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Abstract

In the present work, the sequential-parallel type decomposition scheme with fourth

order accuracy for a multidimensional evolution problem is constructed. The fourth

order accuracy is attained by introducing a complex parameter. For the constructed

scheme, there is obtained the explicit a priori estimate for the error of solution to the

approximated problem. The relation between two and multi-dimensional decomposi-

tion formulas is established.

Key words and phrases: Decomposition method,Semigroup, Operator split method,

Trotter formula, Cauchy abstract problem.

AMS subject classification: 65M12, 65M15, 65M55

1 Introduction

One of the most effective methods to solve multi-dimensional evolution
problems is a decomposition method. Decomposition schemes with first
and second order accuracy were constructed in the sixties of the XX century
(see [5], [7] and references therein). Q. Sheng has proved that in the real
number field there do not exist automatically stable decomposition schemes
with an accuracy order higher than two (see [8]). Decomposition schemes
are called automatically stable if a sum of the absolute values of its split
coefficients (coefficients of exponentials’ products) equals to one, and the
real parts of exponential powers are positive. In the work [1] there is con-
structed decomposition schemes with the higher order accuracy, but their
corresponding decomposition formulas are not automatically stable. In the
works [2]-[4], introducing the complex parameter, we have constructed au-
tomatically stable decomposition schemes with third order accuracy for
two- and multi-dimensional evolution problems and with fourth order ac-
curacy for two-dimensional evolution problem (evolution problem with the
operator A is called m-dimensional, if it can be represented as a sum of
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m summands A = A1 + ... + Am ). The new idea is an introduction of a
complex parameter, which allows us to break the order 2 barrier. Let us
remark that in the work of Schatzman there are constructed decomposition
formulas for two-dimensional evolution problem.

Decomposition formulas constructed in the works [2]-[4] represent for-
mulas of exponential splitting. Exponential splitting is called a splitting
which approximates a semigroup by a combination of semigroups gener-
ated by the summands of the operator generating the given semigroup.

In the present work there is constructed an automatically stable de-
composition scheme with the fourth order precision for a multidimensional
evolution problem. For the solution error there is obtained an explicit a
priori estimate. This work naturally proceeds from the articles [2]-[4] and
it summarizes these articles from some point of view. In our opinion, the
proposition given in the fourth chapter is quite interesting and, taking it
as a base, from a two-dimensional decomposition formula, one can obtain
a multidimensional decomposition formula with the same order. However
for the moment we cannot prove this proposition.

2 Statement of the Problem

Let us consider the Cauchy problem for an evolution equation in the Banach
space X:

du(t)
dt

+ Au(t) = 0, t > 0, u(0) = ϕ, (2.1)

where A is a linear closed operator with a definition domain D (A) ,
which is everywhere dense in X, ϕ is a given element from D (A).

Suppose that the operator (−A) generates a strongly continuous semi-
group {exp(−tA)}t≥0. Then the solution of problem (2.1) is given by the
following formula (see for example [6]):

u(t) = U(t, A)ϕ, (2.2)

with U(t, A) = exp(−tA).
Let A = A1 + A2 + ... + Am, m ≥ 2, where Ai (i = 1, ...,m) are closed

operators, densely defined in X.
Let us introduce a grid set:

ωτ = {tk = kτ, k = 1, 2, ..., τ > 0}.
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Together with problem (2.1), on each interval [tk−1, tk], we consider a
sequence of the following problems:

dv
(1)
k (t)
dt

+
α

2
A1v

(1)
k (t) = 0, v

(1)
k (tk−1) = uk−1 (tk−1) ,

dv
(i)
k (t)
dt

+
α

2
Aiv

(i)
k (t) = 0, v

(i)
k (tk−1) = v

(i−1)
k (tk) ,

i = 2, ..., m− 1,

dv
(m)
k (t)
dt

+
1
2
Amv

(m)
k (t) = 0, v

(m)
k (tk−1) = v

(m−1)
k (tk) ,

dv
(i)
k (t)
dt

+
α

2
A2m−iv

(i)
k (t) = 0, v

(i)
k (tk−1) = v

(i−1)
k (tk) ,

i = m + 1, ..., 2m− 2,

dv
(2m−1)
k (t)

dt
+ αA1v

(2m−1)
k (t) = 0, v

(2m−1)
k (tk−1) = v

(2m−2)
k (tk) ,

dv
(i)
k (t)
dt

+
α

2
Ai−2m+2v

(i)
k (t) = 0, v

(i)
k (tk−1) = v

(i−1)
k (tk) ,

i = 2m, ..., 3m− 3,

dv
(3m−2)
k (t)

dt
+

1
2
Amv

(3m−2)
k (t) = 0, v

(3m−2)
k (tk−1) = v

(3m−3)
k (tk) ,

dv
(i)
k (t)
dt

+
α

2
A4m−i−2v

(i)
k (t) = 0, v

(i)
k (tk−1) = v

(i−1)
k (tk) ,

i = 3m− 1, ..., 4m− 4,

dv
(4m−4)
k (t)

dt
+

α

2
A1v

(4m−4)
k (t) = 0, v

(4m−4)
k (tk−1) = v

(4m−3)
k (tk) ,

dw
(1)
k (t)
dt

+
α

2
Amw

(1)
k (t) = 0, w

(1)
k (tk−1) = uk−1 (tk−1) ,

dw
(i)
k (t)
dt

+
α

2
Am−i+1w

(i)
k (t) = 0, w

(i)
k (tk−1) = w

(i−1)
k (tk) ,

i = 2, ..., m− 1,

dw
(m)
k (t)
dt

+
1
2
A1w

(m)
k (t) = 0, w

(m)
k (tk−1) = w

(m−1)
k (tk) ,

dw
(i)
k (t)
dt

+
α

2
Ai−m+1w

(i)
k (t) = 0, w

(i)
k (tk−1) = w

(i−1)
k (tk) ,

i = m + 1, ..., 2m− 2,

dw
(2m−1)
k (t)

dt
+ αAmw

(2m−1)
k (t) = 0, w

(2m−1)
k (tk−1) = w

(2m−2)
k (tk) ,
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dw
(i)
k (t)
dt

+
α

2
A3m−i−1w

(i)
k (t) = 0, w

(i)
k (tk−1) = w

(i−1)
k (tk) ,

i = 2m, ..., 3m− 3,

dw
(3m−2)
k (t)

dt
+

1
2
A1w

(3m−2)
k (t) = 0, w

(3m−2)
k (tk−1) = w

(3m−3)
k (tk) ,

dw
(i)
k (t)
dt

+
α

2
Ai−3m+3w

(i)
k (t) = 0, w

(i)
k (tk−1) = w

(i−1)
k (tk) ,

i = 3m− 1, ..., 4m− 4,

dw
(4m−4)
k (t)

dt
+

α

2
Amw

(4m−4)
k (t) = 0, w

(4m−4)
k (tk−1) = w

(4m−3)
k (tk) ,

where α is a complex number with the positive real part, Re (α) > 0;
u0 (0) = ϕ. Let the operators (−Aj) , (−αAj) , (−αAj) , j = 1, ...,m gener-
ate strongly continuous semigroups.

uk (t) , k = 1, 2, .., is defined on each interval [tk−1, tk], as follows:

uk (t) =
1
2

[
v

(4m−4)
k (t) + w

(4m−4)
k (t)

]
. (2.3)

We declare function uk (t) as an approximated solution of problem (2.1) on
each interval [tk−1, tk].

3 Estimate of Error of the Approximated Solu-
tion.

It is obvious that the definition domain D (As) of the operator As represents
an intersection of the definition domains of its addends.

Let us introduce the following notations:

‖ϕ‖A = ‖A1ϕ‖+ ... + ‖Amϕ‖ , ϕ ∈ D (A) ,

‖ϕ‖A2 =
m∑

i,j=1

‖AiAjϕ‖ , ϕ ∈ D
(
A2

)
,

where ‖·‖ is a norm in X; Analogously is defined ‖ϕ‖As , (s = 3, 4, 5) .

Theorem 3.1 Let the following conditions be fulfilled:
(a) α = 1

2 ± i 1
2
√

3

(
i =

√−1
)
;

(b) Let the operators (−γAj) , γ = 1, α, α (j = 1, ...,m, m ≥ 2)
and (−A) generate strongly continuous semigroups, for which the following
estimates are true:

‖U(t, γAj)‖ ≤ eωt,

‖U(t, A)‖ ≤ Meωt, M, ω = const > 0;
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(c) U (s,A) ϕ ∈ D
(
A5

)
for each fixed s ≥ 0 .

Then the following estimate holds:

‖u(tk)− uk(tk)‖ ≤ ceω0tktkτ
4 sup

s∈[0,tk]
‖U (s,A) ϕ‖A5 ,

where c and ω0 are positive constants.

Proof. According to the following formula (see [6], p 603),

A

t∫

r

U (s,A) ds = U (r,A)− U (t, A) , 0 ≤ r ≤ t,

we can obtain the following expansion:

U(t, A) =
k−1∑

i=0

(−1)i t
i

i!
Ai + Rk(t, A), (3.1)

where

Rk(t, A) = (−A)k

t∫

0

s1∫

0

...

sk−1∫

0

U(s,A)dsdsk−1...ds1. (3.2)

From formula (2.3) we obtain:

uk(tk) = V k (τ) ϕ, (3.3)

where
V (τ) =

1
2

[V1 (τ) + V2 (τ)] , (3.4)

and

V1 (τ) = U
(
τ,

α

2
A1

)
...U

(
τ,

α

2
Am−1

)
U

(
τ,

1
2
Am

)

×U

(
τ,

α

2
Am−1

)
...U

(
τ,

α

2
A2

)
U (τ, αA1)

×U

(
τ,

α

2
A2

)
...U

(
τ,

α

2
Am−1

)
U

(
τ,

1
2
Am

)

×U
(
τ,

α

2
Am−1

)
...U

(
τ,

α

2
A2

)
U

(
τ,

α

2
A1

)
, (3.5)

V2 (τ) = U
(
τ,

α

2
Am

)
...U

(
τ,

α

2
A2

)
U

(
τ,

1
2
A1

)

×U

(
τ,

α

2
A2

)
...U

(
τ,

α

2
Am−1

)
U (τ, αAm)

×U

(
τ,

α

2
Am−1

)
...U

(
τ,

α

2
A2

)
U

(
τ,

1
2
A1

)

×U
(
τ,

α

2
A2

)
...U

(
τ,

α

2
Am−1

)
U

(
τ,

α

2
Am

)
. (3.6)
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Remark 3.1 Stability of the considered scheme on each finite time interval
follows from the first inequality of the condition (b) of the Theorem 3.1. In
this case, for the solving operator, the following estimate holds:

∥∥∥V k (τ)
∥∥∥ ≤ eω1tk , (3.7)

where ω1 is positive constant.

Let us introduce the following notations for combinations (sum, prod-
uct) of semigroups: Let T (τ) be a combination (sum, product) of the
semigroups, which are generated by the operators (−γAi) (i = 1, ..., m).
Let us decompose every semigroup included in operator T (τ) according
to formula (3.1), multiply these decompositions on each other, add the
similar members and, in the decomposition thus obtained, denote coeffi-
cients of the members (−τAi),

(
τ2AiAj

)
,
(−τ3AiAjAk

)
and

(
τ4AiAjAkAl

)
(i, j, k, l = 1, ..., m) respectively by [T (τ)]i, [T (τ)]i,j , [T (τ)]i,j,k and [T (τ)]i,j,k,l.

If we decompose all the semigroups included in the operator V (τ) ac-
cording to formula (3.1) from left to right in such a way that each residual
term appears of the fifth order, we will obtain the following formula:

V (τ) = I − τ
m∑

i=1

[V (τ)]i Ai + τ2
m∑

i,j=1

[V (τ)]i,j AiAj

−τ3
m∑

i,j,k=1

[V (τ)]i,j,k AiAjAk

+τ4
m∑

i,j,k,l=1

[V (τ)]i,j,k,l AiAjAkAl + R5 (τ) . (3.8)

According to the first inequality of the condition (b) of the Theorem
3.1, for R5 (τ), the following estimate holds:

‖R5 (τ) ϕ‖ ≤ ceω0ττ5 ‖ϕ‖A5 , ϕ ∈ D
(
A5

)
, (3.9)

where c and ω0 are positive constants. It is obvious that, for the coefficients
in formula (3.8), according to formula (3.4), we have:

[V (τ)]i =
1
2

([V1(τ)]i + [V2(τ)]i) , (3.10)

i = 1, ..., m,

[V (τ)]i,j =
1
2

(
[V1(τ)]i,j + [V2(τ)]i,j

)
, (3.11)

i, j = 1, ..., m,
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[V (τ)]i,j,k =
1
2

(
[V1(τ)]i,j,k + [V2(τ)]i,j,k

)
, (3.12)

i, j, k = 1, ..., m,

[V (τ)]i,j,k,l =
1
2

(
[V1(τ)]i,j,k,l + [V2(τ)]i,j,k,l

)
, (3.13)

i, j, k, l = 1, ..., m.

Let us state the auxiliary lemma, which will be basis of the proof of the
Theorem 3.1.

From the theorem proven in the work [6] it follows that if conditions
(a) and (b) of the Theorem 3.1 are fulfilled and m = 2, then the following
expansion is true:

V (τ) = I − τA +
τ2

2
A2 − τ3

6
A3 +

τ4

24
A4 + R5 (τ) , (3.14)

where for the remainder term R5 (τ), the following estimate takes place:

‖R5 (τ) ϕ‖ ≤ ceω0ττ5 sup
s∈[0,τ ]

‖ϕ‖A5 , ϕ ∈ D
(
A5

)
.

Let us make a remark which will simplify a calculation of coefficients in
decomposition (3.8).

Remark 3.2 The operators V1 (τ) and V2 (τ) are symmetric in the sense
that in their expressions the factors equally remote from the ends coincide
with each other. Therefore we have:

[V (τ)]i,j = [V (τ)]j,i , i, j = 1, ...,m;
[V (τ)]i,j,k = [V (τ)]k,j,i , i, j, k = 1, ..., m;

[V (τ)]i,j,k,l = [V (τ)]l,k,j,i , i, j, k, l = 1, ..., m.

Let us calculate the coefficients [V (τ)]i (i = 1, ...,m) corresponding to
the first order members in formula (3.8). It is obvious that the members,
corresponding to these coefficients, can be obtained from the decomposition
of only those factors (semigroups) of the operators V1 (τ) and V2 (τ), which
are generated by the operators (−γAi), and from the decomposition of
other semigroups only first addends (the members with identity operators)
will participate.

According to formulas (3.5) and (3.6), for any i have:

[V1(τ)]i = [U (τ, Ai)]i = 1, [V2(τ)]i = [U (τ,Ai)]i = 1.

From here, according to formula (3.10), we obtain:

[V (τ)]i = 1. (3.15)
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Let us calculate the coefficients [V (τ)]i,j (i, j = 1, ..., m) correspond-
ing to the second order members in formula (3.8). It is obvious that the
members, corresponding to these coefficients, can be obtained from the
decomposition of only those factors (semigroups) of the operators V1 (τ)
and V2 (τ), which are generated by the operators (−γAi) and (−γAj),
and from the decomposition of other semigroups only first addends (the
members with identity operators) will participate. Let i1 = min (i, j) and
i2 = max (i, j) , then from formula (3.11), with account of (3.5) and (3.6),
we obtain:

[V (τ)]i,j =
1
2

([
U

(
τ,

α

2
Ai1

)
U

(
τ,

1
2
Ai2

)
U (τ, αAi1)

× U

(
τ,

1
2
Ai2

)
U

(
τ,

α

2
Ai1

)]

i,j

+ U
(
τ,

α

2
Ai2

)
U

(
τ,

1
2
Ai1

)
U (τ, αAi2)

]

× U

(
τ,

1
2
Ai1

)
U

(
τ,

α

2
Ai2

)]

i,j

)
.

From here, according to (3.14), we obtain:

[V (τ)]i,j =
1
2
. (3.16)

Let us calculate the coefficients [V (τ)]i,,j,k (i, j, k = 1, ..., m) correspond-
ing to the third order members in formula (3.8). For i = j = k, according
to formulas (3.5) and (3.6), we have:

[V1(τ)]i,i,i = [U (τ, Ai)]i,i,i =
1
6
,

[V2(τ)]i,i,i = [U (τ, Ai)]i,i,i =
1
6
.

From here, according to formula (3.12), we obtain:

[V (τ)]i,i,i =
1
6
. (3.17)

Let us consider the case when only two of the indices i, j and k differ
from each other. Let i1 = min (i, j, k) and i2 = max (i, j, k) , then from
formula (3.12), with account of (3.5) and (3.6), we obtain:

[V (τ)]i,j,k =
1
2

(
U

(
τ,

α

2
Ai1

)
U

(
τ,

1
2
Ai2

)
U (τ, αAi1)
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U

(
τ,

1
2
Ai2

)
U

(
τ,

α

2
Ai1

)]

i,j,k

+
[
U

(
τ,

α

2
Ai2

)
U

(
τ,

1
2
Ai1

)
U (τ, αAi2)

+ U

(
τ,

1
2
Ai1

)
U

(
τ,

α

2
Ai2

)]

i,j,k

)
.

From here, according to (3.14), we obtain:

[V (τ)]i,j,k =
1
6
, (3.18)

for any indices i, j and k, where only two of them differ from each other.
Let us consider the case when the indices i, j and k differ from each

other. If i < j < k then, according to formula (3.5), the representation is
valid:

[V1(τ)]i,j,k =
[
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)
U

(
τ,

1
2
Ak

)

×U

(
τ,

α

2
Aj

)
U (τ, αAi) U

(
τ,

α

2
Aj

)

×U

(
τ,

1
2
Ak

)
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)]

i,j,k

=
[
U

(
τ,

α

2
Ai

)]
i

[
U

(
τ,

α

2
Aj

)]
j

[
U

(
τ,

1
2
Ak

)]

k

+
[
U

(
τ,

α

2
Ai

)]
i

[
U

(
τ,

α

2
Aj

)]
j

[
U

(
τ,

1
2
Ak

)]

k

+
[
U

(
τ,

α

2
Ai

)]
i

[
U

(
τ,

α

2
Aj

)]

j

[
U

(
τ,

1
2
Ak

)]

k

+
[
U

(
τ,

α

2
Ai

)]
i

[
U

(
τ,

α

2
Aj

)]

j

[
U

(
τ,

1
2
Ak

)]

k

+ [U (τ, αAi)]i

[
U

(
τ,

α

2
Aj

)]

j

[
U

(
τ,

1
2
Ak

)]

k

=
α

2
α

2
1
2

+
α

2
α

2
1
2

+
α

2
α

2
1
2

+
α

2
α

2
1
2

+ α
α

2
1
2

=
α2 + αα + α2

4
=

1
6
. (3.19)

Here we used the identities: α2 +α2 = 1
3 , αα = 1

3 . Analogously from (3.21)
we obtain:

[V2(τ)]i,j,k =
1
6
, i < j < k. (3.20)
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From formula (3.12), with account of formulas (3.19) and (3.20), we
obtain:

[V (τ)]i,j,k =
1
6
, i < j < k. (3.21)

From here, due to Remark 3.2, we obtain:

[V (τ)]i,j,k =
1
6
, k < j < i. (3.22)

Now consider the case j < i < k. Due to formula (3.5), the representa-
tion is valid:

[V1(τ)]i,j,k =
[
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)
U

(
τ,

1
2
Ak

)

×U

(
τ,

α

2
Ai

)
U (τ, αAj) U

(
τ,

α

2
Ai

)

×U

(
τ,

1
2
Ak

)
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)]

i,j,k

=
[
U

(
τ,

α

2
Ai

)]
i
[U (τ, αAj)]j

[
U

(
τ,

1
2
Ak

)]

k

+
[
U

(
τ,

α

2
Ai

)]

i

[U (τ, αAj)]j

[
U

(
τ,

1
2
Ak

)]

k

=
α

2
α

1
2

+
α

2
α

1
2

=
αα + α2

4
=

α

4
. (3.23)

Analogously, from (3.21) we obtain:

[V2(τ)]i,j,k =
αα + α

4
, j < i < k. (3.24)

From formula (3.12), with account of formulas (3.23) and (3.24), we obtain:

[V (τ)]i,j,k =
α + αα + α

8
=

1
6
, j < i < k. (3.25)

From here, due to Remark 3.2, we obtain:

[V (τ)]i,j,k =
1
6
, k < i < j. (3.26)

Now consider the case j < k < i. According to formula (3.5), the represen-
tation is valid:

[V1(τ)]i,j,k =
[
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ak

)
U

(
τ,

1
2
Ai

)
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×U

(
τ,

α

2
Ak

)
U (τ, αAj) U

(
τ,

α

2
Ak

)

×U

(
τ,

1
2
Ai

)
U

(
τ,

α

2
Ak

)
U

(
τ,

α

2
Aj

)]

i,j,k

=
[
U

(
τ,

1
2
Ai

)]

i

[U (τ, αAj)]j

[
U

(
τ,

α

2
Ak

)]

k

+
[
U

(
τ,

1
2
Ai

)]

i

[U (τ, αAj)]j
[
U

(
τ,

α

2
Ak

)]
k

=
1
2
α

α

2
+

1
2
α

α

2
=

α2 + αα

4
=

α

4
. (3.27)

Analogously, from (3.21) we obtain:

[V2(τ)]i,j,k =
αα + α

4
, j < k < i. (3.28)

From formula (3.12), with account of formulas (3.27) and (3.28), we obtain:

[V (τ)]i,j,k =
α + αα + α

8
=

1
6
, j < k < i. (3.29)

From here, due to Remark 3.2, we obtain:

[V (τ)]i,j,k =
1
6
, i < k < j. (3.30)

Uniting formulas (3.17),(3.18),(3.21),(3.22),(3.25),(3.26),(3.29) and (3.30),
we obtain:

[V (τ)]i,j,k =
1
6
, i, j, k = 1, ..., m. (3.31)

Let us calculate the coefficients [V (τ)]i,j,k,l (i, j, k, l = 1, ..., m) corre-
sponding to the fourth order members in formula (3.8). In the case when
i = j = k = l, due to formulas (3.5) and (3.6), we obtain:

[V1(τ)]i,i,i,i = [U (τ,Ai)]i,i,i,i =
1
24

,

[V2(τ)]i,i,i,i = [U (τ,Ai)]i,i,i,i =
1
24

.

From here, according to formula (3.13), we obtain:

[V (τ)]i,i,i,i =
1
24

. (3.32)

Let us consider the case when only two of the indices i, j, k and l differ
from each other. Let i1 = min (i, j, k, l) and i2 = max (i, j, k, l) , then from
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formula (3.13), with account of (3.5) and (3.6), the representation is valid:

[V (τ)]i,j,k,l =
1
2

([
U

(
τ,

α

2
Ai1

)
U

(
τ,

1
2
Ai2

)
U (τ, αAi1)

U

(
τ,

1
2
Ai2

)
U

(
τ,

α

2
Ai1

)]

i,j,k,l

+
[
U

(
τ,

α

2
Ai2

)
U

(
τ,

1
2
Ai1

)
U (τ, αAi2)

+ U

(
τ,

1
2
Ai1

)
U

(
τ,

α

2
Ai2

)]

i,j,k,l

)
.

From here, due to (3.14), we obtain:

[V (τ)]i,j,k,l =
1
24

, (3.33)

for any indices i, j, k and l, where only two of them differ from each other.
Let us consider the case when only two of the indices i, j, k and l coincide

with each other. On the whole, we have six cases, namely:
Case 1. (i, j, k, l) = (i, j, k, i),
Case 2. (i, j, k, l) = (i, j, i, k),
Case 3. (i, j, k, l) = (i, i, j, k),
Case 4. (i, j, k, l) = (i, j, k, j),
Case 5. (i, j, k, l) = (i, j, j, k),
Case 6. (i, j, k, l) = (i, j, k, k).
Comparing i, j and k indices we get six different subcases for each case.

Let us consider Case 1 and calculate its corresponding coefficients. The
coefficients, corresponding to five other cases, can be calculated analogously.

Let us consider the subcases of Case 1:
Subcase 1.1. i < j < k. Due to formula (3.5) we have:

[V1(τ)]i,j,k,i =
[
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)
U

(
τ,

1
2
Ak

)

×U

(
τ,

α

2
Aj

)
U (τ, αAi) U

(
τ,

α

2
Aj

)

×U

(
τ,

1
2
Ak

)
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)]

i,j,k,i

=
α

2
α

2
1
2
α +

α

2
α

2
1
2

α

2
+

α

2
α

2
1
2

α

2

+
α

2
α

2
1
2

α

2
+

α

2
α

2
1
2

α

2
+ α

α

2
1
2

α

2

=
α3 + 2α2α + α2α

8
=

α2 (α + α) + αα (α + α)
8
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=
α2 + αα

8
. (3.34)

Analogously we obtain

[V2(τ)]i,j,k,i =
α2

8
. (3.35)

From formula (3.13), with account of (3.34) and (3.35), we obtain:

[V (τ)]i,j,k,i =
α2 + αα + α2

16
=

1
24

, i < j < k. (3.36)

Subcase 1.2. k < j < i. From formula (3.36), due to Remark 3.2,
we obtain:

[V (τ)]i,j,k,i =
1
24

, k < j < i. (3.37)

Subcase 1.3. j < k < i. According to formula (3.5), we have:

[V1(τ)]i,j,k,i =
[
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ak

)
U

(
τ,

1
2
Ai

)

×U

(
τ,

α

2
Ak

)
U (τ, αAj) U

(
τ,

α

2
Ak

)

×U

(
τ,

1
2
Ai

)
U

(
τ,

α

2
Ak

)
U

(
τ,

α

2
Aj

)]

i,j,k,i

=
1
2
α

α

2
1
2

=
α2

8
. (3.38)

Analogously we obtain:

[V2(τ)]i,j,k,i =
αα + α2

8
. (3.39)

From formula (3.13), with account of (3.38) and (3.39), we obtain:

[V (τ)]i,j,k,i =
α2 + αα + α2

16
=

1
24

, j < k < i. (3.40)

Subcase 1.4. i < k < j. From formula (3.40), due to Remark 3.2,
we obtain:

[V (τ)]i,j,k,i =
1
24

, i < k < j. (3.41)

Subcase 1.5. j < i < k. According to formula (3.5), we have:

[V1(τ)]i,j,k,i =
[
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)
U

(
τ,

1
2
Ak

)

×U

(
τ,

α

2
Ai

)
U (τ, αAj) U

(
τ,

α

2
Ai

)
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×U

(
τ,

1
2
Ak

)
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)]

i,j,k,i

=
α

2
α

1
2

α

2
+

α

2
α

1
2

α

2
=

α2α + α2α

8

=
αα (α + α)

8
=

1
24

. (3.42)

Analogously, from (3.21), we obtain:

[V2(τ)]i,j,k,i =
1
24

. (3.43)

From formula (3.13), with account of (3.42) and (3.43), we obtain:

[V (τ)]i,j,k,i =
1
24

, j < i < k. (3.44)

Subcase 1.6. k < i < j. From formula (3.44), due to Remark 3.2,
we obtain:

[V (τ)]i,j,k,i =
1
24

, k < i < j. (3.45)

Uniting formulas (3.36),(3.37),(3.40),(3.41),(3.44) and (3.45), we obtain:

[V (τ)]i,j,k,i =
1
24

, (3.46)

for any indices i, j and k different from each other. Analogously, for other
five cases, we obtain:

[V (τ)]i,j,i,k = [V (τ)]i,i,j,k = [V (τ)]i,j,k,j

= [V (τ)]i,j,j,k = [V (τ)]i,j,k,k =
1
24

, (3.47)

for any indices i, j and k different from each other.
Uniting formulas (3.46) and (3.47), we obtain:

[V (τ)]i,j,k,l =
1
24

, (3.48)

for any indices i, j, k and l, where only two of them coincide with each
other.

Now let us consider the case when the indices i, j, k and l are differ-
ent. It is obvious that comparing i, j, k and l indices we get twenty four
different cases. Let us consider one of them and calculate its corresponding
coefficients (the coefficients corresponding to other cases can be calculated
analogously).

Let i < j < k < l, then according to formula (3.5), we obtain:
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[V1(τ)]i,j,k,l =
[
U

(
τ,

α

2
Ai

)
U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ak

)

×U

(
τ,

1
2
Al

)
U

(
τ,

α

2
Ak

)
U

(
τ,

α

2
Aj

)

×U (τ, αAi) U

(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ak

)

×U

(
τ,

1
2
Al

)
U

(
τ,

α

2
Ak

)

×U
(
τ,

α

2
Aj

)
U

(
τ,

α

2
Ai

)]
i,j,k,l

=
α

2
α

2
α

2
1
2

+
α

2
α

2
α

2
1
2

+
α

2
α

2
α

2
1
2

+
α

2
α

2
α

2
+

α

2
α

2
α

2
1
2

+
α

2
α

2
α

2
+ α

α

2
1
2

=
α2α + αα2 + α3 + α3

8
α

2

=
α2 + α2

8
=

1
24

. (3.49)

Analogously, from (3.21), we obtain:

[V2(τ)]i,j,k,l =
1
24

, i < j < k < l. (3.50)

From formula (3.13), with account of formulas (3.49) and (3.50), we obtain:

[V (τ)]i,j,k,l =
1
24

, i < j < k < l.

Analogously we can show that this equality is valid for other twenty
three cases. Therefore we have:

[V (τ)]i,j,k,l =
1
24

, (3.51)

for any indices i, j, k and l, which differ from each other.
Uniting formulas (3.32), (3.33), (3.48) and (3.51), we obtain:

[V (τ)]i,j,k,l =
1
24

, i, j, k, l = 1, ..., m. (3.52)

From equality (3.8), with account of formulas (3.15), (3.16), (3.31) and
(3.52), we obtain:

V (τ) = I − τ
m∑

i=1

Ai +
1
2
τ2

m∑

i,j=1

AiAj − 1
6
τ3

m∑

i,j,k=1

AiAjAk
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+
1
24

τ4
m∑

i,j,k,l=1

AiAjAkAl + R5 (τ)

= I − τ
m∑

i=1

Ai +
1
2
τ2

(
m∑

i=1

Ai

)2

−1
6
τ3

(
m∑

i=1

Ai

)3

+
1
24

τ4

(
m∑

i=1

Ai

)4

+ R5 (τ)

= I − τA +
1
2
τ2A2 − 1

6
τ3A3 +

1
24

τ4A4 + R5 (τ) . (3.53)

According to formula (3.1), we have:

U (τ, A) = I − τA +
1
2
τ2A2 − 1

6
τ3A3 +

1
24

τ4A4 + R5 (τ,A) . (3.54)

According to the second inequality of condition (b) of the Theorem 3.1
for R5 (τ, A), the following estimate is valid:

‖R5 (τ, A) ϕ‖ ≤ ceωττ5
∥∥A5ϕ

∥∥
≤ ceωττ5 ‖ϕ‖A5 , ϕ ∈ D

(
A5

)
. (3.55)

According to equalities (3.53) and (3.54), we have:

U (τ,A)− V (τ) = R5 (τ, A)−R5 (τ) .

From here, with account of inequalities (3.9) and (3.55), the following esti-
mation can be obtained:

‖[U (τ, A)− V (τ)]ϕ‖ ≤ ceω2ττ5 ‖ϕ‖A5 , ϕ ∈ D
(
A5

)
. (3.56)

From equalities (2.2) and (3.3), with account of inequalities (3.7) and
(3.56), we obtain:

‖u(tk)− uk(tk)‖ =
∥∥∥
[
U(tk, A)− V k (τ)

]
ϕ
∥∥∥

=
∥∥∥
[
Uk (τ, A)− V k (τ)

]
ϕ
∥∥∥

=

∥∥∥∥∥
k∑

i=1

V k−i (τ) [U (τ,A)− V (τ)] U ((i− 1) τ, A) ϕ‖

≤
k∑

i=1

‖V (τ)‖k−i

×‖[U (τ, A)− V (τ)]U ((i− 1) τ, A) ϕ‖
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≤
k∑

i=1

eω1(k−i)τceω2ττ5 ‖U ((i− 1) τ,A) ϕ‖A5

≤ ceω0tkτ5
k∑

i=1

‖U ((i− 1) τ, A) ϕ‖A5

≤ kceω0tkτ5 sup
s∈[o,tk]

‖U (s,A) ϕ‖A5

≤ ceω0tktkτ
4 sup

s∈[o,tk]
‖U (s,A)ϕ‖A5 ¥

4 Relation between two-dimensional and multi-
dimensional decomposition formulas

In this section we propose a method by means of which in our opinion it
is available on the basis of two-dimensional decomposition formula to con-
struct a multi-dimensional decomposition formula with the same precision
order. Let the two-dimensional decomposition formula has the following
form:

V (2) (τ ; A1, A2) =
q∑

i=1

σi

mi∏

j=1

U
(
τ, α

(i)
j A1

)
U

(
τ, β

(i)
j A2

)
, (4.1)

where parameters σi, α
(i)
j and β

(i)
j satisfy the following conditions (weights

σi are real numbers, and α
(i)
j and β

(i)
j are generally complex numbers):

q∑

i=1

σi = 1, (4.2)

q∑

i=1

σi

mi∑

j=1

α
(i)
j =

q∑

i=1

σi

mi∑

j=1

β
(i)
j = 1. (4.3)

In the formula (4.1) we mean, that U (τ, γAl) = I (l = 1, 2), when γ = 0.

For the given method it is necessary that the parameters α
(i)
j and β

(i)
j

additionally satisfy the following conditions:

mi∑

j=1

α
(i)
j =

mi∑

j=1

β
(i)
j , i = 1, ..., q. (4.4)

At the first step of the method the formula (4.1) is written in such a
form that one can clearly see its generalization for the multi-dimensional
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case. For this reason the formula (4.1) is written in the following form:

V (2) (τ ;A1, A2) =
q∑

i=1

σi

mi∏

j=1

U
(
τ, µ

(i)
1,jA1

)
U

(
τ, µ

(i)
1,jA2

)

×U
(
τ, µ

(i)
2,jA2

)
U

(
τ, µ

(i)
2,jA1

)

=
q∑

i=1

σi

mi∏

j=1

(
2∏

l=1

U
(
τ, µ

(i)
1,jAl

))

×
(

2∏

l=1

U
(
τ, µ

(i)
2,jA3−l

))
. (4.5)

where

µ
(i)
1,j = β

(i)
j +

j∑

k=1

(
α

(i)
k − β

(i)
k

)
,

µ
(i)
2,j =

j∑

k=1

(
β

(i)
k − α

(i)
k

)
.

For the formula (4.5) to be the equivalent to the formula (4.1), it is
necessary to fulfill the following equalities:

µ
(i)
1,j + µ

(i)
2,j = β

(i)
j ,

µ
(i)
2,j + µ

(i)
1,j+1 = α

(i)
j+1,

µ
(i)
1,mi

= β(i)
mi

,

µ
(i)
2,mi

= 0.

It is easy to check that these equalities are fulfilled if the equalities (4.4)
are fulfilled.

Let us construct the following decomposition formula on the basis of
the formula (4.5):

V (m) (τ ; A1, ..., Am) =
q∑

i=1

σi

mi∏

j=1

(
m∏

l=1

U
(
τ, µ

(i)
1,jAl

))

×
(

m∏

l=1

U
(
τ, µ

(i)
2,jAm−l+1

))
. (4.6)

Naturally the operators A3, ..., Am (m > 2) have to satisfy the same
conditions as operators A1 and A2. In our opinion, the formula (4.6) con-
structed for m summands (A = A1 + A2 + ... + Am) will be of the same
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order as the decomposition formula (4.5) constructed for two summands
(A = A1 + A2).

In the work [3] and present work, using this method there are con-
structed third and fourth order precision multi-dimensional decomposition
formulas.

To illustrate the method, let us consider the following case of Streng for-
mula in detail

(
V (τ ; A1,A2) = U

(
τ, 1

2A1

)
U (τ, A2) U

(
τ, 1

2A1

))
. We write

it in the form as (4.5):

V (2) (τ ; A1, A2) = U

(
τ,

1
2
A1

)
U

(
τ,

1
2
A2

)
U

(
τ,

1
2
A2

)
U

(
τ,

1
2
A1

)
.

Hence, for a multi-dimensional case we obtain the following formula:

V (m) (τ ; A1, ..., Am) = U

(
τ,

1
2
A1

)
...U

(
τ,

1
2
Am−1

)
U

(
τ,

1
2
Am

)

×U

(
τ,

1
2
Am

)
U

(
τ,

1
2
Am−1

)
...U

(
τ,

1
2
A1

)

= U

(
τ,

1
2
A1

)
...U

(
τ,

1
2
Am−1

)
U (τ,Am)

×U

(
τ,

1
2
Am−1

)
...U

(
τ,

1
2
A1

)
.

The given method has not been proven yet, though below we prove the
theorem which partially justifies this method.

Theorem 4.1 Let the decomposition formula (4.6) has the precision order
p (≥ 2) at m = p. Then the decomposition formula (4.6) will have the same
precision order for any m (≥ 2).

Proof. As following to the condition of the Theorem 4.1, the decom-
position formula (4.6) has the precision order p at p = m, therefore the
equalities are valid:

[
V (p) (τ ; A1, ..., Ap)

]
i

= 1, i = 1, ..., p, (4.7)
[
V (p) (τ, A1, ..., Ap)

]
i1,...,is

=
1
s!

, (4.8)

i1, ..., is = 1, ..., p, s = 2, ..., p

Therefore it follows that, for any m ≤ p, the following equalities are valid:
[
V (m) (τ ; A1, ..., Am)

]
i

= 1, i = 1, ..., m, (4.9)
[
V (m) (τ, A1, ..., Am)

]
i1,...,is

=
1
s!

, (4.10)

i1, ..., is = 1, ..., m, s = 2, ..., p.
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It means that the decomposition formula (4.6) has the order p for any
m ≤ p. Now let us show that equalities (4.9) and (4.10) are valid for any
m > p. Validity of equalities (4.9) can be easily checked, as, according to
formula (4.3), we have:

[
V (m) (τ ; A1, ...Am)

]
i

=
q∑

i=1

σi

mi∑

j=1

(
µ

(i)
1,j + µ

(i)
2,j

)

=
q∑

i=1

σi

mi∑

j=1

β
(i)
j = 1. (4.11)

Let us prove the validity of equalities (4.10) for any m > p. Coefficients[
V (m) (τ,A1, ...Am)

]
i1,...,is

can be obtained from the decomposition of only
those semigroups which are generated by the operators (−Aj1) , ..., (−Ajr),
where (j1, .., jr) is a system of different indices from (i1, ..., is) sorted ascend-
ing (for example, if s = 5 and (i1, i2, i3, i4, i5) = (3, 3, 1, 2, 1), then r = 3
and (j1, j2, j3) = (1, 2, 3)). From the decompositions of other semigroups,
there will participate only first summands (terms with identity operators).
Therefore we have:

[
V (m) (τ, A1, ..., Am)

]
i1,...,is

=
[
V (r) (τ, Aj1 , ..., Ajr)

]
i1,...,is

. (4.12)

As r ≤ s ≤ p in the right-hand side of equality (4.12), therefore, according
to (4.10) we have:

[
V (r) (τ, Aj1 , ..., Ajr)

]
i1,...,is

=
1
s!

, s = 2, ..., p. (4.13)

From (4.12) and (4.13) we obtain:

[
V (m) (τ, A1, ..., Am)

]
i1,...,is

=
1
s!

, (4.14)

i1, ..., is = 1, ...,m, s = 2, ..., p, m > p.

From (4.10), (4.11) and (4.14) it follows that decomposition formula
(4.6) has a precision order p for any m ≥ 2. ¥

From this theorem it follows that if formula (4.1) has second order preci-
sion, then decomposition formula (4.6) will automatically have second order
precision (obviously, according to conditions (4.2) and (4.3), decomposition
formula (4.6) will always have first order precision).

Below, on basis of the above-described method, we will construct a
generalization of third and fourth order precision Schatzman decomposition
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formulas for any number m (≥ 2) of summands. In case of two summands,
these formulas have the following form (see [1]):

V
(2)
1 (τ ; A1, A2) =

2
3

[
U

(
τ,

1
2
A1

)
U (τ,A2) U

(
τ,

1
2
A1

)

+ U

(
τ,

1
2
A2

)
U (τ, A1) U

(
τ,

1
2
A2

)]

−1
6

(U (τ, A1) U (τ,A2)

× U (τ, A2) U (τ,A1)) . (4.15)

V
(2)
2 (τ ;A1, A2) =

4
3
U

(
τ,

1
4
A1

)
U

(
τ,

1
2
A2

)

×U

(
τ,

1
2
A1

)
U

(
τ,

1
2
A2

)
U

(
τ,

1
4
A1

)

−1
3
U

(
τ,

1
2
A1

)
U (τ, A2) U

(
τ,

1
2
A1

)
. (4.16)

Decomposition formula (4.15) has third order precision, and decompo-
sition formula (4.16) has fourth order precision. Generalization of these
formulas for any number m (≥ 2) of summands will be written as follows:

V
(m)
1 (τ ; A1, ..., Am) =

2
3

[
U

(
τ,

1
2
A1

)
...U

(
τ,

1
2
Am−1

)
U (τ,Am)

×U

(
τ,

1
2
Am−1

)
...U

(
τ,

1
2
A1

)

+U

(
τ,

1
2
Am−1

)
...U

(
τ,

1
2
A2

)
U (τ, A1)

× U

(
τ,

1
2
A2

)
...U

(
τ,

1
2
Am

)]

−1
6

(U (τ, A1) ...U (τ, Am)

× U (τ, Am) ...U (τ,A1)) . (4.17)

V
(m)
2 (τ ; A1, ..., Am) =

4
3
U

(
τ,

1
4
A1

)
...U

(
τ,

1
4
Am−1

)

×U

(
τ,

1
2
Am

)
U

(
τ,

1
4
Am−1

)
...U

(
τ,

1
4
A2

)

U

(
τ,

1
2
A1

)
U

(
τ,

1
4
A2

)
....U

(
τ,

1
4
Am−1

)
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×U

(
τ,

1
2
Am

)
U

(
τ,

1
4
Am−1

)
...U

(
τ,

1
4
A1

)

−1
3
U

(
τ,

1
2
A1

)
...U

(
τ,

1
2
Am−1

)
U (τ, Am)

×U

(
τ,

1
2
Am−1

)
...U

(
τ,

1
2
A1

)
(4.18)

As a result of some calculations, we have obtained that decomposition
formula (4.17) has third order precision for m = 3 summands, and decom-
position formula (4.18) has fourth order precision for m = 4 summands.
From here, due to Theorem 4.1 it follows that decomposition formulas
(4.17) and (4.18) have respectively third and fourth order precision for any
number m (≥ 2) of summands.
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