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Abstract

In this paper some new representations of holomorphic functions in latticed do-

mains are obtained by means of conformal mapping singular integral equation method.
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Various problems of Mathematical Physics are reduced to the Dirich-
let planar problem for the Laplace equation in a latticed domains. It is
well known that this problem is closely connected with the boundary value
problems for the holomorphic functions. For example the theory of hydro-
turbins, the 3D motion of particles in a torus, the wave propagation in the
sells (the size of sell is so small, that the whole domain we can consider as
the infinite) [2,6,7,9].

At first, let us recall some notations from the theory of doubly-periodic
functions [1, 3, 4, 6].

Consider a complex z-plane (C), and two numbers ω1, ω2 > 0.

Definition 1 A set D ⊂ C is called doubly-periodic set if z ∈ C implies
z + 2mω1 + 2niω2 ∈ D, m, n = 0,±1, . . . points z and z + 2mω1 + 2niω2

are called the congruent points.

Definition 2 The interior of the parallelogram with the vertexes 0, 2ω1, 2ω1+
2iω2, 2iω2 and with sides [0ω1] and [0, 2iω2] is called the fundamental paral-
lelogram [1,3,4, 6]. The interior domain of the fundamental parallelogram
we denote by S00.

On the figures 1 and 2 examples of doubly-periodic sets are given.
We also use definitions introduced in [5].
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Definition 3 The function Φ(z) defined in the doubly-periodic domain
is called exponentially doubly-quasi periodic if the following conditions are
fulfilled

Φ(z + 2ω1) = Φ(z) exp(Pk1(z)), Φ(z + 2iω2) = Φ(z) exp(Qk2(z)),

where Pk1 and Qk2 are the definite polynomials of the k1 and k2 orders
respectively.

This class of functions we denote by Pe(k),k = max(k1, k2) [5].

Example. The Weierstrass “sigma-function” σ(z) is of the class Pe(1).
Indeed

σ(z+2ω1) = σ(z) exp(δ1(z+ω1)+πi), σ(z+2iω2) = σ(z) exp(δ2(z+iω2)+πi),

where δ1 and δ2 are the definite constants [1,4,6].

Definition 4 A function F (z) defined in the doubly-periodic domain D
is called polynomially doubly quasi-periodic of k-order with the periods 2ω1

and 2iω2 if the following conditions are fulfilled

F (z+2ω1)=F (z)+Pk1(z), F (z+2iω2)=F (z)+Qk2(z), z ∈ D,

where Pk1, Qk2, are the definite polynomials of degree k1 and k2 respectively.
This polynomials we call the proper polynomials of the function F (z).

This class of functions we denote by P(k), k = max(k1, k2) [5]. The
class P(0) is the class of doubly quasi-periodic functions.

This class of functions we denote by Pe(k),k = max(k1, k2) [5].

Example. The Weierstrass “zeta-function” ζ(z) is doubly quasi-periodic
function [1,4,6]

ζ(z + 2ω1) = ζ(z) + δ1, ζ(z + 2iω2) = ζ(z) + δ2.

In a complex z-plane let us consider the doubly-periodic line L which is a
union of a countable number of smooth non-intersected contours Lj

mn j =
1, 2, . . . , k, m, n = 0,±1, . . . doubly-periodically distributed with periods
2ω1 and 2iω2 in the whole z-plane

L =
∞⋃

m,n=−∞
Lmn,

Lmn =
k⋃

j=1

Lj
mn, ÃLJ1

mn

⋂
Lj2

mn = ∅, j1 6= j2.
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In the sequel we will consider the case, when the contours Lmn are
closed.

By S+ we denote an infinite region bounded by the contour L. The
positive direction on L will be taken such that S+ remains on the left.

The union of the finite domains S−mn contained in every Lmn,m,n =
0,±1, . . . respectively will be denoted by S−.

We consider the case when L00 is simple closed contour symmetric with
respect to the axis x = ω1 and y = iω2 . Let us consider the following
problem

Problem 1 To find the real function u(x, y),u(x, y) ≥ 0, sub-harmonic
in S+, continuous in S− + L, having simple zeros at the finite number of
points bi, i = 1, 2, . . . , l of the area S00 and satisfying the boundary condition

u = f(t), t ∈ L, (1)

where f(t),f(t) > 0 is real function given on L satisfies the H condition on
L00, of Pe(1)class and symmetric with respect to the axis y = iω2. u(x, y)
is also assumed to be symmetric and to belong to the class Pe(1). We admit
that proper polynomials of f(t) are

P (z) = Reα1z + β1,

Q(z) = Reα2z + β2,

α1, β1, α2, β2 are given constants.

With this problem we will consider three auxiliary problems

Problem 2 To find the real doubly-periodic function u∗ harmonic in
S+ continuous in S− + L,symmetric with respect to the axis y = iω2 and
satisfying the boundary condition

u∗ = f0(t), t ∈ L, (2)

where f0(t) is real symmetric doubly-periodic function given on L satisfies
the H condition on L00

Problem 3 To find the real function U∗ sub-harmonic in S+ continuous
in S− + L, of the class Pe(1), symmetric with respect to the axis y = iω2

satisfying the boundary condition (1) and the condition U∗(x, y) > 0.

Problem 4 To find a function Ψ(z) = u1 + iv1 of Pe(1) class holo-
morphic in S+ and continuous from the left everywhere on L,satisfying the
following condition |Ψ(t)| = f(t) t ∈ L.
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Let us begin with the Problem 2.
We will find u∗ as the real part of the sectionally holomorphic doubly

periodic function Φ(z).
We assume that the contour L00 is smooth and the angle between its

tangent and some constant direction satisfies the H condition.
Let z = w(z∗) be conformal mapping of the upper z∗ plane on the upper

half of the rectangle S00 with the following correspondence of points:to the
points ω1 + 2iω2, ω1 + iω2 corresponds the points 0, ∞ consequently.

This mapping is given by the Shvartz-Kristoffel [1,4,6] formula.

w(z∗) = C

∫ z∗

0

dt√
(1− t2) (1− k2t2)

+ ω1 + iω2,

C and k are definite constants.
Continue this mapping analytically we obtain the mapping of the fun-

damental parallelogram on z plane. To the line L00 in z plane corresponds
the line L∗ in z∗ plane.

The inverse transformation z∗ = w−1(z) is an elliptic function with
zeros at ω1,3ω1 + 2iω2 and with poles at ω1 + iω2,2ω1 + 3iω2.The periods
of this function are 4ω1 and 2iω2 [1,4,6] and

z∗ = C∗ σ(z − ω1)σ(z − 3ω1 − 2iω2)
σ(z − ω1 − iω2)σ(z − 2ω1 − 3iω2)

,

where σ is the Weierstrass “sigma-function” [1,4,9], C∗ is the definite con-
stant.

It is known from the theory of conformal mapping that, under the as-
sumed conditions the functions, w(z∗), w−1(z), are continuous from the left
on L∗ and L00 respectively.

It is obvious that if f0(t) satisfy the H condition on L00, then the
corresponding function obtained by the mapping w−1(z) will satisfy the H
condition on L∗ with the same Holder index.

So mapping the region S00 conformally on the plane and taking into
the account that the function Φ(z) is doubly periodic and symmetric one
arrives at exactly the same problem, but for the finite region S∗ bounded
by the line L∗, the boundary condition for the letter problem is given by
the same formula if f0(t) is understood to the function f0(w(τ)) of points
on the contour L∗.

Hence conclusions obtained for the case of region S∗ may be directly
transferred to the case of region S−.

Using results of Muskhelishvili [8] the solution of the problem 2 in the
plane z∗ will be given by

u∗(z∗) = Re Φ∗(z∗),
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where
Φ∗(z∗) =

1
πi

∫

L00

ϕ(t)
t− z∗

dt + iC0, (3)

ϕ(t) is unknown real function satisfying the integral equation

ϕ(t0) + Re
{

1
πi

∫

L00

ϕ(t)
t− t0

dt

}
= f0(t0) + C0, t0 ∈ L00, (4)

C0 is the definite real constant.
This integral equation always has the unique solution [8]. So the initial

problem is solvable.
Using the representation (3) and the transformation t∗ = w−1(t) we

obtain

Φ(z) =
1
πi

∫

L00

ϕ(t)[w−1(t)]′dt

w−1(t)− w−1(z)
+ iC0, (5)

Taking into the account symmetricity of the line L00 and of the function
Φ∗(z∗) [8] and doubly-periodicity of the function

[w−1(t)]′dt

w−1(t)− w−1(z)

we obtain the representation of the function Φ(z) in z plane in the following
form

Φ(z) =
1
πi

∫

L00

ϕ(t) [ζ(t− z + ω1 + iω2) + ζ(t + z−ω1− iω2)]dt + iC0, (6)

where ζ(t− z) is the Weierstrass “zeta-function” and the integral equation
(4) transforms to the following integral equation

ϕ(t0) + Re
{

1
πi

∫

L00

ϕ(t) [ζ(t− t0 + ω1 + iω2) + ζ(t + t0 − ω1 − iω2)]dt

}

= f0(t0) + C0, t0 ∈ L00. (7)

using the results of Muskhelishvili [8] we can conclude that the integral
equation (7) always has the solution. Hence, the solution of the Problem 2
is uniquely determined.

Now we consider the Problem 4. In S+ let us consider the function

Ψ∗(z) = ln Ψ(z),

where ln is the definite branch of this function. The function Ψ∗(z) is
holomorphic in S+, of the class P(1) and satisfies the following boundary
condition

Re Ψ∗(t) = ln f(t), t ∈ L. (8)

91



AMIM Vol.12 No.1, 2007 N. Khatiashvili +

According to the previous results and results of the author [5]we obtain
the representation of the function Ψ∗(z) in the form

Ψ∗(z) =
1
πi

∫

L00

ϕ(t) [ζ(t− z + ω1 + iω2) + ζ(t + z − ω1 − iω2)]dt

+ A lnσ(z − ω1 − iω2) + Alnσ(z − ω1 − iω2)

+ Dζ(z − ω1 − iω2) + Dζ(z − ω1 − iω2))

+ B(z − ω1 − iω2)2 + C1(z − ω1 − iω2) + iC0, (9)

where ζ(t − z) is the Weierstrass “zeta-function”, C0 is the definite real
constant,

A =
α1iω2 − α2ω1

2πi
,

B =
α2δ1 − α1δ2

4πi
,

D =
β1iω2 − β2ω1 − (α1 − α2)iω2ω1

2πi
,

C1 =
β2δ1 − β1δ2 − iω2δ1α2 + ω1δ2α1

πi
,

ϕ(t) is unknown real function of H class, satisfying the integral equation

ϕ(t0) + Re
{

1
πi

∫

L00

ϕ(t) [ζ(t− t0 + ω1 + iω2) + ζ(t + t0 − ω1 − iω2)]dt

}

= ln f∗(t0) + C0, t0 ∈ L, (10)

where

f∗(t0) = f(t)−A lnσ(z − ω1 − iω2)−Alnσ(z − ω1 − iω2)

−Dζ(z − ω1 − iω2)−Dζ(z − ω1 − iω2))

−B(z − ω1 − iω2)2 − C1(z − ω1 − iω2). (11)

This integral equation has the unique solution.Finding ϕ(t) the solution of
the Problem 4 will be given by

Ψ(z) = expΨ∗(z),

and the solution of the Problem 3 will be given by U∗(z) = |Ψ(z)|.
By means of the Problem 3 we now solve the initial problem .
For simplicity we assume that the function u(x, y) has simple zeros at

the points a1 + ia2, 2iω2 + a1 − ia2..
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Consider the function

Φ∗(z) = lnΦ1(z) + lnσ(z − a1 − ia2) σ(z − 2iω2 − a1 + ia2), (12)

where Φ1(z) is holomorphic function of Pe(1)class with the same zeros as
u(z), subject the condition

u(z) = |Φ1(z)|. (13)

The function Φ∗(z) is of the class Pe(1) with the proper polynomials

P (z) = Re(α1 + 4δ1)z + β1 − 2δ1(2a1 − 2ω1 + iω2),
Q(z) = Re(α2 + 4δ2)z + β2 − 4δ1(a1 − iω2),

According to the formulas (9), (12), (13) the solution of the Problem 1
is given by

u = |Φ1(z)| =
∣∣∣∣

expΦ∗(z)
σ(z − a1 − ia2) σ(z − 2iω2 − a1 + ia2)

∣∣∣∣,

where Φ∗(z) is the solution of the Problem 4.
Let us check the uniqueness of the Problem 1.
Let u1 and u2 be two possible solutions of the Problem 1.
The function

Φ0(z) = ln Φ1(z)− ln Φ2(z),

where u1 = |Φ1(z)|, u2 = |Φ2(z)|, will be doubly-periodic with no poles,
satisfying the condition Re Φ0(z) = 0. Hence Φ0(z) = C, C is the constant
[1,4,6,8].

In some particular cases the solution of the Problem 3 and hence of the
Problem 1 can be written effectively:

1) In the case of L00 is a rectangle ABCD (Fig.1), we immediately
obtain

U∗(z) =
∣∣∣∣ exp

{
1
πi

∫

BC∪AD
f∗(t) [ζ(t− t0) + ζ(t + t0)]dt

+
1
π

∫

AB∪CD
f∗(t) [ζ(it− it0) + ζ(it + it0)]dt

+ A ln σ(z − ω1 − iω2) + Alnσ(z − ω1 − iω2)

+ Dζ(z − ω1 − iω2) + Dζ(z − ω1 − iω2))

+ B(z − ω1 − iω2)2 + C1(z − ω1 − iω2) + iC0

∣∣∣∣,

where BC and AD are horizontal sides of the rectangle.
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Figure 1: The case of rectangle.

2) In the case of L00 is the circle with the sufficiently small radius r = ε
and with the center (ω1, ω2) (Fig. 2). Using the behavior of conformal
mapping and the Shvartz formula [5,8] we obtain

U∗(z) =
∣∣∣∣ exp

{
1
πi

∫

L00

f∗(t) [ζ(t− t0) + ζ(t + t0)]dt

+ A ln σ(z − ω1 − iω2) + Alnσ(z − ω1 − iω2)

+ Dζ(z − ω1 − iω2) + Dζ(z − ω1 − iω2))

+ B(z − ω1 − iω2)2 + C1(z − ω1 − iω2) + iC0

∣∣∣∣.

Note. The doubly-periodic problems for the doubly-periodic areas was
considered in [3] and [10].

Note. In the case of α1 = α2 = 0,β1 = β2 = β,where β is a real
constant, the function Re Ψ(z) will be harmonic of the class Pe(0)
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