
ONE METHOD OF CONSTRUCTING A FORMAL SYSTEM1

Kh. Rukhaia, L. Tibua, G. Chankvetadze, B. Dundua

I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University
0143 University Street 2, Tbilisi, Georgia

(Received: 11.09.05; accepted: 18.07.06)

Abstract

Research in the field of automated theorem proving mainly has been conducted in

two directions: (a) Simple representation of the input problem through the improve-

ment if the logical language, and (b) Search for effective proof methods and their

implementation. Results of this research are essentially based on the first-order theory.

In this theory the τ operator sign of Bourbaki does not occur in the basic symbols, nor

is it possible to introduce it through Pkhakadze’s rational system of rules for defining

contracting symbols. The absence of the τ operator sign in a theory in some sense

restricts its expressive power. In this paper the T SR logic is constructed, whose lan-

guage, as its basic symbols, includes the τ operator sign and S and R operator signs of

substitution. In this theory the existential and universal quantifiers are defined by the

rational system of the defining rules. The same system is used to deductively extend

and develop the language of T SR theory and, therefore, it has sufficient expressive

power.

Key words and phrases: T SR-Logic; National Theory; Contracting symbol; Con-

tracted form; n-level symbols

AMS subject classification: 03B35, 68Q60

1 Introduction

Languages of modern formal mathematical theories use quite poor alpha-
bets, where sets of variables are usually countable and the number of other
symbols is rather small. For example, Bourbaki’s set theory contains seven
such symbols: ¤, τ , ∨, ¬, =, ∈, →. Using them, one can define any symbol
needed in formal mathematics as a contracting symbol. Forms, formulas,
and terms over an alphabet extended by contracting symbols are called
contracted forms, contracted formulas, and contracted terms, respectively.
While considering various subjects of mathematical theory, we are essen-
tially dealing with contracted forms that denote forms of the given theory.

1Supported by the INTAS under Project Nr 05-1000008-8144.

AMIM Vol.11 No.2, 2006 Kh. Rukhaia, ... +

One should consider contracted forms as the forms that they denote (abbre-
viate). But the principal difficulty is that the forms denoted by contracted
forms are usually very long. For example, as it is shown in Bourbaki’s set
theory [1], a simple contracted term like the constant 1 denotes a term that
consisting of tens of thousands of symbols.

Hence, it is necessary to operate directly on contracted forms, instead
of the forms that they denote. It requires to identify certain general rules
for operating on contracted forms. For example, it is desirable to have
a rule that states that for substitutions on contracted forms there exist
substitutions on the corresponding main forms. In general, it is desirable to
have rules for operating on contracted forms that are natural counterparts
of similar rules that operate on main forms. However, often it is not possible
to find a precise relationship between operations on contracted forms and
operations on main forms. One can establish such relationships modulo
congruence, if the class of contracting symbols satisfy certain conditions.

This naturally leads us to an important problem of finding a rational
system of definition rules for contracted symbols. Such a system should be
general enough to satisfy the following two conditions:

1. It should satisfy requirements of all main formal mathematical theo-
ries in the sense that the rules of the system make possible to intro-
duce all the contracting symbols used in those theories.

2. The contracted forms obtained by the rules of the system should have
“nice properties”. Namely, they should satisfy the above mentioned
natural rules for operating on them.

However, these two conditions contradict each other. Therefore it is
very difficult to find a rational system of definition rules for contracted
symbols. Church showed that Hilbert-Bernays rational system of defini-
tion rules for contracted symbols [3] is more strict then some other sys-
tems, but they are not general enough. In [2] Church himself essentially
gave a rather rational system for propositional calculus and predicate logic,
but this system is not enough for first order theories, in particular for set
theory. Normally, definition rules for contracting symbols in first order the-
ories are not restricted, which makes it impossible to define general rules
for operating on contracted forms. Often, instead of this, when introduc-
ing contracting symbols, one extends the theory with new symbols, hence
moving to a new theory. However, this approach has also its difficulties.

Pkhakadze in [4] approached the problem of designing a rational sys-
tem of rules for defining contracting symbols by classifying the types of
contracting symbols. In his classification, contracting symbols have types
I–VII, II’, IV’, and VI’, where the system of definition rules for symbols

82

+ One Method of Constructing a ... AMIM Vol.11 No.2, 2006

of types I–IV, II’, and IV’ is rational. Moreover, the system, on the one
hand, is general enough to make it possible to introduce all the contract-
ing symbols used in classical mathematical theories and, on the other hand,
has rich properties enough to guarantee freedom of operating on contracted
forms.

For definition rules of contracting symbols to be general, it was neces-
sary to introduce such types of contracting symbols that their corresponding
contracted forms define, up to a congruence, the forms denoted by these
contracted forms.

2 Definitions

We first very briefly recall some basic definitions and results from Notation
Theory [4].

We denote a formal mathematical theory by T . The theory obtained
from T by adding contracting symbols in the alphabet as symbols of cor-
responding types is denoted by T̃ . New symbols—operators and operator
signs—are introduced in some order, and each definition has the form

σx1x2 . . . xnA1A2 . . . An—B (∗)

where σ is the contracting symbol and x1, x2, . . . , xn are metavariables such
that each x ranges over a nonempty class of all quantifier symbols of the
given theory that satisfies the following properties:

• For each element in it, the class contains all the variables of the same
type as the element.

• For each constant in it, the class contains all the quantifier constants
of the same type as the given constant.

As for A1, A2, . . . , An, they are metavariables such that one of following
conditions holds:

1. Each of the A’s range over the class of all formulas.

2. Each of the A’s ranges over the class of all terms.

3. Some of the A’s (but not all of them) range over the class of formulas
and the remained ones range over the class of all terms.

In the expression (∗) the natural numbers m and n be 0 under the following
conditions: If m 6= 0 then σ is an operator sign with the weight (m,n),
otherwise σ is a simple operator with weight n. Moreover, if n = 0 then σ

83

AMIM Vol.11 No.2, 2006 Kh. Rukhaia, ... +

is a derived propositional constant when B is formula, and a derived object
constant when B is term.

Moreover, the derived symbol σ is in case (1) (i.e., when all A’s are for-
mulas) logical, in (2) special, and in (3) logico-special. It is either relational
or substantive depending whether in the right hand side of the definition
(∗) one has a formula or a term for each system of metavariables.

Even after such a specialization of the left hand side of definitions the
class of contracting symbols remains quite big. The right hand side has
to be specialized as well. Based on such a specialization, Pkhakadze in [4]
introduced the definition types I–IV, II’, and IV’. Although the definition
of these types is quite complicated, in practice it is not hard to establish
the type of a definition. Moreover, most definitions have the type I that
can be identified relatively easily.

One has significant freedom when operates on contracted forms that cor-
respond to contacting symbols introduced by the definitions of the types
I–IV, II’, da IV’. It is guaranteed by the important properties of contracted
forms given in [5]. Moreover, the class of contracting symbols that corre-
spond to these types is quite big. For the contracting symbols of the other
four types, the restrictions used in the definitions of the types I–IV, II’, and
IV’ are indeed necessary.

Pkhakadze also described algorithmic processes for reconstructing main
forms from contracted ones.

3 The Language

We will rely on the principles given in the pervious section to build the
T SR logic. The language of T SR logic consists of the following symbols:

1. Fundamental symbols:

(a) Logical connectives: ¬ (of the weight 1), ∧, ∨, →, ↔ (each of
the weight 2).

(b) Logical operational sign τ of the weight (1, 1).

(c) Substantive special substitution operator S of the weight (1, 2).

(d) Relational logico-special substitution operator R of the weight
(1, 2) and with the logicality indicator 2.

(e) Object letters: X0, X1,

(f) Predicate symbols = and ∈, each of the weight 2, and predicate
letters: Pn

0 , Qn
0 , Pn

1 , Qn
1 ,

(g) Functional symbol ⊃ that has the weight 2, and functional let-
ters: fn

0 , gn
0 , fn

1 , gn
1 ,

84

+ One Method of Constructing a ... AMIM Vol.11 No.2, 2006

(h) [and] (left and right brackets)

2. Signs, introduced by the definitions of the types I, II and II’.

Finite sequence of signs of T SR are called a word of T SR logic. The
words τX0, τX1, . . . are the T SR logic operators with the weight 1. The
words SX0, SX1, . . . and RX0, RX1, . . . are the T SR logic operators with
the weight 2. Besides, the operators SX0, SX1, . . . are substantive partial
quantifiers with the binding indicator 2, and the operators RX0, RX1, . . .
are logico-special partial quantifiers with logicality and binding indicator
2. Note that the metaletters A,B, A1, B1, . . ., resp. T,U, T1, U1, . . ., resp.
x, y, x1, y1, . . ., are metavariables that range on the class of all formulas,
resp. terms, resp. subject letters, of the T SR logic.

Formulas and terms of T SR logic are defined in following way:

1. Subject letters are simple terms.

2. If σ is an n-ary relational logical (resp. special) operator, then σA1 . . . An

(resp. σT1 . . . Tn) is either a formula or a term depending whether σ
is relational or substantive.

3. Let c1, . . . , cn be a sequence of formulas. If σ is an n-ary logico-special
operator whose logicality indicator is (n1, . . . , nk), and cn1 , . . . , cnk

is the maximal subsequence of the sequence c1, . . . , cn consisting of
formulas only, then σc1, . . . , cn is either a formula or a term depending
whether σ is relational or substantive.

4. C is formula or term if and only if it is derived by the three rules
above.

The expression τxA is a term that denotes a privileged subject that
has the property A, if such a subject exists. Otherwise it is a term that
denotes an arbitrary element in the interpretation domain. For example,
τx(x2 = 1) is a term that denotes a privileged number whose squaring gives
1. For instance, “1” can be such a term. The expression τx(x2 = −1) is
a term that denotes some number from the interpretation domain of real
numbers, e.g., “0”.

A form of T SR logic is called a fundamental forms, or a form of level
0, if it is constructed from fundamental symbols.

The symbols of level n of the T SR logic are defined as follows:

1. The fundamental symbols of the T SR logic are symbols of level 0.

85

AMIM Vol.11 No.2, 2006 Kh. Rukhaia, ... +

2. A symbol of level n, n > 1, is a contracting symbol of T SR logic
introduced by a definition such that each symbol in its right hand
side has the level less than n, and there is at least one symbol with
the level n− 1.

Below we label definitions of the types I, II, and II’ with the Dk[i, j] where
k is the number of the definition, i denotes the type of the definition, and
j denotes the level of the operator obtained by the definition.

D1[I, I] ∃xA—RxτxAA.

Reads: “There exists x such that A”. The operator ∃x is logical relational.

D2[I, II] ∀xA—¬∃x¬A.

Reads: “For all x A”. The operator ∀x is logical relational.

D3[II ′, III] 〈set〉xA—τy[∀x[x ∈ y ↔ a]].

where the variable y is different from x and does not occur in A. The
operator 〈set〉 is logical substantive.

D4[II ′, IV] 〈complement〉UT—〈set〉x[x ∈ T ∧ x /∈ U].

where the variable x does not occur in the terms T and U . Reads: “The
complements of the set U with respect of the set T . The operator 〈complement〉
is special substantive.

D5[II ′, I] 〈represent〉xUT—∃y[U = SxyT]].

where the variable y is different from x and does not occur in the terms
T and U . Reads: “U can be represented as T with respect of the set x.
The operator 〈represent〉 is special relational partial quantifier with the
binding indicator (2).

D6[I, I] 〈root〉xTA—RxTA.

Reads: “T is a solution of the formula A with respect to x”. The operator
〈root〉x is a logico-special relational partial quantifier with the logical and
binding indicator (2).

D7[II ′, III] 〈subset〉xTA—τy[∀x[x ∈ y ↔ [x ∈ T ∧A]]].

where x and y are distinct variables and y do not occur in T and A. Reads:
“The set of all the elements of T with the property A”. The operator

86

+ One Method of Constructing a ... AMIM Vol.11 No.2, 2006

〈subset〉x is a logico-special substantial partial quantifier with the logical
and binding indicator (2).

The notions of explicit and implicit axioms and axiom schema of T SR
logic are as in [1]. The inference rule in T SR logic is Modus Ponens and
the axiom schemes are the following:

HA1. [A ∨A] → A
HA2. A → [A ∨B]
HA3. [A ∨B] → [B ∨A]
HA4. [A → B] → [[A1 ∨A] → [A1 ∨B]]
HA5. RxTA → ∃xA
HA6. RxTA ↔ (T/x)A
HA7. SxTU = (T/x)U

Note that in the axiom schemas HA6 and HA7 the substitution (T/x)A
does not bind free variables in T .

HA8. ∀x[A ↔ B] → [τxA = τxB]
HA9. ∀x[A ↔ B] ∧ [T = U]] → [RxTA ↔ RxUB]
HA10. [∀x[T = U] ∧ [T1 = U1]] → [SxT1T = SxU1U]

Last, assume C—C1 is a Dm (m = 1, 2, . . .) definition, then C ↔ C1

(respectively C = C1) is an axiom schema if C is a formula (resp. C is a
term). This axiom schema is denoted by HADm.

Examples of the axiom schema HADm are:
HAD1. ∃x—RxτxAA.
HAD3. 〈set〉xA = τy∀x[x ∈ y ↔ A] where y does not occur in A.

The axioms and inference rules of T SR logic imply validity of the coun-
terparts of all the deductive criteria from [1] and the following theorems:

Theorem 3.1 If A is a main formula of T SR and B is a contracted form
of A, then ` B if and only if ` A.

Theorem 3.2 Let the type of the operator σx1 . . . xm, m ≥ 0, be I, II, or
II’. If all the operators in the right side of the definition of σx1 . . . xm are
invariant then σx1, . . . xm is invariant.

Theorem 3.3 All operators of T SR are invariant.

Note that T SR logic is more expressive than predicate logic. Indeed:

1. As it was shown above, one can introduce the ∃ operational sign in
the T SR logic by a definition of type I. However, it is not possible
to define the τ operational sign in predicate logic by the definitions
of type I,II, and II’ of Pkhakadze.

2. τxA is a term of T SR logic, which is a name of an object with the
property A. Hence, T SR logic is a Henkin-type theory.

87

AMIM Vol.11 No.2, 2006 Kh. Rukhaia, ... +

Another advantage of the T SR logic over the other logical theories is
that in T SR it is possible to introduce by definitions of type I, II, and II’
all contracting symbols that are rational in the sense defined above.

4 Open Problem

We have a similar situation in artificial languages. Here computer (ma-
chine) languages play the rôle of the main language, and programming lan-
guages can be considered as languages extended by contracting symbols.
Each programming language is obtained by introducing a new operator
(these operators can be called contracting symbols). Programming lan-
guages are closer to natural languages, than computer languages. When
writing programs, a programmer uses general, yet unproved, laws that con-
nect computer languages and programming languages. The use of these
laws is based on intuition. This is why program testing becomes necessary,
but testing can not guarantee program correctness. If these laws can be
proved for programming languages, then program testing will not be neces-
sary. To prove them, it will be necessary to find a mathematical notion of
contracting symbol (i.e., an operator of a programming language). Hence, a
general theory of programming should be created in the same method that
was used for creating the Notation Theory. To achieve this goal, operators
of modern programming languages should be studied, a rational notion of
contracting symbol should be introduced, and the theory of contracting
symbols for artificial languages should be constructed. Creating such a
theory essentially means to create a general theory of programming. It
would imply reliability of programs written in the language of this theory.
Moreover, such a theory would help to come up with recommendations on
how machine languages should be, to which direction computers should de-
velop, what kind of devices should be created for processing mathematical
texts, etc.

References

1. N. Bourbaki. Éléments de mathématique. Théorie des ensembles.
Chapitres 1 et 2. Hermann, Paris, 1966.

2. A. Church. Introduction to Mathematical Logic. Princeton University
Press, Princeton, N.J., 1956.

3. D. Hilbert and P. Bernays. Grundlagen der Mathematik, volume I,II.
Springer, Berlin, 1934, 1939.

88

+ One Method of Constructing a ... AMIM Vol.11 No.2, 2006

4. Sh. Pkhakadze. Some problems of the notation theory. Tbilisi Uni-
versity Press, Tbilisi, 1977. In Russian.

5. Kh. Rukhaia. On one variant of T -theory extended with contract-
ing symbols. In Jenaer Frege-Konferenz, pages 365–381, Friedrich-
Schiller Universität, Jena, 1979.

89

