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Abstract

In the present work Cauchy problem for abstract analogue of nonlinear Kirchhoff

wave equation is considered. For approximate solution of this problem symmetric

three-layer semi-discrete scheme is constructed. Stability and convergence for the of-

fered scheme is shown.
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Let us consider the Cauchy problem for abstract hyperbolic equation in
the Hilbert space H:

d2u(t)
dt2

+ A2u (t) + a

(∥∥∥A1/2u
∥∥∥

2
)

Au (t) = 0, t ∈ [0, T ] , (1)

u (0) = ϕ0,
du (0)

dt
= ϕ1. (2)

where A is a self-adjoint (A does not depend on t), positively defined (gen-
erally unbounded) operator with the definition domain D (A), which is
everywhere dense in H, i.e. D (A) = H, A = A∗ and

(Au, u) ≥ ν ‖u‖2 , ∀u ∈ D (A) , ν = const > 0,

where by ‖·‖ and (·, ·) are defined correspondingly the norm and scalar
product in H; a

(∥∥A1/2u
∥∥2

)
= λ +

∥∥A1/2u
∥∥2

, λ > 0; ϕ0 and ϕ1 are given
vectors from H; u (t) is a continuous, twice continuously differentiable,
searched function with values in H.

As in the linear case (see [1], T. 1.5 p. 301) u (t) vector function with
values in H, defined on the interval [0, T ] is called a solution of the problem
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(1)-(2) if it satisfies the following conditions: (a) u (t) is twice continuously
differentiable in the interval [0, T ]; (b) u (t) ∈ D

(
A2

)
for any t from [0, T ]

and the function A2u (t) is continuous; (c) u (t) satisfies equation (1) on
the [0, T ] interval and the initial condition (2). Here continuity and differ-
entiability is meant by metric H. Existence and uniqueness of the solution
of the problem (1)-(2) is shown in [2].

Equation (1) is an abstract analogue of nonlinear Kirchhoff wave equa-
tion. Nonlinear Kirchhoff wave equation for stick has the following form:

∂2u

∂t2
+

∂4u

∂x4
−


λ +

L∫

0

u2
ξ (ξ, t) dξ


 ∂2u

∂x2
= 0.

We are searching solution of the problem (1)-(2) by the following semidis-
crete scheme:

uk+1 − 2uk + uk−1

τ2
+ A2 uk+1 + uk−1

2

+ a

(∥∥∥A1/2uk

∥∥∥
2
)

Auk+1 + Auk−1

2
= 0, (3)

where k = 1, ..., n− 1, τ = T/n (n > 1) .
As an approximate solution u (t) of problem (1)-(2) at point tk = kτ

we declare uk-s, u (tk) ≈ uk.
Theorem 1. Vectors (uk+1 − uk) /τ, A1/2uk and Auk are equally bounded,

i.e there exist constants M1,M2 and M3 (independent of n) such that
∥∥∥∥
uk − uk−1

τ

∥∥∥∥ ≤ M1,

‖Auk‖ ≤ M2,
∥∥∥A1/2uk

∥∥∥ ≤ M3, k = 1, ..., n.

Proof. If we multiply scalarly both sides of equality (3) on vector uk+1−
uk−1 = (uk+1 − uk) + (uk − uk−1), we obtain:

∥∥∥∥
uk+1 − uk

τ

∥∥∥∥
2

+
1
2
‖Auk+1‖2 +

1
2
a

(∥∥∥A1/2uk

∥∥∥
2
)∥∥∥A1/2uk+1

∥∥∥
2

=
∥∥∥∥
uk − uk−1

τ

∥∥∥∥
2

+
1
2
‖Auk−1‖2 +

1
2
a

(∥∥∥A1/2uk

∥∥∥
2
)∥∥∥A1/2uk−1

∥∥∥
2
.(4)

Let us introduce denotations:

αk =
∥∥∥∥
uk − uk−1

τ

∥∥∥∥
2

, βk = ‖Auk‖2 , γk =
∥∥∥A1/2uk

∥∥∥
2
.
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Then (4) will have the following form:

αk+1 +
1
2

(βk+1 + βk) +
1
2

(λ + γk) γk+1

= αk +
1
2

(βk + βk−1) +
1
2

(λ + γk) γk−1.

Whence we have:
λk+1 = λk + εk,

where

λk = αk +
1
2

(βk + βk−1) +
1
2

(λ + γk−1) γk,

εk =
1
2
λ (γk−1 − γk) .

Obviously from (4) we obtain:

λk+1 = λ1 + (ε1 + ε2 + ... + εk)

= λ1 +
1
2
λ ((γ0 − γ1) + (γ1 − γ2) + ... + (γk−1 − γk))

= λ1 +
1
2
λ (γ0 − γk) .

Therefore we have:

αk+1 +
1
2

(βk+1 + βk) +
1
2

(λ + γk) γk+1 +
1
2
λγk

= α1 +
1
2

(β1 + β0) +
1
2

(λ + γ1) γ0 +
1
2
λγ0.

From here it follow that αk, βk and γk are equally bounded. ¥
The following theorem takes place (below everywhere c denotes positive

constant):
Theorem 2. Let uk and uk be solutions of difference equation (3)

corresponding to initial vectors (u0, u1) and (u0, u1). Then for zk = uk−uk

the following estimates are true:
∥∥∥A1/2zk+1

∥∥∥ ≤ ectk

(√
2

(∥∥∥A1/2z0

∥∥∥ +
∥∥∥∥A−1/2 ∆z0

τ

∥∥∥∥
)

+τ

∥∥∥∥A1/2 ∆z0

τ

∥∥∥∥ + cτ
∥∥∥A1/2z1

∥∥∥
)

, (5)

‖Azk+1‖ ≤ ectk

(√
2

(
‖Az0‖+

∥∥∥∥
∆z0

τ

∥∥∥∥
)

+τ

∥∥∥∥A
∆z0

τ

∥∥∥∥ + cτ ‖Az1‖
)

, (6)
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∥∥∥∥
∆zk

τ

∥∥∥∥ ≤ ‖Az0‖+
√

2
∥∥∥∥
∆z0

τ

∥∥∥∥

+ctke
ctk

(√
2

(
‖Az0‖+

∥∥∥∥
∆z0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A
∆z0

τ

∥∥∥∥ + cτ ‖Az1‖
)

, (7)

where k = 1, ..., n− 1, ∆zk = zk+1 − zk.
Proof of Theorem 2 is based on lemma, which we state below.
Let us consider in Hilbert space H the following difference equation:

uk+1 − 2uk + uk−1

τ2
+ A2 uk+1 + uk−1

2
= fk, (8)

where k = 1, ..., n− 1, u0, u1 and fk are the given vectors of H.
The following lemma takes place.
Lemma 3. (see [3]) For difference problem (8) the following estimates

are true:

∥∥A2suk+1

∥∥ ≤
√

2
(∥∥A2su0

∥∥ +
∥∥∥∥A2s−1 ∆u0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A2s ∆u0

τ

∥∥∥∥

+ τ
k∑

i=1

∥∥A2s−1fi

∥∥ , 0 ≤ s ≤ 1/2, (9)

∥∥∥∥
∆uk

τ

∥∥∥∥ ≤ ‖Au0‖+
√

2
∥∥∥∥
∆u0

τ

∥∥∥∥ + τ
k∑

i=1

‖fi‖ , (10)

where k = 1, ..., n− 1, ∆uk = uk+1 − uk.
Let us return to proof of Theorem 2.
Proof of Theorem 2. From (3) it follows:

uk+1 = L̃kuk − uk−1, k = 1, ..., n− 1, (11)

where

L̃k = 2
(

I +
τ2

2
A2 +

τ2

2
a

(∥∥∥A1/2uk

∥∥∥
2
)

A

)−1

.

Let us rewrite (11) as follows:

uk+1 = Luk − uk−1 +
(
L̃k − L

)
uk, k = 1, ..., n− 1, (12)

where

L = 2
(

I +
τ2

2
A2

)−1

.
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Obviously we have

L̃k − L =
(
L−1 − L̃−1

k

)
LL̃k = −τ2

4
a

(∥∥∥A1/2uk

∥∥∥
2
)

ALL̃k.

Taking into account this transformation, from (11) it follows:

uk+1 − 2uk + uk−1

τ2
+ A2 uk+1 + uk−1

2
= −1

2
a

(∥∥∥A1/2uk

∥∥∥
2
)

AL̃kuk. (13)

It is obvious that according to (13) zk = uk − uk will satisfy the following
equation:

zk+1 − 2zk + zk−1

τ2
+ A2 zk+1 + zk−1

2
= −1

2
gk, (14)

where

gk = a

(∥∥∥A1/2uk

∥∥∥
2
)

AL̃kuk − a

(∥∥∥A1/2u
∥∥∥

2
)

ALkuk,

Lk = 2
(

I +
τ2

2
A2 +

τ2

2
a

(∥∥∥A1/2uk

∥∥∥
2
)

A

)−1

.

From (14) according to (9) it follows (correspondingly to s = 1/4 and
s = 1/2):

∥∥∥A1/2zk+1

∥∥∥ ≤
√

2
(∥∥∥A1/2z0

∥∥∥ +
∥∥∥∥A−1/2 ∆z0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A1/2 ∆u0

τ

∥∥∥∥

+
τ

2

k∑

i=1

∥∥∥A−1/2gi

∥∥∥ , (15)

‖Azk+1‖ ≤
√

2
(
‖Az0‖+

∥∥∥∥
∆z0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A
∆u0

τ

∥∥∥∥

+
τ

2

k∑

i=1

‖gi‖ . (16)

The following representation is obvious

gk =
(∥∥∥A1/2uk

∥∥∥−
∥∥∥A1/2uk

∥∥∥
)(∥∥∥A1/2uk

∥∥∥ +
∥∥∥A1/2uk

∥∥∥
)

L̃kAuk

−1
4
τ2a

(∥∥∥A1/2uk

∥∥∥
2
) (∥∥∥A1/2uk

∥∥∥−
∥∥∥A1/2uk

∥∥∥
)

×
(∥∥∥A1/2uk

∥∥∥ +
∥∥∥A1/2uk

∥∥∥
)

AL̃kLkAuk

+a

(∥∥∥A1/2uk

∥∥∥
2
)

Lk (Auk −Auk) . (17)
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From (15) taking into account (17) it follows:
∥∥∥A1/2zk+1

∥∥∥ ≤
√

2
(∥∥∥A1/2z0

∥∥∥ +
∥∥∥∥A−1/2 ∆z0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A1/2 ∆u0

τ

∥∥∥∥

+
τ

2

k∑

i=1

(∥∥∥A1/2zi

∥∥∥
(∥∥∥A1/2ui

∥∥∥ +
∥∥∥A1/2ui

∥∥∥
)∥∥∥L̃i

∥∥∥
∥∥∥A1/2ui

∥∥∥

+
1
4
τ2a

(∥∥∥A1/2ui

∥∥∥
2
) ∥∥∥A1/2zi

∥∥∥

×
(∥∥∥A1/2ui

∥∥∥ +
∥∥∥A1/2ui

∥∥∥
)∥∥∥L̃i

∥∥∥
∥∥ALi

∥∥
∥∥∥A1/2ui

∥∥∥

+ a

(∥∥∥A1/2ui

∥∥∥
2
)∥∥Li

∥∥
∥∥∥A1/2zi

∥∥∥
)

. (18)

If we take into account that
∥∥A1/2uk

∥∥ and
∥∥A1/2uk

∥∥ are equally bounded

and, in addition,
∥∥∥L̃k

∥∥∥ ≤ 2,
∥∥Lk

∥∥ ≤ 2 and

1
4
τ2a

(∥∥∥A1/2uk

∥∥∥
2
)∥∥ALk

∥∥ ≤ 1,

then from (15) we obtain:
∥∥∥A1/2zk+1

∥∥∥ ≤
√

2
(∥∥∥A1/2z0

∥∥∥ +
∥∥∥∥A−1/2 ∆z0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A1/2 ∆u0

τ

∥∥∥∥

+cτ
k∑

i=1

∥∥∥A1/2zi

∥∥∥ . (19)

Let us introduce the following denotations

δ0 =
√

2
(∥∥∥A1/2z0

∥∥∥ +
∥∥∥∥A−1/2 ∆z0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A1/2 ∆u0

τ

∥∥∥∥ ,

εk =
∥∥∥A1/2zk

∥∥∥ .

then the inequality (19) can be rewritten as:

εk+1 ≤ δ0 + cτ

k∑

i=1

εk.

From here by the induction can be obtained (discrete analog of Gronwell’s
lemma):

εk+1 ≤ (1 + cτ)k−1 δ0 + cτ (1 + cτ)k−1 ε1 (20)
= (1 + cτ)k−1 (δ0 + cτε1) .
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If we take into consideration that

(1 + cτ)k ≤ ec(kτ) = ectk ,

then from (20) we obtain (5).
From (16) with account of (17) analogously to (19) we obtain

‖Azk+1‖ ≤
√

2
(
‖Az0‖+

∥∥∥∥
∆z0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A
∆z0

τ

∥∥∥∥

+cτ

k∑

i=1

(∥∥∥A1/2zi

∥∥∥ + ‖Azi‖
)

.

From here, if we take into account that
∥∥∥A1/2zk

∥∥∥ =
∥∥∥A−1/2 (Azk)

∥∥∥ ≤ 1√
ν
‖Azk‖ , (21)

then analogously to (5) we obtain (6).
Let us show the estimate (7). From (14) according to (10) it follows:

∥∥∥∥
∆zk

τ

∥∥∥∥ ≤ ‖Az0‖+
√

2
∥∥∥∥
∆z0

τ

∥∥∥∥ + cτ
k∑

i=1

(∥∥∥A1/2zi

∥∥∥ + ‖Azi‖
)

.

Obviously from here with account of (21) we obtain:

∥∥∥∥
∆zk

τ

∥∥∥∥ ≤ ‖Az0‖+
√

2
∥∥∥∥
∆z0

τ

∥∥∥∥ + cτ
k∑

i=1

‖Azi‖ .

From here with account of (6) follows (7). ¥
The following theorem takes place.
Theorem 4. Let the following conditions be fulfilled: (a) u0 = ϕ0 and

ϕ0 ∈ D
(
A2

)
; (b) u1 = ϕ0+τϕ1+ τ2

2 ϕ2, ϕ2 = −
(
A2ϕ0 + a

(∥∥A1/2ϕ0

∥∥2
)

Aϕ0

)

and ϕ2 ∈ D (A) ; (c) Solution u (t) of problem (1)-(2) is continuously dif-
ferentiable to third degree including and u′′′ (t) satisfies Holder’s inequality
with index λ (0 < λ ≤ 1); (d) u′ (t) ∈ D

(
A2

)
for every t− from [0, T ] and

function A2u′ (t) satisfy Holder inequality with parameter λ (0 < λ ≤ 1).
Then for error z̃k = u (tk)− uk the following estimate is true:

max
1≥k≤n−1

‖Az̃k‖ ≤ cτ1+λ, (22)

max
1≥k≤n−1

∥∥∥∥
∆z̃k

τ

∥∥∥∥ ≤ cτ1+λ. (23)
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Proof.
Let us write down the equation (1) at point t = tk in the following form:

∆2u (tk−1)
τ2

+ A2 u (tk+1) + u (tk−1)
2

+ a

(∥∥∥A1/2u (tk)
∥∥∥

2
)

Au (tk+1) + Au (tk−1)
2

= rτ (tk) , (24)

where

rτ (tk) = r0,τ (tk) + r1,τ (tk) + r2,τ (tk) ,

r0,τ (tk) =
∆2u (tk−1)

τ2
− u′′ (tk) ,

r1,τ (tk) =
1
2
A2

(
∆2u (tk−1)

)
,

r2,τ (tk) =
1
2
a

(∥∥∥A1/2u (tk)
∥∥∥

2
)

A
(
∆2u (tk−1)

)
.

From (24) we have

u (tk+1) = Lku (tk)− u (tk−1) +
τ2

2
Lkrτ (tk) , k = 1, ..., n− 1, (25)

where

Lk = 2
(

I +
τ2

2
A2 +

τ2

2
a

(∥∥∥A1/2u (tk)
∥∥∥

2
)

A

)−1

.

Let us rewrite (25) in the form:

u (tk+1) = Lu (tk)− u (tk−1) +
τ2

2
Lrτ (tk) + (Lk − L) u (tk)

+
τ2

2
(Lk − L) rτ (tk) , k = 1, ..., n− 1. (26)

Obviously we have

Lk − L =
(
L−1 − L−1

k

)
LLk = −τ2

4
a

(∥∥∥A1/2u (tk)
∥∥∥

2
)

ALLk.

Taking into account this transformation, from (26) it follows:

u (tk+1)− 2u (tk) + u (tk−1)
τ2

+ A2 u (tk+1) + u (tk−1)
2

= −1
2
a

(∥∥∥A1/2u (tk)
∥∥∥

2
)

ALku (tk)

+rτ (tk)− τ2

4
a

(∥∥∥A1/2u (tk)
∥∥∥

2
)

ALkrτ (tk) . (27)
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By taking (13) from (27) we obtain:

z̃k+1 − 2z̃k + z̃k−1

τ2
+ A2 z̃k+1 + z̃k−1

2
= −1

2
g̃k + r̃τ (tk) , (28)

where

g̃k = a

(∥∥∥A1/2u (tk)
∥∥∥

2
)

ALku (tk)− a

(∥∥∥A1/2uk

∥∥∥
2
)

AL̃kuk

r̃τ (tk) = rτ (tk)− τ2

4
a

(∥∥∥A1/2u (tk)
∥∥∥

2
)

ALkrτ (tk) .

Analogously to (17) we have:

g̃k =
(∥∥∥A1/2u (tk)

∥∥∥−
∥∥∥A1/2uk

∥∥∥
)

×
(∥∥∥A1/2u (tk)

∥∥∥ +
∥∥∥A1/2uk

∥∥∥
)

LkAu (tk)

−1
4
τ2a

(∥∥∥A1/2uk

∥∥∥
2
)(∥∥∥A1/2u (tk)

∥∥∥−
∥∥∥A1/2uk

∥∥∥
)

×
(∥∥∥A1/2u (tk)

∥∥∥ +
∥∥∥A1/2uk

∥∥∥
)

ALkL̃kAu (tk)

+a

(∥∥∥A1/2uk

∥∥∥
2
)

L̃k (Au (tk)−Auk) . (29)

From (28) according to (9) with account of (29) we obtain:

‖Az̃k+1‖ ≤
√

2
(
‖Az̃0‖+

∥∥∥∥
∆z̃0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A
∆z̃0

τ

∥∥∥∥

+
τ

2

k∑

i=1

(∥∥∥A1/2z̃i

∥∥∥
(∥∥∥A1/2u (ti)

∥∥∥ +
∥∥∥A1/2ui

∥∥∥
)

×‖Li‖ ‖Au (ti)‖+
1
4
τ2a

(∥∥∥A1/2ui

∥∥∥
2
) ∥∥∥A1/2z̃i

∥∥∥

×
(∥∥∥A1/2u (ti)

∥∥∥ +
∥∥∥A1/2ui

∥∥∥
)
‖Li‖

∥∥∥AL̃i

∥∥∥ ‖Au (ti)‖

+ a

(∥∥∥A1/2ui

∥∥∥
2
)∥∥∥L̃i

∥∥∥ ‖Az̃i‖
)

+ τ
k∑

i=1

‖r̃τ (ti)‖ . (30)

If we take into account that
∥∥A1/2u (tk)

∥∥ , ‖Au (tk)‖ and
∥∥A1/2uk

∥∥ are

equally bounded and, in addition,
∥∥∥L̃k

∥∥∥ ≤ 2, ‖Lk‖ ≤ 2,
∥∥A1/2z̃k

∥∥ ≤
1√
ν
‖Az̃k‖ and

1
4
τ2a

(∥∥∥A1/2uk

∥∥∥
2
)∥∥∥AL̃k

∥∥∥ ≤ 1,
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then from (30) we obtain:

‖Az̃k+1‖ ≤
√

2
(
‖Az̃0‖+

∥∥∥∥
∆z̃0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A
∆z̃0

τ

∥∥∥∥

+cτ

k∑

i=1

‖Az̃i‖+ τ

k∑

i=1

‖r̃τ (ti)‖ . (31)

From here, according to discrete analog of Gronwell’s lemma, we obtain:

‖Az̃k+1‖ ≤ ec0tk

(√
2

(
‖Az̃0‖+

∥∥∥∥
∆z̃0

τ

∥∥∥∥
)

+ τ

∥∥∥∥A
∆z̃0

τ

∥∥∥∥

+cτ ‖Az̃1‖+ τ
k∑

i=1

‖r̃τ (ti)‖
)

. (32)

It is obvious that the following inequality is true:

‖r̃τ (tk)‖ =
∥∥∥∥rτ (tk)− τ2

4
a

(∥∥∥A1/2un (tk)
∥∥∥

2
)

ALkrτ (tk)
∥∥∥∥

≤ ‖rτ (tk)‖+
τ2

4
a

(∥∥∥A1/2un (tk)
∥∥∥

2
)
‖ALk‖ ‖rτ (tk)‖

≤ 2 ‖rτ (tk)‖ ≤ 2 (‖r0,τ (tk)‖+ ‖r1,τ (tk)‖+ ‖r2,τ (tk)‖) .(33)

According to how smooth is function u (t), the following formulas are true:

∆2u (tk−1)
τ2

− u′′ (tk) =
1
τ2

tk+1∫

tk

t∫

tk

s∫

tk

(
u′′′ (ξ)− u′′′ (tk)

)
dξdsdt +

1
τ2

tk∫

tk−1

t∫

tk−2

s∫

tkt

(
u′′′ (tk)− u′′′ (ξ)

)
dξdsdt, (34)

∆2u (tk−1) =

tk+1∫

tk

(
u′ (t)− u′ (tk)

)
dt (35)

+

tk∫

tk−1

(
u′ (tk)− u′ (t)

)
dt,

u (t1) = u0 + τu′ (0) +

τ∫

0

(
u′ (t)− u′ (0)

)
dt, (36)

u (t1) = u0 + τu′ (0) +
τ2

2
u′′ (0) (37)
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τ∫

0

t∫

0

s∫

0

u′′′ (ξ) dξdsdt.

According to conditions (a), (b) and (d) of Theorem 4, from (36) it
follows:

‖A (∆z̃0)‖ = ‖A (z̃1 − z̃0)‖ = ‖Az̃1‖ = ‖A (u (t1)− u1)‖

=

∥∥∥∥∥∥
−τ2

2
Aϕ2 +

τ∫

0

A
(
u′ (t)− u′ (0)

)
dt

∥∥∥∥∥∥
≤ cτ1+λ. (38)

According to conditions (a), (b) and (c) of Theorem 4, from (37) it
follows:

∥∥∥∥
∆z̃0

τ

∥∥∥∥ =
1
τ
‖u (t1)− u1‖ =

1
τ

τ∫

0

t∫

0

s∫

0

∥∥u′′′ (ξ)
∥∥ dξdsdt ≤ cτ2. (39)

According to condition (c) of Theorem 4, from (34) it follows:

‖r0,τ (tk)‖ =
∥∥∥∥
∆2u (tk−1)

τ2
− u′′ (tk)

∥∥∥∥ ≤ cτ1+λ. (40)

According to condition (c) of Theorem 4, from (35) it follows:

‖rj,τ (tk)‖ ≤ cτ1+λ, j = 1, 2. (41)

From (33), with account of inequalities (40)-(41), it follows:

‖r̃τ (tk)‖ ≤≤ cτ1+λ. (42)

From (32), with account of inequalities (38),(39) and (42), follows (22).
Now let us show the estimate (23). From (28) according to (10), anal-

ogously to (31), it is obtained:

∥∥∥∥
∆z̃k

τ

∥∥∥∥ ≤ ‖Az̃0‖+
√

2
∥∥∥∥
∆z̃0

τ

∥∥∥∥ + cτ
k∑

i=1

‖Az̃i‖+ τ
k∑

i=1

‖r̃τ (ti)‖ .

From here with account of estimates (38),(39), (42) and (22), we obtain
(23) ¥
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