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Abstract

It is considered circular tube, composed by three different isotropic elastic materi-

als. It is proposed that circular tubes inserted one of another and glued together along

the length of borders surfaces. Of its kind three-layered concentric circular composed

tube from a different isotropic elastic materials are considered Saint-Venant’s prob-

lems.
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1 Basic Equations

Let us consider three-layered circular tube, composed by different isotropic
elastic materials (obey Hook’s low) occupying a composed circular cylin-
drical domain Ω = Ω1 + Ω2 + Ω3. Consider a plane Ox1x2 of the cartesian
coordinates Ox1x2x3 of the ”under” end of the cylindrical body, each do-
mains Ω1, Ω2 and Ω3 of an indicated tube are bounded by two planes
x3 = 0, x3 = l(l > 0) and by the the concentric circular cylindrical sur-
faces Γ1, Γ2, Γ2, Γ3 and Γ3, Γ4 respectively. It is proposed that the domains
Ω1,Ω2 composed by the different elastic materials are glued together along
the length of the borders of circular surfaces Γ2 and Γ3 (along the inter-
faces). By γ1, γ2, γ3 and γ4 we denote the lines obtained by cross-sections
of the surfaces Γj by the plane parallel to the plane Ox1x2 .The radiuses of
the circles (γj) are the circles R1, R2, R3 and R4 respectively. The equations
of (γj) could be presented in the following form

(x1)γj = Rj cos(ϑ), (x2)γj = Rj sin(ϑ), (j = 1, 2, 3, 4; 0 ≤ ϑ ≤ 2π)

.
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It is well-known that by N.Muskhelishvili [1 ] was stated three auxiliary
problems for the plane deformation parallel to Ox1x2 for the continual com-
ponents of displacement when the components of tension are discontinuous
passing via of Ωj to Ωj+1 from interfaces Γj+1.

In this paper these problems are stated for the three-layered domain.
Let us denote by u(x1, x2)k(m)j

and τ(x1, x2)k(m))j
, (k, l = 1, 2) the com-

ponents of displacement and stresses of indicated auxiliary problems in the
domains ωj and consider the following three auxiliary planes deformation
parallel to Ox1x2.

We consider the components of displacements and stresses independent
from a variable x3, the equations of static of elastic body and the following
boundary conditions: on the inner and exterior surfaces Γ1(γ1) and Γ4(γ4)
the following boundary conditions are satisfied

τ
(m)
nk ≡ τ

(m)
n1k + τ

(m)
n2k = 0, (k = 1, 2;m = 1, 2, 3), (1.1)

and on the interfaces Γ2(γ2) and Γ3(γ3) are satisfied the following boundary-
contact conditions:

[τ (m)
nk ]j − [τ (m)

nk ]j+1 = 0, (1.2)

[u(m)
k ]j − [u(m)

k ]j+1 = [g(m)
k ]j − [g(m)]j+1, (1.3)

(k, j = 1, 2;m = 1, 2, 3)

where n(n1, n2) is exterior normal to Γj(γj) and functions g
(m)
k are given

by the following equalities:

2g
(1)
1 = −2g

(2)
2 = ν(x2

1 − x2
2), g

(1)
2 = g

(2)
1 = νx1x2, g

(3)
1 = νx1, g

(3)
2 = νx2,

ν is the Poison’s ratio and the symbols [ ]j and [ ]j+1 denote a limiting
values on the interface Γ2j(γj) of the expressions enclosed in the brackets
taken from domains Ωj(ωj) and Ωj+1(ωj+1) respectively.

Consider the generalized center of inertia and generalized principal axis
of inertia. If the origin of cartesian coordinates Ox1x2x3 coincide with
the generalized center of inertia and axis Ox1 and Ox2 coincide with the
generalized principal axis of inertia, then will be carried out the following
relationship

Jjk + Kjk = 0, (j 6= k; j, k = 1, 2, 3)

Kjk = Kkj , Jjj + Kjj > 0, (j, k = 1, 2, 3), (1.4)

where
τ

(k)
33 = ν(τ (k)

11 + τ
(k)
22 ),

Jjk =
∫ ∫

ω
(Ex(j)x(k))dω,

2
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Kjk =
∫ ∫

ω
(x(j)τ

(k)
33 )dω, (1.5)

x(1) = x1, x
(2) = x2, x

(3) = 1, E is modulus of elasticity and ω = ω1 + ω2 +
ω3.

The equations of the elastic equilibrium for the components of displace-
ments in each of domains Ωj will be

µ∆uj + (λ + µ)DjΘ = 0, (j = 1, 2, 3), (1.6)

where λ and µ are Lame’s constants ,

∆ = D2
1 + D2

2 + D2
3. (Dj = ∂/∂xj)

We note that these constants and the components of displacements and
stresses in every domain Ωj will be different.

We admit that for the Saint-Venan’s problems will be satisfied the fol-
lowing boundary-contact conditions

τnJ ≡ τ1jn1 + τ2jn2 = 0

on Γ1 and Γ4,
[τnj ]1 = [τnj ]2,

[τnj ]2 = [τnj ]3, [uj ]1 = [uj ]2, [uj ]2 = [uj ]3, (j = 1, 2, 3). (1.7)

Also the external forces applied to the ”upper” base z = l of composed
body are statically equivalent to the bending transverse forces P1 and P2

and to external force P3, bending couple-forces m1 and m2 and a torsion
couple-forces m3. The following conditions

∫ ∫

ω
τj3dω = Pj , (j = 1, 2, 3);

∫ ∫

ω
(x2τ33 − x3τ23) = m1,

∫ ∫

ω
(x3τ13 − x1τ33) = −m2,

∫ ∫

ω
(x1τ23 − x2τ13) = m3, (1.8)

must be fulfilled (also in every cross-section z = const,where 0 < const ≤ l).
In the sequel will be used the well known formula [1]

∫ ∫

ω
τj3dω =

∫

γ1

xjτn3ds +
∫

γ4

xjτn3ds+

+
∑

k=2,3

∫

γjxj

([τn3]k−1 − [τn3]k)ds +
∫ ∫

ω
xjD3τ33dω, (j = 1, 2),

where ω = ω1 + ω2 + ω3.

3
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By means of complex potentials ϕ(z) and ψ(z) we can express the com-
ponents of displacements and stresses in the following form

2µ(u1 + iu2) = κϕ(z)− zϕ′(z)− ψ(z),

τ11 + τ22 = 2[ϕ′(z) + ϕ′(z),

τ22 − τ11 + 2iτ12 = 2[zϕ′′(z) + ψ′(z)], (1.9)

where ϕ(z) and ψ(z) are holomorphic functions of a complex variable z =
x1 + ix2 , (i2 = −1), the function F (z) is the conjugate complex to the
function F (z) .

So three auxiliary problems of plane deformation (1)–(3) could be re-
duced to define in the domains ωj complex potentials ϕ

(k)
j (z) and ψ

(k)
j (z)

satisfying the following boundary conditions

[ϕ(k)(t)1 + tϕ′(k)(t)1) + ψ(k)(t)1]1 = C
(k)
1 , (1.10)

on γ1,

[ϕ(k)(t)3 + tϕ′(k)(t)3 + ψ(k)(t)3]3 = C
(k)
4 , (1.11)

on γ4,

[ϕ(k)(t)1 + tϕ′(k)(t)1 + ψ(k)(t)1]1 − [ϕ(k)(t)2 + tϕ′(k)(t)2 + ψ(k)(t)2]2 = C
(k)
2 ,

(1.12)
on a circle-interface γ2,

[ϕ(k)(t)2 + tϕ′(k)(t)2 +ψ(k)(t)2]2− [ϕ(k)(t)3 + tϕ′(k)(t)3 +ψ(k)(t)33]3 = C
(k)
3 ,

(1.13)
on a circle-interface γ3,

[α1ϕ
(k)(t)1 − β1tϕ

′(k)(t)1 − β1ψ(k)(t)1]1

−[α2ϕ
(k)(t)2 − β2tϕ

′(k)(t)2 − β2ψ(k)(t)2]2 = f
(k)
1 (t), (1.14)

on a circle-interface γ2 ,

[α2ϕ
(k)(t)2 − β2ϕ′(k)(t)2 − β2ψ(k)(t)2]2

−[α3ϕ
(k)(t)3 − β3ϕ

′(k)(t)3 − β3ψ(k)(t)3]3 = f
(k)
2 (t), (1.15)

on a circle-interference γ3, where k = 1, 2, 3; C
(k)
j are complex constants to

be determined,

αj = κJ(2µj)−1 > 0, βj = (2µj)−1 > 0,

4
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f
(1)
1 (t) = (1/2)(ν1 − ν2)t2, f

(2)
1 (t) = (1/2)i(ν1 − ν2)t2, f

(3)
1 (t) = (ν1 − ν2)t,

f
(1)
2 (t) = (1/2)(ν2 − ν3)t2, f

(2)
2 (t) = (1/2)i(ν2 − ν3)t2, f

(3)
2 (t) = (ν2 − ν3)t,

the variable t is an affix of point z on a circle γj , (j = 1, 2, 3).

2 The solutions of an auxiliary problems

.
a)The solution of a first problem .
In the first auxiliary problems the functions f

(2)
j take the following

values

f (2)(t)1 = 2−1(ν1 − ν2)t2, f (2)(t)2 = 2−1(ν2 − ν3)t2. (2.1)

According to N.Muskhelishvili [1] the solution of the boundary-contact
problem we seek in the form

ϕ
(2)
1 = A

(2)
1 z2, ψ

(2)
1 = A

(2)
−1z

−2 + b
(2)
1 ,

ϕ
(2)
2 = A

(2)
2 z2, ψ

(2)
2 = A

(2)
−2z

−2 + b
(2)
2 ,

ϕ
(2)
3 = A

(2)
3 z2, ψ

(2)
3 = A

(2)
−3z

−2 + b
(2)
3 , (2.2)

where the constants A
(2)
j , A

(2)
−j and b

(2)
j will be determined.

Putting the expressions (2.2) into the equations (1.8)-(1.15) and take
into the account the expression (2.1), we get

C
(2)
1 = 2A

(2)
1 + b

(2)
1 , C

(2)
2 = 2(A(2)

1 −A
(2)
2 ) + b

(2)
1 − b

(2)
2 ,

C
(2)
3 = 2(A(2)

2 −A
(2)
3 )+ b

(2)
2 − b

(2)
3 , b

(2)
1 = (β1)−1β2b

(2), b
(2)
2 = (β2)−1β3b

(2)
3 ,

(2.3)
where C

(2)
2 , C

(2)
3 6= 0, (all constants has no effect on a stress state of the

body)

A
(2)
3 = −(R4

4 −R4
3)
−1[A(2)

1 (R4
2 −R4

1) + A
(2)
2 (R4

4 −R4
3)], A

(2)
−1 = −R4

1A
(2)
1 ,

A
(2)
−2 = A

(2)
1 (R4

2 −R4
1)−R4

2A
(2)
2 , A

(2)
−3 = R4

4A
(2)
3 ,

A
(2)
3 = −(R4

4 −R4
3)[A

(2)
1 (R4

2 −R4
1) + A

(2)
2 (R4

3 −R4
2)], (2.4)

5
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Substitute the expressions (2.2) and (2.3) in the boundary-contact con-
ditions (1.14)-(1.15) and taking into the account the expressions (2.4), for
A

(2)
1 and A

(2)
2 we get the following system

[α1R
4
2 + β1R

4
1 + β2(R4

2 −R4
1)]A

(2)
1 − (α2 + β2)R4

2A
(2)
2 = R4

2(ν1 − ν2),

[(α3R
4
3 + β3R

4
4)(R

4
2 −R4

1)− β2(R4
2 −R4

1)(R
4
4 −R4

3)]A
(2)
1

+[(α3R
4
3 + β3R

4
4)(R

4
3 −R4

2) + (α2R
4
3 + β2R

4
2)(R

4
4 −R4

3)]A
(2)
2

= (ν2 − ν3)R4
3(R

4
4 −R4

3), (2.5)

From this system we obtain

A
(2)
1 = (∇3)−1{R4

2R
4
3(α2 + β2)(R4

4 −R4
3)(ν2 − ν3)

+R4
2(ν1 − ν2)[(α2R

4
3 + β2R

4
2)(R

4
4 −R4

3)(α3R
4
3 + β3R

4
4)(R

4
3 −R4

2)]},
A

(2)
2 = [R4

2(α2 + β2)]−1{A(2)
1 [α1R

4
2 + β1R

4
1 + β2(R4

2 −R4
1)]−R4

2(ν1 − ν2)},
where

∇3 = α2β2((R4
2−R4

1)(R
4
3−R4

2)(R
4
4−R4

3)+(α3R
4
3+β3R

4
4){(R4

2−R4
1)[(α2+β2)R4

2+

β2(R4
3 −R4

2) + (α1R
4
2 + β1R

4
1)(R

4
3 −R4

2)} > 0.

The other constants will be determined directly. Thus, the first auxiliary
problem is solved completely.

b)The solution of a second problem.
We consider the case when in a boundary-contact conditions (1.12)-

(1.17) the functions f
(3)
1 and f

(3)
2 have the following values

f
(3)
1 = (2)−1i(ν1 − ν2)t2, f

(3)
2 = (2)−1i(ν2 − ν3)t2; (2.6)

In this case we seek the solutions in the form

ϕ(3)(t)1 = −iA
(3)
1 z2, ψ(3)(t)1 = −i(A(3)

−1z
−2 + b

(3)
1 ), ϕ(3)(t)2 = −iA

(3)
2 z2,

ψ(3)(t)2 = −i(A(3)
−2z

−2 + b
(3)
2 ), ϕ(3)(t)3 = −iA

(3)
3 z2,

ψ(3)(t)3 = −i(A(3)
−3z

−2 + b
(3)
3 ). (2.7)

Putting these expressions in the conditions (1.12)-(1.17) we get the
values of all coefficients C

(3)
j and b

(3)
j , where C

(3)
2 and C

(3)
3 are an arbitrary

6
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constants differ from zero. The indicated constants has no effect on a
stress-state of a body.

Take into the account (2.9) for the constants A
(3)
j , A

(3)
−j , A

(3)
1 and A

(3)
2

we get

A
(3)
−1 = R4

1A
(3)
1 , β2A

(3)
−2 = A

(3)
1 (α1R

4
2 − β1R

4
1)−A

(3)
2 α2R

4
2 − (2)−1(ν1 − ν2),

A
(3)
−3 = R4

4A
(3)
3 , A

(3)
3 = −(R4

4 −R4
3)
−1[A(3)

1 (R4
2 −R4

1) + A
(3)
2 (R4

3 −R4
2)],

A
(3)
1 [β2(R4

2 −R4
1) + α1R

4
2 + β1R

4
1]− (α2 + β2)R4

2A
(3)
2 = (2)−1R4

2(ν1 − ν2),

A
(3)
1 (R4

2−R4
1)[(α3R

4
3 +β3R

4
4)−β2(R4

4−R4
3)]+A

(3)
2 [(α2R

4
3 +β2R

4
2)(R

4
4−R4

3)

+(α3R
4
3 + β3R

4
4)(R

4
3 −R4

2)] = (2)−1R4
3(R

4
4 −R4

3)(ν2 − ν3).

From the above we get

2A
(3)
1 = (∇3)−1[δ1R

4
2(ν1 − ν2) + +R4

3R
4
2(R

4
4 −R4

3)(α2 + β2)(ν2 − ν3)],

where

∇3 = α2(R4
2−R4

1)(R
4
3−R4

2)(R
4
4−R4

3)+δ1(α1R
4
2+β1R

4
1)+R4

2(R
4
2−R4

1)(α2+

β2)(α3R
4
3 + β3R

4
4) > 0.

And other coefficients will be determined directly.
c)A solution of a third problem.
For the third auxiliary problem in the boundary-contact conditions the

functions f
(3
1 (t) and f

(3)
2 (t) have the following values

f
(3)
1 (t) = (ν1 − ν2)t, f

(3)
2 (t) = (ν2 − ν3)t. (2.8)

Taking into the account the results of N.Muskihelshvili [1], we seek the
solutions in the form

ϕ
(3)
j = A

(3)
j z, ψ

(3)
j = A

(3)
−jz

−1 + b
(1)
j , (j = 1, 2, 3), (2.9)

where the constants A
(3)
j , A

(3)
−j and b

(3)
j will be determined. Putting

these expressions into the boundary conditions we get that two coefficients
C

(3)
3 and C

(3
4 are an arbitrary constants differ from zero and this constants

has no influence on the stress-state of the body. For the other constants
from (1.12)-(1.17) we get

[(α1−β1)R2
2+2β2

R1
+2β2(R2

2−R2
1)]A

(3)
1 −[(α2−β2)R2

1+2β2R
2
2]A

(3)
2 = (ν1−ν2)R2

2,

7



AMIM Vol.11 No.2, 2006 G.Khatiashvili +

[(α2 − β2)R2
3 + 2β2R

2
2]A2(3)− 2β2A

(3)
1 (R2

2 −R2
1)

−[(α3 − β3)R2
3 + 2β3R

2
4]A

(3)
3 = (ν2 − ν3)R2

3,

−A
(3)
3 =

1

(R4
4 −R4

3)[A
(3)
1 (R2

2 −R2
1) + A

(3)
2 (R2

3 −R2
2)]ν

From here we get

{(R2
4−R2

3)[(α2−β2)R2
3+2β2R

2
2]+(R2

3−R2
2)[(α3+β3)R2

3+2β3(R2
4−R2

3)]}A(3)
2 +

{(R2
2 −R2

1)[(α3 + β3)R2
3 + 2β3(R2

4 −R2
3)

−2β2(R2
2 −R2

1)(R
2
4 −R2

3)}A(3)
1 = R2

3(R
2
4 −R2

3)(ν2 − ν3),

α[(α1 + β1)R2
2 + 2(R2

2 −R2
1)(β2 − β1)]A

(3)
2 −

R2
2(α2 + β2)A

(3)
1 = R2

2(ν1 − ν2).

It is easy to show that for the determinant ∇ of this system we have

∇ = (R2
2 −R2

1)[(α3 + β3)R2
3 + 2β3(R2

4 −R2
3) + 2β3(R2

4 −R2
3)−

2β2(R2
2 + R2

1)(R
2
4 −R2

3)][(α1 + β1)R2
2 + 2(R2

2 −R2
1)(β2 − β1)] + (α2 + β2)R2

2

×{(R2
4−R2

3)[(α2−β2)R2
3+2β2R

2
2]+(R2

2−R2
1)[(α3+β3)R2

3+2β3(R2
4−R2

3)]} > 0.

The other coefficients will be determined directly. Therefore, a third
auxiliary problem is solved completely.

3 Extension by longitudinal force and bending
due to couples of forces

a)The problem of tension.
Let the external forces applied to the ”upper” base z=l of the body

is statically equivalent to the force f3 parallel to the axis Ox3 and to the
bending forces acting on the planes Oyz and Oxz respectively with the
moments m1 and m2.This force we apply to the point (0, 0, l). The stress-
strain-state of composed concentric circular body we seek in the following
form

uj =
3∑

i=1

ai(g
(i)
j − u

(i)
j )− 2−1ajx

2
3, (j = 1, 2),

u3 = x3

3∑

i=1

aix
(i),

8
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τjj =
3∑

i=1

[τ (i)
jj + 2−1(j − 1)(j − 2)x(i)], (j = 1, 2, 3),

τ12 =
3∑

i=1

aiτ
(i)
12 , τ13 = τ23 = 0, (3.1)

where constants aj will be determined , u
(i)
j and τ

(i)
jk are solutions of three

auxiliary problems.
Previously was calculated some expressions,given by equalities (1.4)-

(1.5)

J11 = J22 = π(4)−1[E1(R4
2 −R4

1) + E2(R4
3 −R4

2) + E3(R4
4 −R4

3)],

J33 = π[E1(R2
2 −R2

1) + E2(R2
3 −R2

2) + E3(R2
4 −R2

3)],

K11 = 2π[A(1)1ν1(R4
2 −R4

1) + A(1)2ν2(R4
3 −R4

2) + A(1)3ν3(R4
4 −R4

3)],

K22 = 2π[A(2)1ν1(R4
2 −R4

1) + A(2)2ν2(R4
3 −R4

2) + A(2)3ν3(R4
4 −R4

3)],

K33 = 2π[A(3)1ν1(R2
2 −R2

1) + A(3)2ν2(R2)3 −R2
2) + A(3)3ν3(R2

4 −R2
3)],

J12 = J13 = J23 = K12 = K13 = K23 = 0. (3.2)

Substituting this expressions into (1.7) we see that it is satisfied identi-
cally. Putting the components τjk into Saint-Venant’s conditions (1.8) we
get

3∑

k=1

akBkj = m0
j0 , (j = 1, 2, 3), (3.3)

where
m0

1 = −m2, m0
2 = m1, m0

3 = p3. (3.4)

Taking into the account sixth equalities from (3.2) we get

a1 = −m2B
−1
11 , a2 = m2B

−1
22 a3 = p3B

−1
33 , (3.5)

Therefore the problem of extension by longitudinal force and bending
by couple of forces three-layered circular tube is solved completely.

b)The problem of torsion.
It is well known that the torsion function F0 of three-layered circular

tube ω = ω1 + ω2 + ω3 is harmonic in each of domains ωj and satisfies the
following boundary-contact conditions

[DnF0]1 ≡ [n1D1F0 + n2D2F0]1 = (x2n1 − x1n2)1

on Γ1,
[DnF0]3 = (x2n1 − x1n2)4

9
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on Γ4,

[µjDnF0]j = [µj+1F0]j+1

on Γj+1,

[F0]j = [F0]j+1. (3.6)

As on each circle r = Rj we have

(x2n1 − x1n2)j = Rj(sinϑ cosϑ− cos θ sinϑ) = 0,

then for the torsion function F0 we have F0 = C∗ = constant and the
torsion function has no effect on the stress condition.

C)Bending by transverse forces
It is assumed that external forces applied to the upper end x3 = l of

three-layered concentric tube is statically equivalent to two bending forces
P1 and P2 parallel to the axis Ox1 and Ox2 respectively and are applied at
the point (0, 0, l). Therefore, in the conditions (1.8) we take

P1 6= 0, P2 6= 0, P3 = m1 = m2 = m3 = 0. (3.7)

As in above, we propose that the origin of the system of coordinates
Ox1x2x3 coincide with the generalized center and the generalized principal
axis of the inertia of the domain ω = ω1 + ω2 + ω3. On the ”under” base
x3 = 0 the following equalities are true

Bjk ≡ Jjk + Kjk = 0, j 6= k,

where expressions Jjk and Kjk are given by (3.2).
As the torsion function F0 is a constant the components of displacement

and stress in each domain ωj we seek in the following form

uj = −x3

3∑

k=1

ak(g
(k)
j − u

(k)
j )− 6−1ajx

3
3, (j = 1, 2),

u3 = (1/2)x2
3

3∑

k=1

akx
(k)+a1F1+a2F2−(1/3)(a1x

3
1+a2x

3
2)−(1/2)a3(x2

1+x2
2),

τjj = x3

3∑

k=1

ak[τ
(k)
jj + (1/2)E(k − 1)(k − 2)x(k)], (j = 1, 2, 3),

τ12 = x3

3∑

k=1

akτ
(k)
12 ,

10
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τj3 = µ[a1DjF1 + a2DjF2 − ajx
2
j − a3xj −

3∑

k=1

ak(g
(k)
j − u

(k)
j )], (j = 1, 2),

(3.8)
where the functions u

(k)
j are the solutions of auxiliary problems given

above, coefficients ak and functions Fj will be determined.
At first we will write out the components of displacements and stresses

corresponding to three auxiliary problems given in sections a), b) ,c) of the
paragraph 2

(u(k)
1 )j =

1
2µj

{A(k)
j κj(x2

1 − x2
2)−A

(k)
j X2 −A

(k)
−j

(x2
1 − x2

2)
X4

},

(u(k)
2 )j =

1
µj

[A(k)
j κjx1x2 −A

(k)
−j

x1x2

X2
],

(τ (k)
11 )j = 2A

(k)
j x1 −A

(k)
−j

x3
1 − 3x1x

2
2

X3
,

(τ (k)
22 )j = 6A

(k)
j x2 + A

(k)
−J

x3
1 − 3x1x

2
2

X3
,

(τ (k)
12 )j = 2A

(k)
j x2 −A

(k)
−j

x3
2 − 3x2

1x2

X3
,

2µ(u(3)
1 )j = A

(3)
j κj −A

(3)
j x1 −A

(3)
−j

x1

X2
,

u
(3)
2 = A

(3)
j x2

2µ

λj + µj
−A−j(3) x2

X2
,

(τ (3)
11 )j = 2A

(3)
j + 2A

(3)
−j

x2
1 − x2

2

X2
,

(τ (3)
22 )j = 2A

(3)
j − 2A

(3)
−j

x2
1 − x2

2

X2
,

(τ (3)
12 )j = 2A

(3)
−j

x1x2

X2
, (3.9)

where X2 = x2
1 + x2

2, the constants A
(k)
j and A

(k)
−j are given in sections

a),b) and c) of paragraph 2.
It is easy to obtain that the components uj and τjm, (j, m = 1, 2),

satisfy the following boundary-contact conditions

11
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τnj ≡ τ1jn1 + τ2jn2 = 0,

on γ1 and γ4,
τnjm = τnjm+1, ujm = ujm+1,

on γm+1.
Putting u3 and τj3 from (3.8) into (3.5) for the functions F1 and F2 in

each of domains ωj , j = 1, 2, 3 we get the following boundary value problem

∆F
(j)
k = ξ

(j)
k (x1, x2), [DnF

(j)
k + η

(j)
k ]j = 0; k = 1, 2; j = 1, 3; (3.10)

on γ1 and γ4,

[DnF
(j)
k + η

(j)
k ]j = [ident

(j)
k ]j+1, [u(3)

3 ]j = [u(3)
3 ]j+1, (3.11)

on γj+1, where

DnF = n1D1F + n2D2F, µξ = (λ + µ)Θ,

ηk = [x2
k +(−1)kν(x2

2−x2
1)]nk +νx1x2n3−k−u

(k)
k nk, ∆ = D2

1 +D2
2. (3.12)

It is easy to see, that in this case

ξ
(j)
k =

λj + µj

µj
Θ(j)

k ≡ A
(k)
j xk

N.I.Muskhelishvili [ 1] has proved that for the existence of the solution
of boundary value problem (3.10)–(3.11) is necessary and sufficient

∫ ∫

ω
µξdω =

∮

γ1

µη1dγ +
∮

γ4

µη4dγ +
∑
m

= 23
∮
{[µη]m−1 − [µη]m}dγ.

(3.13)
In our case the condition (3.13) is fulfilled. The solution of the equation

(3.10) in each of domains ωj we seek in the form

F
(j)
k = (−2/3)µjA

(k)
j x3

k + f
(j)
k , (3.14)

where the function f
(j)
k (x1, x2) is harmonic in each of domains ωj .

We note that the functions η
(j)
k are continuous over the interfaces γ2

and γ3, that is [η(j)
k ]m−1 = [η(j)

k ]m, (k = 1, 2;m = 2, 3).

12
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Taking into the account this remark and putting the expression (3.14)
into equations (3.10)–(3.12) for the functions f

(j)
k we get the following

boundary value problem:

∆f
(j)
k = 0

in each of domains ωj ,

Dnf
(j)
k = [2µA

(k)
j x2

k +x2
k +(−1)k2ν(x2

2−x2
1)−u

(k)
1 ]nk +(νx1x2−u

(k)
2 )n3−k

on γ1 and γ4,

[Dnf
(m−1)
k ]m−1 − [Dnf

(m)
k ]m = 2((1/µm−1)A

(k)
m−1 − (1/µm)A(k)

m )x2
knk,

[f (m−1)
k ]m−1 − [f (m)

k ]m =
2
3
(

1
µm−1

A
(k)
m−1 −

1
µm

A(k)
m )x3

k, (3.15)

(m = 2, 3; k = 1, 2.j = 1, 2, 3),

on γ2.
Taking into the account

n1 = cosϑ, n2 = sinϑ,

cos3 ϑ =
1
3
(3 cosϑ + cos 3ϑ),

sin3 ϑ =
1
4
(3 sinϑ− sin 3ϑ),

the equalities (3.15) take the form

4r−2Dnf
(j)
1 = ζ

(j)
11 cosϑ + ζ

(1)
31 cos 3ϑ,

4r−2Dnf
(j)
2 = ζ

(j)
12 sinϑ + ζ32 + 2νj) sin 3ϑ,

4{[Dnfm−1
k ]m−1 − [Dnf

(m)
k ]m} = 2r2{[φm−1

k ]m−1 − [φ(m)
k ]m}

×[(2− k)(3 cosϑ + cos 3ϑ) + (k − 1)(3 sinϑ− sin 3ϑ)],

[f (m−1)
k ]m−1 − [f (m)

k ]m = (2/3)r3{[φ(m−1)
k ]m−1 − [φ(m)

k ]m}
×{(2− k)(3 cos θ + cos 3ϑ) + (k − 1)(3 sinϑ + sin 3θ)},

where

ζ
(j)
1k =

5∑

m=1

χ
(j)
mk, ζ

j)
3k = (−1)kχ

(j)
1k + χk2(j) + χ

(j)
3k + (−1)kχ

(j)
4k + χ

(j)
5k ;

13
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χ
(j)
1k =

2
µj

+ 1 +
1
2
νj , χ

(j)
2k =

3
2µj

[(κj − 1)A(k)
j − 1

r4
A

(k)
−j ],

χ
(j)
3k = (κj + 1)A(k)

j − 1
r4

A
(k)
−j ,

χ
(j)
4k =

1
µj

(A(k)
j κj − 1

r4
A

(k)
−j ), χ

(j)
5k = −3

2
νj , j = 1, 3;

on γ1 and γ4.
The harmonic function f

(j)
k we seek in the following form

f
(j)
1 = b

(j)
1 x1 + b

(j)
3 x3

1 − 3b
(j)
3 x1x

2
2 + b

(J)
−1 x1x

2
1 + x2

2 + b
(j)
−3

(x3
1 − 3x1x

2
2)

(x2
1 + x2

2)3
,

f
(j)
2 = H

(j)
1 x2 + H

(j)
3 x3

2 − 3H
(j)
3 x2

1x
2 +

H
(j)
−1x2

x2
1 + x2

2

+ H
(j)
−3

(x3
2 − 3x2

1x2)
(x2

1 + x2
2)3

,

where constants bm and Hm will be determined from boundary conditions.
Putting the expressions (3.8) into the conditions (3.12) for the definition

of the constants aj we get the following system of algebraic equations

B11a1 + B21a2 + B31a3 = P1,

B12a1 + B22a2 + B32a3 = P2,

B13a1 + B23a2 + B33a3 = 0,

where Bjk = Jjk + Kjk is given by equalities (3.8).It is easy to calculate
that

B11 = J11 + K11 = π4−1Σ3
j=1[(Ej + 2νjA

(1)
j )(R4

j+1 −R4
j )]

B22 = J22 + K22 = π4−1Σ3
j=1[Ej + 2νjA2][(R4

j+1 −R4
j ))],

B33 = J33 + K33 = πΣ3
j=1[Ej(R2

j+1 −R2)].

Hence, all constants are defined and the problem is solved completely.
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