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Abstract

Some nonlocal boundary value problems are considered. The variational formula-

tion using the introduction of the scalar product by symmetric continuation operation

of a function is studied.

Key words and phrases: Nonlocal boundary value, problem, Variational formula-

tion, symmetric continuation of a function.

AMS subject classification: 34B05

It is well known that symmetry of the operators related to many classi-
cal boundary value problems can be realized by means of the Green formula
[1]. In the case of nonlocal boundary value problems [2], [3], direct applica-
tion of the Green’s formula does not allow us to get an operator symmetry
and, all the more, a positive definiteness [1]. Such a circumstance poses
problems for the variational formulation of the problems of the mentioned
type (minimization problem of the quadratic functional in the energetic
space). Therefore, any approach which permits a variational formulation
of nonlocal boundary value problems is of current importance. Our ap-
proach is connected with the introduction of the scalar product by means
of symmetric continuation operation, and with the proof of the positive
definiteness of operators of some nonlocal boundary value problems on the
special lineals [4], [5], [6].

In the present article the following nonlocal boundary value problem is
considered. Let us find a function u(x) ∈ C(2) ]−a, 0[∩C[−a, 0] for which

−(k(x)u′(x))′ + (Bu)(x) = f(x), x ∈]− a, 0[, (1)

u(−a) = 0, (2)
0∫

−ξ

k(x)u′(x)dx = 0, (3)
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where ξ ∈]0, a[ is a fixed point, f(x) ∈ C [−a, 0], k(x) ∈ C(1)[−a, 0],
k(x) ≥ k0 > 0, B is a linear operator which acts from C[−a, 0] into C[−a, 0]
and satisfies the condition

(Bv)(0) = 0, ∀v(x) ∈ C[−a, 0]. (4)

Note, that when the function k(x) is constant, expression (3) presents
Bitsadze-Samarskii nonlocal boundary condition [2].

The aim of the paper is to realize variational formulation of problem (1)-
(3) concerning an operator B in the case of satisfaction of certain conditions.

We fix some notations and definitions which will be used throughout
the paper. We denote by D[−a, 0] a lineal of all real functions such that
each of its functions v(x) be defined a.e. on [−a, 0], |v(0)| < +∞ and
v(x) ∈ L2[−a, 0].

Note that to give the function u(x) ∈ D [−a, 0] actually means to des-
ignate a couple (v(x), v(0)) (x ∈ [−a, 0[). Functions v1(x) and v2(x) are
the same elements of the lineal D[−a, 0] if v1(x) = v2(x) a.e. on [−a, 0[
and v1(0) = v2(0).

On the lineal D[−a, 0] define symmetric continuous operator τ by the
following way:

τv(x) =

{
v(x), when x ∈ [−a, 0],
−v(−x) + 2v(0), when x ∈ ]0, ξ].

(5)

By the operator τ function ṽ(x) = τv(x) defined a.e. on the [−a, ξ], is
corresponded to each function v(x) and function ṽ(x)− v(0) is odd a.e. on
the [−ξ, ξ].

Let us define a scalar product on lineal D[−a, 0].

[u, v] =
ξ∫

−ξ

x∫

−a

ũ(s)ṽ(s)dsdx. (6)

By the scalar product (6) the lineal D[−a, 0] becomes pre-Hilbert space
which we denote via H[−a, 0]. For the norm produced by scalar product
(6) we use the notation || · ||H :

||v||2H =
ξ∫

−ξ

x∫

−a

ṽ2(s)dsdx.

Theorem 1. The norm defined on the lineal D[−a, 0] by the equality

||v||2 = ||v||2L2
+ v2(0), ||v||2L2

=
0∫

−a

v2(x)dx), (7)

16



+ On Variational Formulation of some ... AMIM Vol.11 No.2, 2006

is equivalent to the norm || · ||.
Proof. By simple transformations we get

ξ∫

−ξ

x∫

−a

ṽ2(s)dsdx = 2ξ

0∫

−a

v2(x)dx + 2ξ2v2(0)− 4v(0)
0∫

−ξ

(ξ + x)v(x)dx. (8)

For any ε > 0

|2v(0)(ξ + x)v(x)| ≤ v2(0)(ξ + x)2

εξ
+ εξv2(x).

Integrating the last inequality we get
∣∣∣∣∣∣∣
2v(0)

0∫

−ξ

(ξ + x)v(x)dx

∣∣∣∣∣∣∣
≤ ξ2

3ε
v2(0) + εξ

0∫

−ξ

v2(x)dx. (9)

If take into account (8) and (9) we have

ξ∫

−ξ

x∫

−a

ṽ2(s)dsdx ≥ 2ξ(1− ε)
0∫

−a

v2(x)dx + 2ξ2
(

1− 1
3ε

)
v2(0). (10)

Let ε ∈
]

1
3 , 1

]
, then, it is evident from (10) that there exists a constant

m > 0 such that
ξ∫

−ξ

x∫

−a

ṽ2(s)dsdx ≥m||v||2 . (11)

From (8) and (9) it is easy to see that there exists a number M > 0
such that

ξ∫

−ξ

x∫

−a

ṽ2(s)dsdx ≤M ||v||2. (12)

Inequalities (11) and (12) prove the validity of the Theorem 1.
Corollary. H[−a, 0] is a Hilbert space.
Below the operator B besides condition (4) satisfies the positiveness

conditions:

[Bu, u] ≥ 0, [Bu, v] = [u, Bv], ∀ u, v ∈ C[−a, 0]. (13)

Let DA[−a, 0] lineal of the functions of the space H[−a, 0] be a domain
of definition of the operator Au = −(ku′)′ + Bu. For each function v(x) of
the lineal DA[−a, 0] the following conditions are fulfilled.

v(x) ∈ C(2)[−a, 0], v(−a) = 0, v(i)(0) = 0, i = 1, 2, (14)
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0∫

−ξ

k(x)u′(x)dx = 0. (15)

It is easy to show that the following is valid.
Theorem 2. The lineal DA[−a, 0] is dense in H[−a, 0].
Thus, an operator A acts from the lineal DA[−a, 0] into the H[−a, 0].
Theorem 3. The operator A is symmetric on the lineal DA[−a, 0].
Proof. Suppose that

τ
(
k(x)u′(x)

)′ = k(x)(ũ′(x))′, (16)

where

k(x) =

{
k(x), when x ∈ [−a, 0],
k(−x), when x ∈ [0, ξ] .

(17)

Indeed, when x ∈]0, ξ] we have

τ(k(x)u′(x))′ = −(ku′)′(−x) + 2(ku′)′(0) = −(ku′)′(−x) = ((ku′)′(−x))′ =

= (k(−x)u′(−x))′ = (k(−x)(−u(−x) + 2u(0))′)′ = k(x)ũ′((x))′.

Taking into account (16) we have

ξ∫

−ξ

x∫

−a

τ(k(s)u′(s))′ ṽ(s)dsdx =
ξ∫

−ξ

x∫

−a

(k(s)ũ′(s))′ṽ(s)dsdx =

=
ξ∫

−ξ

[kũ′ṽ|x−a −
x∫

−a

k(s) ũ′(s) ṽ′(s)ds]dx =
ξ∫

−ξ

k(x) ũ′(x) ṽ′(x)dx−

−
ξ∫

−ξ

x∫

−a

k(s)ũ′(s)ṽ′(s)dsdx = v(0)
ξ∫

−ξ

k(x) ũ′(x) dx−
ξ∫

−ξ

x∫

−a

k(s)ũ′(s)ṽ′(s)dsdx =

= 2v(0)
0∫

−ξ

k(x)u′(x)dx−
ξ∫

−ξ

x∫

−a

k(s)ũ′(s)ṽ′(s)dsdx = −
ξ∫

−ξ

x∫

−a

k(s)ũ′(s)ṽ′(s)dsdx,

which, considering the symmetry of the operator B, proves the symmetry
of the operator A on the lineal DA.

Theorem 4. The operator A is positively defined on the DA[−a, 0].
Proof. Preliminarily, let us prove Poincare-type inequality. Let x ∈

[−ξ, ξ] and s ∈ [−a, x].
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We have

ũ2(s) = (
s∫

−a

ũ′(t)dt)2 ≤
s∫

−a

dt

s∫

−a

ũ′2(t)dt ≤ (s + a)
x∫

−a

ũ′2(t)dt,

from which

x∫

−a

ũ2(s)ds ≤ (s + a)2

2

∣∣∣∣∣
x

−a

x∫

−a

ũ′2(s)ds ≤(ξ + a)2

2

x∫

−a

ũ′2(s)ds.

By integrating we get

ξ∫

−ξ

x∫

−a

ũ2(s)dsdx ≤ (ξ + a)2

2

ξ∫

−ξ

x∫

−a

ũ′2(s)dsdx. (18)

Considering (18) we obtain

[Au, u] =
ξ∫

−ξ

x∫

−a

k(s)(ũ′)2(s)dsdx + [Bu, u] ≥ 2k0

(ξ + a)2
[u, u], (19)

that proves positively definiteness of the symmetric operator A.
Thus, A is an operator defined positively on the dense lineal DA[−a, 0]

in the Hilbert space H[−a, 0]. Follow the standard way [1]. Onto the lineal
DA[−a, 0], let us introduce a new scalar product

[u, v]A = [Au, v] =
ξ∫

−ξ

x∫

−a

k(s)ũ′2(s)ṽ′(s)dsdx + [Bu, v]. (20)

For the corresponding norm we use notation || · ||A.

||u||2A =
ξ∫

−ξ

x∫

−a

k(s)(ũ′)2(s)dsdx + [Bu, u]. (21)

By scalar product (20) the Lineal DA[−a, 0] is transformed into the
pre-Hilbert space. Denote it via SA[−a, 0]. Complete this space with the
norm (21) which, as is easy to show, is equivalent to the norm defined by
the equality

|||u|||2 = ||u||2W 1
2

+ u2(0). (22)
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Denote with HA[−a, 0] a Hilbert space obtained as a result of complet-
ing. The space consists in those functions of W 1

2 [−a, 0] space which satisfy
the conditions

u(−a) = 0,
0∫

−ξ

k(x)u′(x)dx = 0. (23)

Let α ∈ R. Consider a pair (f(x), α). It defines the unique function
fα(x) of the space H[−a, 0]. For each such function, a functional

Fα(v) = [v, v]A − 2[fα, v] (24)

has unique minimizing function uα(x) ∈ HA[−a, 0] which satisfies the re-
lation

[uα, v]A = [fα, v] (25)

for ∀v(x) ∈ HA[−a, 0] .
As is easy to see,

uα(x) = u0(x) + αω(x), (26)

where ω(x) is a minimizing function of the functional (24) in that case
when the first term of the pair (f(x), α) is identical to zero function on the
[−a, 0[, and α = 1.

Theorem 5. Let u(x) be a solution of problem (1)-(3). Then it is a
minimizing function of the functional F0(v) in the space H[−a, 0].

Proof. Making simple transformations we get

F0(v) = 2ξ

0∫

−a

((k(x)v′)2(x)− 2f(x)v(x))dx+

+4v(0)
0∫

−ξ

(ξ + x)f(x)dx +
ξ∫

−ξ

x∫

−a

(B̃v)(s)ṽ(s)dsdx.

(27)

If we consider that

ξ∫

−ξ

x∫

−a

B̃u ṽdsdx =
ξ∫

−ξ

x′
x∫

−a

B̃u ṽdsdx = x

x∫

−a

B̃u ṽds|ξ−ξ−
ξ∫

−ξ

xB̃u ṽdx = ξ

ξ∫

−a

B̃u ṽdx+

+ξ

−ξ∫

−a

B̃u ṽdx−
ξ∫

−ξ

xB̃u ṽdx = 2ξ

−ξ∫

−a

Buvdx + ξ

ξ∫

−ξ

B̃u ṽdx−
ξ∫

−ξ

xB̃u ṽdx =

20
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= 2ξ

−ξ∫

−a

Buvdx+ξ

ξ∫

−ξ

B̃u ṽdx−
ξ∫

−ξ

xB̃u ṽdx = 2ξ

−ξ∫

−a

Buvdx+2ξ

0∫

−ξ

(Bu)(x)(v(x)− v(0))dx−

−2v(0)
0∫

−ξ

xBudx = 2ξ

−ξ∫

−a

Buvdx+2ξ
0∫

−ξ

Buvdx−2ξv(0)
0∫

−ξ

Budx−2v(0)
0∫

−ξ

xBudx =

= 2ξ

0∫

−a

Buvdx− 2v(0)
0∫

−ξ

(ξ + x)Budx,

then a variation of a functional F0(v) on the solution of problem (1)-(3)
has the form:

δF0(u) =
d

dε
F0(u + εv)|ε=0 = 2ξ

0∫

−a

(2k(x)u′(x)v′(x)− 2f(x)v(x))dx+

+4v(0)
0∫

−ξ

(ξ +x)f(x)dx+2
ξ∫

−ξ

x∫

−a

(B̃u)(s)ṽ(s)dsdx = 4ξ
(
k(x)u′(x)v(x)|0−a−

−
0∫

−a

((ku′)′ + f)vdx


+4v(0)

0∫

−ξ

(ξ+x)fdx+4ξ

0∫

−a

Buvdx−4v(0)
0∫

−ξ

(ξ+x)Budx =

= 4ξk(0)u′(0)v(0)+4ξ
0∫

−a

[−(ku′)′+Bu−f ]vdx+4v(0)
0∫

−ξ

(ξ+x)(f−Bu)dx =

= 4ξk(0)u′(0)v(0) + 4v(0)
0∫

−ξ

(ξ + x)(−ku′)′dx = 4ξk(0)u′(0)v(0)+

+4v(0)[−(ξ + x)ku′|0−ξ +
0∫

−ξ

ku′dx] = 4ξk(0)u′(0)v(0)− 4v(0)ξk(0)u′(0)+

+4v(0)
0∫

−ξ

ku′dx = 0.

Which proves the validity of the Theorem 5.
Note that conditions (4) and (13) are fulfilled, for example, when (Bv)(x) =

q(x)v(x), where q(x) ∈ C[−a, 0], q(x) ≥ 0, when x ∈ [−a, −ξ] and
q(x) ≡ 0, when x ∈ [−ξ, 0].
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