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Abstract

In the present paper we consider the geometrically non-linear shallow cylindrical
shells, when components of the deformation tensor have non-linear terms. By means of
I. Vekua method two-dimensional problems is obtained. Using the method of the small
parameter approximate solutions of |. Vekua's equations for approximations N = 0
and N =1 is constructed. The small parameter € = h/R, where 2h is the thickness
of the shell, R is the radius of the cylinder. Concrete problem is solved, when compo-
nents of external force are constants.
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The refined theory of shells is constructed by reduced the three- dimen-
sional problems of the theory of elasticity to the two-dimensional problems.
I.Vekua had obtained the equations of shallow shells [1],[2],[3]. It means
that the interior geometry of the shell does not vary in thickness. This
method for non-shallow shells in case of geometrical and physical non-linear
theory was generalized by T.Meunargia [4].

In the present paper we consider the system of equilibrium equations
of the two-dimensional geometrically non-linear shallow cylindrical shells
which is obtained from the three-dimensional problems of the theory of
elasticity for isotropic and homogeneous shell by the method of I.Vakua.

The system of equilibrium equations of the two-dimensional geometri-
cally non-linear shallow cylindrical shells may be written in the following
form (approximation N = 0):
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where @ is an external force, o;; - covariant components of the stress ten-
sor, r1 and xo - isometric coordinates on the cylindrical surface, x3 - the
thickness coordinate, R - the radius of the middle surface of the cylinder.
Hook’s law have the form:

0
(0)11 = A [31u1 + Ogug +eug + - ((31u) (82u)2)] (1 + Ouy + cus)
+u [( (O1u1 + eus) + (alu)Q) (1 + Oyuy + eug)
+(01ug + dauy + O1u - 32 )O2u],
(0)

019 = A |:81U1 + Ooug + eug + = ((6 ) + (azu)Q):| O us

+u [(2(81u1 + cus) + (alu)Q) Dz , (2)
+(01ug + dauy + O1u - 3211)(1 + Oauz)]
0
(0)13 = [31u1 + 82U2 + eus + = ((81u)2 + (agu)2):| (81U3 — 6u1)
+u [(2(81U1 +eus) + (8111) + 1) (O1us — euy)
+ (Ohug + Oouy + O1u - 82u)82u3]

0
(0)21 = |:81U1 + Oug + cug + - ((8111) (82u)2)] Oau1
w[(Oauy + Orug + O1u - 82u)(1 + O1uy + eug)
+(282U2 + (82u)2)82u1]
(0)

090 = M|Ouy + Oousg +cug + = ((3111) (agu)2) (1 + 82u2)

—HL [(82u1 + O1ug + O1u - 82u)81uQ + (209ug + (82u)2)(1 + 82u2)] ,

0
(0)23 = A 51U1+02UQ+EU3—|— ((81u) + (0ou)?) | Oaus

W [(82’&1 + Oug + O1u - 82u)(81U3 — eul)
+(1 + 200us + (02u)®)dous]
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0)
032 = pl(Gaus + d1ugdiug + Oauzdauz — eurdiug] ,
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0 1
(0)33 = A |O1uy + Oaug + €ug + 5 ((D1w)? + (B2u)?)

+u ((O1ug — eur)? + (O2us)?)
where

oiu-0iu= [(81u1)2 + (81u2)2 + (81U3)2 + EQ(U% + ug)] ,

N

1
Oou - Ohu = 5 [(02u1)2 + (82U2)2 + (62U3)2] ,

1
ou-dou = 5 [81U1 - Oguq + Orus - oug + Ohug - Ooug + eugdoug — €U182’LL1] ,

h

1 /
u:%/udwg.

—h

Here u; are the components of the displacement vector, A and p - Lame’s
constants.
Let us use the method of the small parameter. The same method has
been also used for spherical and cylindrical shallow shells [5],[6].
Let us construct the solutions of the form:
o
w =5 ek, 3)
k=0

Formal substitution of (3) into (2) and (1) shows the series (3) may
satisfy equations (1) if the following equations are fulfilled:
(k) (k) (k)
pA v+ (A+p)o § = X,

(k) k) (k)
pA Uy + A+ p)de 0 = Xo, (4)

k (k)
HA (U)g = X3 (k=12 ),

where
k
(k=0,1,2,..; (u)l- =0, ifk<0;).
For each fixed k equations (4) coincide with equations of plane theory

of elasticity and Poisson. The right parts of equations (4) are well-known

o . (1 @ (k=1
quantities, defined by functions w, w,..., u .

The complex form of the system (4) is:
(k) (k) (k=1
pA UL +2(A+ )0z 0 = Xy, 5
) (k=1) (5)
MA Uz = X3a
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, k) (k) k) ) (k) (k)
where z = x1 +ixe, Uy = Uy +i Uy, X4 = X1+ Xo.

The general solutions of this system are written as following [7]:

(k) (k) k), (k) (k)
2ty =w P (2) = 2P (2) = b (2) + Uy,
(k) (k) (k) (k)
2pug= f(2)+ f(2)+ usp,

h DT VN (%) : :
where & = SR, ¢ (z), (z) and f(z) are any analytic functions of

k
complex variable z, (uﬂ, and (u)gp - particular solutions of the system (5).
Let us solve the problem when the middle surface of the body after
developing on the plane, is The circle with the radius r¢ and consider

the concrete problem, when the components of external force are constant
(0)
F ; = P; = const. The boundary conditions are:

u =0, ug =0, uz =0, (z=re?, |z| =ro).

(1) (1)
For v, and w3 we have:

(1) u _
2uuy = Nt 3 (22 —1r3) Py,
1 P:
2u (u)3 = (2z2-1%) 23

The system of equilibrium equations for approximation k = 2 are

(2) 2 @
pA UL +2(A+p)0z 0 = X+,

6)
9 (1) (
MA(U)?):X?»
where
1 1 1 1 N (1)
O _ e )a(u)g_g a(u)3_4 9 a(u)+8(u)++8(u)38(u)3
+ = M=oz “P ;" Maz | "o oz 9z 0z
1 1 1 1 1
~ o4 )ﬁ a(u)+8(u)++8(u)+8(u)++28(u)38(u)3
WMoz | o0z oz 0z 0z 092 0z |’
1) 1
O _ 23 a(é)++a(u)+ | 3 o, ol
3 2 0z 0z 2 | oz 0z

58



On Application of I. Vekua’s Method AMIM Vol.12 No.1, 2007

The boundary conditions have the form

2 2
(u)r—l_l(u)ezo) |Z|:r05 (7)

(2)

U3:O, |Z|:T0.

The general solutions of the system (6) are:

o @ o, @ 2A+3u
, _ B B __SATOR po2g
piy =m0 (z) =29 () = V() gy e
3O pa AT o
320\ +2u) 77 32(A +2p) (8)
@ @ ) (A +3p) Py + 3uPy o
2/~Lu3—f(2)+f(i)_ 16(\ + 3u) o7
(2A+3p)Py +3uPy
_ ZZ.
\ 16(\ + 3p)

(2) (2) (2)
Functions ¥ (z), v (z) and f (z) are introduced by series:

(2) 2@ , ® =@ @ <@
Y (z)= Z anz", P(z) = Z b2, f(z2)= [ 9)
n=0

n=1 n=0

By substituting (8), (9) into (7) we obtain:

@ A+wA+3p) 5 @ (A + p)?
ay = roPs, a3z = 35
32u(A\ + 2p) 32(A + 2u) (A + 3p)

(2) 3 2) 2\ + 30) Py + 3uP.
bl = a T(2)P3, C1 = ( 16/(; ++3M) K +’I"(2).

2 2
For the components of the displacement vector (u) + and (u) 3 we get:

3/LP3

(2) 2\ + 3u 2 2= 2 =2
2 =——— P — [ —
oy T60x 1 2,0 3(rgz — 2 Z)+8(/\—|—3/L)(TOZ 2z%),
(2) (2)\ + BM)P+ + 3,LLP+ 2 9_ (2)\ + 3M)P+ + 3,MP+ 2 _
2 = — _
s 6 tay 0P 6Ot 30

(10)

The problem will be solved when the middle surface of the body after

developing on the plane, is The circular ring with the radiuses R; and Rs.

Let us consider I.Vekua approximation N = 1. Then the displacement
vector has the following formula:

x3
u' (21,22, 23) = u(z1, 22,) + FV(fL‘la )
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h R
_ 3 u'zydx
2h T 2m2 e
—h —h
The system of equilibrium equations may be written in the following
form:

/
u=— [ udzs, v

0 0 1 0 1
Oa (U)al +e€ (0)13 +F1 =0, 0Oa (U)al -3 (0)31 +e¢ (0')13 + Fy =0,

0 1 0
(3& (O')ag + FQ = 0, 8a (O')ag -3 (0')32 —+ F5 = 0, (11)
(0) (0) (1) (0) (1)
On 0oz —c011+F3=0, 0y 003 —3033—¢c011+Fs=0,
where
2m +1 y
(m) m 3
Uij = T /Uijpm <%) d$3, (m = 0, 1).
—h

If we use the method of the small parameter

Lk Lk
ug = E Use®,  uy = Zuaek (=1,2),
k=0 k=0

>k >k
vz = g v3er, v, = Zvask (=1,2).
k=0 k=0

from (11) we obtain the systems of equilibrium equations in components of
the displacement vector which for any £ have the following form:

k k k k
pAuy + (A4 p)o16+M01v3 = X1,
k k k k
pAuy  + (A4 p)020+X0203 = Xo, (12)

k k k k
uAvy — 3[)\0+(>\—|—2u)v3}:X3,

k k k k k
pAvy + (A4 p)d © —3u(01uz +v1) = X,
k k k k k
pAvy + (A4 p)02 0 —3u(02 uz 4 v2) = X, (13)

k k k
pAuz + pe = Xg,
(k=1,2,..),

k
where the quantities X;, (i =1,...,6) are expressed by the known functions

and o o
® _ oW, .| w [a%, oW,

175 Tz | VT8 Ta: |0
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k k k k k k
(u)+ _ (u)1 n (u)z, (v)+ _ (v)1 i (0)2.

The left parts of systems (12) and (13) coincide with equations of
I.Vekua which is obtained for prismatic shells in case of approximation
N =1.

The problems when the middle surface of the body after developing on
the plane are the circle with radius Ry or the circular ring with the radiuses
R; and R> will be solved.
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