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Abstract

There are discussed the classes of generalized Vandermonde determinants over

Galois field GF (q). The obtained results enable to synthesize the optimal (satisfying

condition [1]) classes of the linear (n, k, d)-codes over GF (2m) and linear (n, k)-codes

with the single and double burst-error-correction. It is considered the problem of rep-

resentation of Galois GF (2m) field’s elements applying matrices over GF (2).
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1 Generalized Vandermonde determinants and the
optimal and burst-error-correcting (n, k)-codes

From the Theory of the error-correcting linear (n, k, d)-codes it is well
known that n − k ≥ d − 1, where n is the length of the code words, k
is informational symbols number and d is a minimal distance between the
code words. If

n− k = d− 1, (1.1)

then the codes are called the optimal codes [1].
It is known that how important are the properties of Vandermonde de-

terminants for the research and formation of the code structures. However,
the generalized Vandermonde determinants, which are so well researched
over the fields of real numbers, yet represent problems over Galois fields.

In the given work there are researched the structures of the quadratic
matrices over GF (pm). It is demonstrated that generalized Vandermonde
determinants for these matrices differ from 0, that allows to obtain opti-
mal codes over GF (pm) satisfying the condition (1.1) and also to realize
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the synthesis of effective classes of linear burst-error-correcting codes over
GF (2).

Let A be the matrix with αij = αij ∈ GF (2m), (i, j = 0, 1, ...,m) ele-

ments of multiplicative subgroup of the Galois field modulo p(x) =
m∑

ν=0
xν ,

p(α) = 0:

A =




α0,0 α0,1 .... α0,m

α1,0 α1,1 .... α1,m

. . . .
αm,0 αm,1 . αm,m


 , (1.2)

where m is any integer for which p(x) is irreducible polynomial over GF (2).
Let’s consider the quadratic matrices with the elements in the arbitrary

ith row and jth column of the matrix (1.2):

A2 =

[
αi1j1 αi1j2

αi2j1 αi2j2

]
, A3 =




αi1j1 αi1j2 αi1j3

αi2j1 αi2j2 αi1j3

αi3j1 αi3j2 αi3j3


 (1.3)

where i1 6= i2 6= i3, j1 6= j2 6= j3 ∈ {0, 1, ..., m}.
Suppose D2 and D3 determinants correspond to the matrices A2 and

A3 (1.3). Then the following theorem is correct:

Theorem 1.1 Let GF (2m) be the Galois Field of polynomials over GF (2)

modulo p(x) =
m∑

ν=0
xν , and let α is element of cyclic multiplicative subgroup

of GF (2m), p(α) = 0.

Then
D2 6= 0, D3 6= 0. (1.4)

It is not difficult to show, as well, that the determinant of matrix

A2 =




αi,j1 αi,j2 αi,j3 αi,j3

αi+1j1 αi+1j2 αi+1,j3 αi+1,j3

αi+2,j1 αi+2,j2 αi+2,j3 αi+2,j3

αi+3,j1 αi+3,j2 αi+3,j3 αi+3,j3


 (1.5)

differs from 0, D4 6= 0, where α are the elements of matrix (1,2) (i;
j1 6= j2 6= j3 6= j4 ∈ {0, 1, ..., }).

The obtained results enable to synthesize the optimal (by condition

(1.1)) classes linear (n, k, d)-codes over GF (2m) modulo p(x) =
m∑

ν=0
xν (n =

m + d, k = m + 1, d = 3; 5) and their linear (n, k)-codes over GF (2)
with single and double-burst-error-correction (where correspondingly n =

24
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lm(m+1)+2lm, k = lm(m+1); n = lm(m+1)+4lm, k = lm(m+1); b =
(l − 1)m + 1 is the burst’ length, l º 1 is integer).

Particularly from (1.4) and (1.5) follows that the basis matrix

G =




10000 1 1 1 1
01000 α1 α2 α3 α4

00100 α2 α4 α1 α3

00010 α3 α1 α4 α2

00001 α4 α3 α2 α1




generates the optimal (n = 9, k = 5, d = 5)-code over GF (24) with double-
error-correction, where, p(x) = 1 + x + x2 + x3 + x4, and one of the cor-
responding (n, k)-code over GF (2) has the following parameters: n = 72,
k = 40, l = 2, which corrects two error-bursts with length b = 5.

Let’s discuss the construction of double-burst-error-correcting (n, k)-
codes over GF (2) field. Besides (1.5),

p0 =




pij1 pij2 pij3 pij4

p(i+1)j1 p(i+1)j2 p(i+1)j3 p(i+1)j4

p(i+2)j1 p(i+2)j2 p(i+2)j3 p(i+2)j4

p(i+3)j1 p(i+3)j2 p(i+3)j3 p(i+3)j4


 (1.6)

is matrix, where Pij m ∗ m matrix of the given multiplicative subgroup
element aij over GF (2) field. The columns of Pijrepresent the correspond-
ing binary vectors of elements αij , αij+1, ..., αij+m−1 (this vectors are from
space Vm).1

Let sijm-dimensional binary vector be any sum of the columns of matrix
Pij , and sij(x)- corresponding polynomial. Vector sj is corresponded with

the polynomial sj(x) =
γ∑

l=0
xlmsij(x).2 Then for any sj1,...,sjγ (j1 6= ... 6=

jγ ∈ {0, 1, ..., m}, γ ∈ {1, ..., 4} vectors over GF (2) field can be written the
following inequality:

4− γ < |sij + ... + sij | ≤ 4, (1.7)

where |x|m = min
β

(d(β, m)) is the m-norm of vector x = (x0, x1, ..., xn−1),

i.e. the generalized burst- weight of Hamming weight [2], which is deter-
mined according to the following equation:

|x| =
d(β,m)∑

i=1

β,
i∑

i=βi

xj ,

1Note that Pij matrix and αij element are equivalent to adding and multiplying
operations.

2Vectors Sj will be represented as the elements of space V4m.
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βi 6= βi+1 ∈ {0,m, 2m, ..., n−m}, β,
i = βi + m + 1 (i = 1, 2, ..., d(β,m), |x|

is the usual norm of vector x, i.e. Hamming weight.
Let us write the parity-check matrix in the following way:

H = (PI4m), (1.8)

where analogically to (1.2) and (1.6)

P =




P0,0 ... P0,m

P1,0 ... P1,m

P2,0 ... P2,m

P3,0 ... P3,m


 ,

I4mis the identity matrix of 4m order.
It is known that if the burst-error-vector of any 2t and less quantity

towards H matrix makes non-zero syndromes, then the code representing
the zero space of H matrix can correct t burst-errors.

Applying (1.7) equation it is easy to show that for (1.8) matrix
∣∣∣∣∣

γ∑

ν=0

sjν

∣∣∣∣∣ 6= 0,

where γ ∈ {1, ..., 4}, sjν is the phased burst-syndrome, j1 6= ... 6= jγ ∈
{0, 1, ..., m + 4}. From (1.8) comes out that the constructed code corrects
phased-burst-errors of length m. So, for any m ≥ 4 number, for which
polynomial p(x) is irreducible, exists the class of linear (m2 + 4m,m2)-
codes, that corrects double-phased-burst of length m.

Applying the known methods of the block-interleaving (like e.g. in [3,4])
it is possible the construction of double-burst-error-correcting linear (n, k)-
codes with parameters n = lm(m+1)+4lm, k = lm(m+1), b = (l−1)m+1
- length of usual bursts.

Researched codes are based on the new matrix structures. They are
better than the codes discussed in [3,4].

2 Representation of Galois GF (2m) field’s elements
applying matrices over GF (2)

Obtaining operations over the elements of Galois field GF (q) is quite dif-
ficult than binary operations. Below is considered the representation of
elements GF (2m) in the form of square matrices of order m over Galois
field GF (2):

A = ∪Ai, (2.9)
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where

Ai =




αi

αi+1

.

.

.
αi+2m−2




; (2.10)

αi is the element of multiplicative group of field GF (2m) generated by α
primitive element. αi which is written in (2.2) as the vector (see (2.3)).

Applying (2.1) it is obtained the isomorphic field of field GF (2m) with
matrix elements, where operations can be done on usual matrices.

For example, the multiplicative group of GF (23) can generated the
primitive α of polynomial p(x) = 1 + x + x3 (p(α) = 0):

α0 = 1 − (100)
α = α − (010)
α2 = α2 − (001)
α3 = 1 + α − (110)
α4 = α + α2 − (011)
α5 = 1 + α + α2 − (111)
α6 = 1 + +α2 − (101)
−−−−−−−−−−−−−−
α7 = 1 − (100)

. (2.11)

Here applying the degrees αi of α is obtained the multiplicative group,
and by adding the zero vector is obtained the field GF (2m). On the right
of (2.3) are given the corresponding binary vectors of elements αi, which
with zero vector 0 = (000) create vector space Vn=3 over field GF (2)

The corresponding matrix group of the multiplicative group (2.3) is:

A0 = I =




1 0 0
0 1 0
0 0 1


 , A1 =




0 1 0
0 0 1
1 1 0


 , A2 =




0 0 1
1 1 0
0 1 1


 ,

A3 =




1 1 0
0 1 1
1 1 1


 , A4 =




0 1 1
1 1 1
1 0 1


 (2.12)

A5 =




1 1 1
1 0 1
1 0 0


 , A =




1 0 1
1 0 0
0 1 0


 .

It is evident, that the set (2.4) with the zero matrix 0 obtains the
isomorphic field of GF (2m).
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The additive and multiplicative operations in the matrix set A = A∪ 0
is obtained simply. For example, the result got by (2.4),

A2 + A5 = A3,

corresponds to the result obtained by the elements of (2.3): α2 + α5 =
α2 +(1+α+α2) = 1+α+2α2 = 1+α = α3; for multiplication operation:

A3 ·A5 = A,

α3 · α5 = α.

It is important, that matrices (2.1), (2.4) significantly simplify the con-
struction of codes considered in the paragraph 1.

Actually, correspondingly to (2.2) it is possible to represent the ele-
ments of any field GF (2m) over field GF (p) applying matrix of order m,
and therefore it is possible the construction of the isomorphic matrix field
A over field GF (p).

References

1. Mac Williams F.J., Stoane N.J.A. The theory of error-correcting
codes. North-Holland Publishing Company, Amsterdam, New York,
Oxford, 1977.

2. Megrelishvili R.P. A generalized formulation of code distance. Bul-
letin of the Georgian Academy of Sciences, v. XLVI, n.2. pp.315-318,
1967 (in Russian).

3. Megrelishvili R.P., Nikolaishvili T.G., Fam Hong Thai. A class of
burst-error-correcting (n, k)-codes Bulletin of the Georgian Academy
of Sciences, v. 81, n. 2, pp.337-339, 1976 (in Russian).

4. Megrelishvili R.P., Fam Hong Thai. A class of double-burst-error-
correcting (n, k)-codes. Bulletin of the Georgian Academy of Sciences,
v. 83, n. 2, pp. 321-323, 1976, (in Russian).

28


