made of the
C∗-algebra PC0 := {ϕ ∈ PC : ϕ(±∞) = 0}.

We recall here some of the essential facts from the theory of Wiener-
Hopf and Hankel operators. The following equality is well-known [15]:

WΦΨ = WΦWΨ + HΦH
Ψ̃

, (2.5)

for Φ, Ψ ∈ [L∞(R)]N×N . The next proposition is the matrix version of the
classical scalar case, which is obviously also valid for the matrix case (one
can derive the matrix case result by using the scalar one entrywise).

Proposition 2.1 If Θ ∈ [C(Ṙ)]N×N , then the Hankel operators HΘ and
H

Θ̃
are compact.

We can equivalently rewrite (2.5) as WΦΨ − WΦWΨ = HΦH
Ψ̃
, and

therefore Proposition 2.1 directly yields the following known result.

Theorem 2.2 If Φ, Ψ ∈ [L∞(R)]N×N and at least one of the functions
Φ, Ψ belongs to [C(Ṙ)]N×N , then WΦΨ −WΦWΨ is compact.

Now, employing a continuous partition of the identity, one can sharpen
Theorem 2.2 as follows.

Theorem 2.3 If Φ, Ψ ∈ PCN×N and if at each point x0 ∈ Ṙ at least one
of the functions Φ and Ψ is continuous, then WΦΨ −WΦWΨ is compact.

proof. The result can be proved by following the same arguments as in
the scalar case [11, Lemma 16.2], with corresponding changes for matrices
in the places of functions. Namely, let x1, . . . , x` and x`+1, . . . , xr denote all
the points of discontinuity of the matrix functions Φ and Ψ, respectively.
Then, let Θ and Ξ be continuous matrix functions on Ṙ with the following
properties: Θ(xk) = 0N×N , k = 1, . . . , `, Ξ(xk) = 0N×N , k = ` + 1, . . . , r,
and Θ + Ξ ≡ IN×N . This construction of Θ and Ξ turn clear that ΦΘ and
ΞΨ are continuous on Ṙ. From Theorem 2.2 and Θ + Ξ = IN×N , we have

WΦΨ = WΦ(Θ+Ξ)Ψ = WΦΘΨ + WΦΞΨ

= WΦΘWΨ + K1 + WΦWΞΨ + K2

= WΦΘWΨ + WΦWΞΨ + K3

= (WΦWΘ + K4)WΨ + WΦ(WΞWΨ + K5) + K3

= WΦWΘWΨ + K6 + WΦWΞWΨ + K7 + K3

= WΦ(WΘ + WΞ)WΨ + K8

= WΦWΨ + K8 ,

where Ki are compact operators (i = 1, . . . , 8). From here we derive that
WΦΨ −WΦWΨ is compact.
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3 Matrix-valued PC symbols

For Φ ∈ PCN×N , it is well-known the importance for the following auxiliary
extension of Φ:

Φ2(x, µ) := (1− µ)Φ(x− 0) + µΦ(x + 0), (x, µ) ∈ Ṙ× [0, 1] ,

where Φ(x± 0) denotes the one-sided limits at the point x. This obviously
yields detΦ2 to have the form

detΦ2(x, µ) = det[(1− µ)Φ(x− 0) + µΦ(x + 0)], (x, µ) ∈ Ṙ× [0, 1] ,

and maps Ṙ×[0, 1] into C. One of the peculiarities of det Φ2 is that it allows
the consideration of

:= {detΦ2(x, µ) ∈ C : x ∈ Ṙ , µ ∈ [0, 1]} ,

as a closed continuous curve formed by the union of the curve generated
by the image of Φ and the curve that joins det Φ2(x − 0) to det Φ2(x + 0)
through a line segment, at the discontinuity points of Φ. In the case of 0 /∈ ,
it is therefore possible to consider the winding number of , with respect to
the origin, as the number of the counter-clockwise circuits around the origin
performed by the image of detΦ2. In such a case, this winding number will
be denoted by wind[det Φ2].

The next theorem is now considered a classical result in the Fredholm
theory of Wiener-Hopf operators, and there the winding number plays a
fundamental role.

Theorem 3.1 Let Φ ∈ PCN×N .

(a) If detΦ2(x0, µ0) = 0 for some (x0, µ0) ∈ Ṙ × [0, 1], then WΦ is not
semi-Fredholm.

(b) If detΦ2(x, µ) 6= 0 for all (x, µ) ∈ Ṙ × [0, 1], then WΦ is Fredholm
and its Fredholm index is given by

IndWΦ = −wind[det Φ2] .

Suppose det Φ2(x, µ) 6= 0 for all (x, µ) ∈ Ṙ × [0, 1]. Then Φ(x − 0)
and Φ(x + 0) are invertible for all x ∈ Ṙ. Assume in addition that the set
∆Φ := {x ∈ Ṙ : Φ(x− 0) 6= Φ(x+0)} is finite. For a connected component
` of Ṙ \ ∆Φ, it is denoted by ind`[detΦ] the increment of any continuous
argument of det Φ on `, times 1 over 2π. Taking into account the possible
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jump at infinity, the winding number introduced above can be given in the
following way (cf., e.g., [1, page 100]):

wind[detΦ2] = ind[det Φ2] +
N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ξk(∞)

})
, (3.1)

where

ind[det Φ2] =
∑

`

ind`[detΦ] +
∑

x∈∆Φ

N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ξk(x)

})
,(3.2)

and ξ1(x), . . . , ξN (x) are the eigenvalues of Φ−1(x− 0)Φ(x+0) for x ∈ ∆Φ,
and where {c} stands for the fractional part of the number c.

Thus, the last characterization of the Fredholm property can be refor-
mulated in the following way.

Theorem 3.2 (cf., e.g., [1, Theorem 5.10]) Let Φ ∈ GPCN×N . For WΦ

to be a Fredholm operator it is necessary and sufficient that

sp(Φ−1(x− 0)Φ(x + 0)) ∩ (−∞, 0] = ∅ ,

for all x ∈ Ṙ. Here sp(Φ−1(x−0)Φ(x+0)) stands for the set of eigenvalues
of the matrix Φ−1(x− 0)Φ(x + 0).
If WΦ is Fredholm and Φ has at most finitely many jumps then

IndWΦ = −wind[detΦ2] ,

where wind[det Φ2] is given by (3.1)–(3.2).

4 Matrix-valued AP symbols

In this section we will consider the smallest closed subalgebra of L∞(R)
that contains all the functions eλ (with λ ∈ R), where eλ(x) := eiλx, x ∈ R.
This algebra is usually denoted by AP , and called the algebra of almost
periodic functions. The following subalgebras will be also useful in our
reasoning

AP+ := algL∞(R){eλ : λ ≥ 0}, AP− := algL∞(R){eλ : λ ≤ 0}.

In fact, one of the reasons why the last two algebras are very useful is due
to the fact that AP± = AP ∩H∞± (where H∞± are the closed subalgebras
of L∞(R) of all elements which are non-tangential limits of functions in
H∞(C±), which are the well-known Hardy spaces).

29



AMIM Vol.12 No.1, 2007 G. Bogveradze and L. P. Castro +

Proposition 4.1 [1, Proposition 2.22] Let A ⊂ (0,∞) be an unbounded
set and consider {Iα}α∈A = {(xα, yα)}α∈A to be a family of intervals Iα ⊂ R
such that |Iα| = yα − xα →∞ as α →∞. If ϕ ∈ AP, then the limit

M(ϕ) := lim
α→∞

1
|Iα|

∫

Iα

ϕ(x)dx

exists, is finite, and is independent of the particular choice of the family
{Iα}.

Definition 4.2 Let ϕ ∈ AP. The number M(ϕ) given by Proposition 4.1
is called the Bohr mean value of ϕ (or simply the mean value of ϕ).

Remark 4.3 In the matrix case the mean value is defined entrywise.

Definition 4.4 ([9]) A matrix function Φ ∈ GAPN×N is said to admit a
right AP factorization if it can be represented in the form

Φ(x) = Φ−(x)D(x)Φ+(x),

for all x ∈ R, with

Φ− ∈ GAPN×N− , ⊕+ ∈ GAPN×N+ , (4.1)

D(x) = diag[eiλ1x, . . . , eiλNx], and λj ∈ R are the so-called right AP indices.
A right AP factorization with D = IN×N is called a canonical right AP
factorization.

In another way, it is said that a matrix function Φ ∈ GAPN×N admits a
left AP factorization if instead of (4.1) we have Φ(x) = Φ+(x) D(x)Φ−(x),
for all x ∈ R, and Φ± and D having the same properties as above.

Remark 4.5 It is readily seen from the above definitions that if an invert-
ible almost periodic matrix function Φ admits a right AP factorization,
then Φ̃ admits a left AP factorization, and also Φ−1 admits a left AP
factorization.

The vector containing the right AP indices will be denoted by k(Φ),
i.e., in the above case k(Φ) := (λ1, . . . , λN ). If we consider the case with
equal right AP indices (k(Φ) = (λ, . . . , λ)), then the matrix d(Φ) :=
M(Φ−)M(Φ+) is independent of the particular choice of the right AP fac-
torization (cf., e.g., [1, Proposition 8.4]). In this case the matrix d(Φ) is
called the geometric mean of Φ.
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5 Matrix-valued SAP symbols

Definition 5.1 The C∗-algebra SAP of all semi-almost periodic functions
on R is defined as the smallest closed subalgebra of L∞(R) that contains
AP and C(R̄).

The next theorem proved by D. Sarason in [13] reveals the structure of
the SAP algebra.

Theorem 5.2 Let u ∈ C(R̄) be any function for which u(−∞) = 0 and
u(+∞) = 1. If ϕ ∈ SAP, then there exist ϕ`, ϕr ∈ AP and ϕ0 ∈ C0(Ṙ)
such that

ϕ = (1− u)ϕ` + uϕr + ϕ0 .

The functions ϕ`, ϕr are uniquely determined by ϕ, and independent of the
particular choice of u. In addition, the maps ϕ 7→ ϕ` and ϕ 7→ ϕr are
C∗-algebra homomorphisms of SAP onto AP.

Remark 5.3 The last theorem is also valid for the matrix case.

The following theorem gives a description of the Fredholm property for
Wiener-Hopf operators with SAP symbols.

Theorem 5.4 [1, Theorem 10.11] Let Φ ∈ SAPN×N and assume that the
almost periodic representatives Φ` , Φr admit a right AP factorization.
Then WΦ is Fredholm if and only if

(i) Φ ∈ GSAPN×N ,

(ii) k(Φ`) = k(Φr) = (0, . . . , 0) ,

(iii) sp(d−1(Φr)d(Φ`)) ∩ (−∞, 0] = ∅ ,

where sp(d−1(Φr)d(Φ`)) stands for the set of the eigenvalues of the
matrix

d−1(Φr)d(Φ`) := [d(Φr)]−1d(Φ`) .

Let GSAP0,0 denote the set of all functions ϕ ∈ GSAP for which k(ϕ`) =
k(ϕr) = 0. To define the Cauchy index of ϕ ∈ GSAP0,0 we need the next
lemma.

Lemma 5.5 [1, Lemma 3.12] Let A ⊂ (0,∞) be an unbounded set and
let {Iα}α∈A = {(xα, yα)}α∈A be a family of intervals such that xα ≥ 0
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and |Iα| = yα − xα → ∞ as α → ∞. If ϕ ∈ GSAP0,0, and arg ϕ is any
continuous argument of ϕ, then the limit

indϕ :=
1
2π

lim
α→∞

1
|Iα|

∫

Iα

((arg ϕ)(x)− (arg ϕ)(−x))dx (5.1)

exists, is finite, and is independent of the particular choices of {(xα, yα)}α∈A

and arg ϕ.

The limit indϕ defined in (5.1) is called the Cauchy index of ϕ ∈
GSAP0,0.

Theorem 5.6 [1, Theorem 10.12] If Φ ∈ SAPN×N , the almost periodic
representatives Φ`, Φr admit right AP factorizations, and WΦ is Fredholm,
then

IndWΦ = −ind[detΦ]−
N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ξk

})
(5.2)

where ξ1, . . . , ξN ∈ C\(−∞, 0] are the eigenvalues of the matrix d−1(Φr)d(Φ`).
When choosing arg ξk ∈ (−π, π), we have

IndWΦ = −ind[detΦ]− 1
2π

N∑

k=1

arg ξk .

6 Matrix-valued PAP symbols

Let us consider the closed subalgebra of L∞(R) formed by almost peri-
odic and piecewise continuous functions. We will denote it by PAP :=
algL∞(R){AP, PC}. It is readily seen that SAP ⊂ PAP. In the scalar case
it was proved that PAP = SAP + PC0. The same situations is also valid
in the matrix case considering the decomposition entrywise.

The next proposition is the matrix version of a well-known correspond-
ing result for the scalar case (cf. e.g. [1, Proposition 3.15]).

Proposition 6.1 (i) If Φ ∈ [SAP + PC0]N×N , then there are uniquely
determined matrix-valued functions Θ`, Θr ∈ APN×N and Φ0 ∈ PCN×N

0

such that
Φ = (1− u)Θ` + uΘr + Φ0 ,

where u ∈ C(R), 0 ≤ u ≤ 1, u(−∞) = 0 and u(+∞) = 1.
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(ii) If Φ ∈ G[SAP + PC0]N×N , then there exist matrix-valued functions
Θ ∈ GSAPN×N and Ξ ∈ GPCN×N such that Ξ(−∞) = Ξ(+∞) =
IN×N ,

Φ = Θ Ξ , (6.1)

and

WΦ = WΘWΞ + K1 = WΞWΘ + K2 (6.2)

with compact operators K1,K2.

(iii) In addition, the Θ` and Θr elements used in (i) coincide with the
local representatives of Θ ∈ GSAPN×N used in (ii), and their unique
existence is ensured by Theorem 5.2 and Remark 5.3.

proof. The proof of the part (i) can be given as the proof of the scalar
case (cf. [1, Proposition 3.15]) upon reasoning entrywise, and therefore it
is omitted in here.

The proof of part (ii) can also be done in a similar way to the scalar case
but contains some additional small differences. Therefore, it will be per-
formed here for the reader convenience. Suppose Φ ∈ G[SAP + PC0]N×N ,
and put Υ := (1− u)Θ` + uΘr. Then Φ = Υ + Φ0. There is an M ∈ (0,∞)
such that |det Υ(x)| is bounded away from zero for |x| > M, and there-
fore we can find an element Υ0 ∈ [C0(Ṙ)]N×N such that Θ := Υ + Υ0 ∈
GSAPN×N . This allows us to look to Φ in the form

Φ = Θ + Φ0 −Υ0 = Θ[I + Θ−1(Φ0 −Υ0)] =: ΘΞ ,

(= [I + (Φ0 −Υ0)Θ−1]Θ =: ΞΘ) ,

being clear that Ξ = Θ−1Φ ∈ GPCN×N and Ξ(−∞) = Ξ(+∞) = IN×N .
Since Θ is continuous on R and Ξ is continuous at ∞, we deduce from
Theorem 2.3 that (6.2) holds for compact operators K1 and K2.

The part (iii) follows immediately from the construction made for (ii).

Remark 6.2 Due to the item (iii) of Proposition 6.1, we also call Θ` and
Θr the local representatives of Φ at −∞ and +∞, respectively.

The matrix formulation presented in the next proposition is also an
adaptation of the corresponding known scalar case (cf. e.g. [1, Theorem
3.16]).

Proposition 6.3 Let Φ ∈ [SAP +PC0]N×N . If Φ /∈ G[SAP +PC0]N×N ,
then WΦ is not semi-Fredholm. Assume now that Φ ∈ G[SAP + PC0]N×N ,
and Φ` and Φr have a right AP factorization, then WΦ is Fredholm if and
only if
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(i) k(Φ`) = k(Φr) = (0, . . . , 0) ,

(ii) sp(d−1(Φr)d(Φ`)) ∩ (−∞, 0] = ∅ ,

(iii) sp(Φ−1(x− 0)Φ(x + 0)) ∩ (−∞, 0] = ∅ ,

for all x ∈ R.
In the last case (under conditions (i)–(iii)), the Fredholm index of WΦ

is provided by:

IndWΦ = −
∑

`

ind`[det Ξ]− ind[detΘ]

−
∑

x∈∆Φ

N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ξk(x)

})
(6.3)

−
N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ηk

})
, (6.4)

where ξk(x) are the eigenvalues of the matrix function Φ−1(x− 0)Φ(x + 0),
and ηk are the eigenvalues of the matrix d−1(Φr)d(Φ`).

proof. If Φ /∈ G[SAP +PC0]N×N , then Φ /∈ G[L∞(R)]N×N and therefore
WΦ is not semi-Fredholm due to the corresponding I. B. Simonenko result
[14].

Let us now consider Φ ∈ G[SAP + PC0]N×N . Then we can write (cf.
formula (6.1)) Φ = ΘΞ (with Θ ∈ GSAPN×N , Ξ ∈ GPCN×N and Ξ(±∞) =
IN×N ) such that

WΦ = WΘWΞ + K , (6.5)

for a compact operator K. From here we infer that WΦ is a Fredholm oper-
ator if and only if WΘ and WΞ are also Fredholm operators. In the present
context, these last two operators are Fredholm if and only if the conditions
of the theorem are satisfied. More precisely, since WΘ is a Wiener-Hopf
operator with an invertible semi-almost periodic matrix symbol, and with
lateral representatives Θ` = Φ` and Θr = Φr (cf. Proposition 6.1) which
admit right AP factorizations, then WΘ is Fredholm if and only if (cf. Theo-
rem 5.4) k(Θ`) = k(Θr) = (0, . . . , 0), and sp(d−1(Θr)d(Θ`))∩ (−∞, 0] = ∅.

We turn now to the operator WΞ. This operator has an invertible piece-
wise continuous matrix symbol. Therefore, applying Theorem 3.2, we ob-
tain that WΞ is Fredholm if and only if

sp(Ξ−1(x− 0)Ξ(x + 0)) ∩ (−∞, 0] 6= ∅ .
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Now we simply have to observe that Ξ−1(x−0)Ξ(x+0) = Φ−1(x−0)Φ(x+0),
to reach the final conclusion.

To prove the index formula (6.3), assume that WΦ (with Φ ∈ PAPN×N )
is a Fredholm operator. It is clear that from the equality (6.5) we can derive
the index formula:

IndWΦ = IndWΘ + IndWΞ . (6.6)

Using formulas (3.1), (3.2) and (5.2), from (6.6) it follows that

IndWΦ = −
∑

`

ind`[det Ξ]

−
∑

x∈∆Φ

N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ξk(∞)

})

−ind[detΘ]−
N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ηk

})
, (6.7)

where ξk(x) are the eigenvalues of the matrix function Φ−1(x− 0)Φ(x+0),
ηk are the eigenvalues of the matrix d−1(Φr)d(Φ`). Therefore, (6.3) follows
from (6.7) by just taking into account that Ξ does not have a jump at
infinity.

7 Wiener-Hopf plus/minus Hankel operators with
matrix-valued PAP symbols

To give the corresponding result as the Proposition 6.3 for the operator DΦ

(cf. (1.4)) we need the notion of equivalence after extension relation, which
is defined as follows.

Definition 7.1 We will say that a linear bounded operator S : X1 → X2

(acting between Banach spaces) is equivalent after extension with another
linear bounded operator T : Y1 → Y2 (also acting between Banach spaces)
if there exist Banach spaces Z1 and Z2, and boundedly invertible linear
operators E and F, such that diag [T, IZ1 ] = E diag [S, IZ2 ] F , where IZi

represents the identity operator in the Banach space Zi, i = 1, 2.

Remark 7.2 It is clear that if T is equivalent after extension with S, then
T and S have the same Fredholm regularity properties (i.e., the properties
that directly depend on the kernel and on the image of the operators).
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Lemma 7.3 Let Φ ∈ G[L∞(R)]N×N . Then DΦ is equivalent after exten-
sion with W

ΦΦ̃−1 .

proof. This lemma has its roots in the Gohberg-Krupnik-Litvinchuk
identity [8, 10], from which with additional equivalence after extension op-
erator relations it is possible to find invertible and bounded linear operators
E and F such that

DΦ = E diag
[
W

ΦΦ̃−1 , I
[L2

+(R)]
N

]
F . (7.1)

A technique about how to construct such equivalence after extension rela-
tion is described in [4].

We are now in conditions to present the main theorem of the present
work.

Theorem 7.4 Let Φ ∈ GPAPN×N , and assume that Φ`Φ̃−1
r admits a right

AP factorization, then the operator DΦ is Fredholm if and only if

(i) Φ`Φ̃−1
r admits a canonical right AP factorization, i.e., k(Φ`Φ̃−1

r ) =
(0, . . . , 0) ,

(ii) sp[d(Φ`Φ̃−1
r )] ∩ iR = ∅ ,

(iii) sp[Φ(−x+0)Φ−1(x−0)Φ(x+0)Φ−1(−x−0)]∩(−∞, 0] = ∅ , x ∈ R.

In addition, when in the presence of the Fredholm property

IndDΦ = −
∑

`

ind`[det Ξ]− ind[detΘ]

−
∑

x∈∆Φ

N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1
2
−

{
1
2
− 1

π
arg ηk

})
,

where ΦΦ̃−1 = ΘΞ is a corresponding factorization in the sense of (6.1)
for the invertible matrix-valued PAP function ΦΦ̃−1 which appears in the
formula (7.1), ξk(x) are the eigenvalues of the matrix function Φ(−x +
0)Φ−1(x−0)Φ(x+0)Φ−1(−x−0), and ηk are the eigenvalues of the matrix

d(Φ`Φ̃−1
r ).
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proof. We will first prove the “if part” of the theorem. Set Ψ := ΦΦ̃−1

for the notation simplification of the further reasoning. Direct compu-
tations lead to Ψ` = Φ`Φ̃−1

r and Ψr = ΦrΦ̃−1
` . From here, it is also of

importance to observe that

Ψ` = Ψ̃−1
r . (7.2)

From the hypothesis of the theorem (cf. condition (i) of the present theo-
rem) we have that Ψ` admits a canonical right AP factorization. Employing
the formula (7.2) we deduce that Ψr also admits a canonical right AP fac-
torization. Set Λ := d(Ψ`). From the condition (ii) of the present theorem
we derive that sp[Λ2] ∩ (−∞, 0] = ∅. In fact, as far as we know that Ψ`

admits a canonical right AP factorization, we can write it in the following
normalized way:

Ψ` = Π−ΛΠ+ , (7.3)

where Π± have the same factorization properties as the original lateral
factors of the canonical factorization but with M(Π±) = I. Thus, (7.3)
allows

Ψr = Ψ̃−1
` = Π̃−1

+ Λ−1Π̃−1
− ,

which in particular shows that d(Ψr) = Λ−1, and hence d−1(Ψr) = Λ.
Consequently Λ2 = d−1(Ψr)d(Ψ`) and the condition (ii) of the present
theorem is equivalent to sp[d−1(Ψr)d(Ψ`)] ∩ (−∞, 0] = ∅.

Condition (iii) allows us to conclude that

sp[Ψ−1(x− 0)Ψ(x + 0)] ∩ (−∞, 0] = ∅.

Altogether, we can conclude from the Proposition 6.3 that WΨ is a Fred-
holm operator. Employing the above introduced notion of the equivalence
after extension we obtain that DΦ is a Fredholm operator (cf. Lemma 7.3
and Remark 7.2). Thus the “if part” is proved.

Now we will proceed to prove the “only if” part. Assume that Φ ∈
GPAPN×N , with Φ`Φ̃−1

r = Ψ` admitting a right AP factorization, and
with D being a Fredholm operator. Thus, as before, Ψr also admits a right
AP factorization. In addition, from the formula (7.1) we conclude that
WΨ is also a Fredholm operator. From the Proposition 6.3 (i) we deduce
that Ψ` and Ψr admit a canonical right AP factorization. Moreover the
three conditions (i)–(iii) of the Proposition 6.3 are satisfied for the function
Ψ. Now, reasoning in a very similar way as in the “if part” we reach to
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the fact that Φ`Φ̃−1
r admits a canonical right AP factorization (recall that

Ψ` = Φ`Φ̃−1
r ),

sp[d(Φ`Φ̃−1
r )] ∩ iR = ∅ ,

and

sp[Φ(−x + 0)Φ−1(x− 0)Φ(x + 0)Φ−1(−x− 0)] ∩ (−∞, 0] = ∅ .

Hence the “only if” part is proved.
As about the index formula, by using the formula (7.1) we obtain that

IndDΦ = IndW
ΦΦ̃−1 . Therefore, from (6.3), one obtains that

IndDΦ = −
∑

`

ind`(det Ξ)− ind[det Θ]

−
∑

x∈∆Φ

N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg τk

})
, (7.4)

where ΦΦ̃−1 = ΘΞ is a corresponding factorization in the sense of (6.1) for
the invertible PAP function ΦΦ̃−1 which appears in the formula (7.1), and
which is always possible due to the Proposition 6.1, ξk(x) are the eigenvalues
of the matrix function Φ(−x+0)Φ−1(x−0)Φ(x+0)Φ−1(−x−0), and τk are

the eigenvalues of the matrix d−1(ΦrΦ̃−1
` )d(Φ`Φ̃−1

r ). As we already know

that d−1(ΦrΦ̃−1
` )d(Φ`Φ̃−1

r ) = Λ2, then the formula (7.4) simplifies to the
following one:

IndDΦ = −
∑

`

ind`(det Ξ)− ind[det Θ]

−
∑

x∈∆Φ

N∑

k=1

(
1
2
−

{
1
2
− 1

2π
arg ξk(x)

})

−
N∑

k=1

(
1
2
−

{
1
2
− 1

π
arg ηk

})
,

where ΦΦ̃−1 = ΘΞ, ξk(x) are as above and ηk are the eigenvalues of the
matrix Λ.
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