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Abstract

The work completed in this article is devoted to study the stability of open stochas-

tic networks, and to seek the moments when the network becomes empty or occupied.

One will limit oneself to the simple case of open networks i.e. a system of queue-

ing made up of a finished number of stations taken into parallels and each station is

equipped by several servers which serve the customers according to discipline FIFO

(first int first out). Our goal is to give a detailed proof concerning the existence of

occupation and freedom periods in this type of networks by using specific processes

theory.
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1 Introduction

The recent developments of the telecommunications technics make math-
ematical modelling by queueing networks from now on essential since the
first study probabilities carried out into 1917 by Erlang on the modelling
of a telephone systems.
Many problems were tackled ; let us quote some work: Moscox Songhurst
D.J. (1884) ”Subscriber repeat attempts, congestion and the quality of ser-
vice” Brit-telecom.Technol. J.2 - regenerative J.W. Cohen ”on regenerative
processes in queueing theory” Springer- Verlag.
In the general case, there are two types of queueing networks, open and
closed.
The study of queueing networks knew an enormous renewed interest since
1970, it is more and more indispensable to study the great systems starting
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from the mathematical models, the queueing networks often are used to
solve certain telephone or data-processing problems.
To return the study of this models’s type easy, one calls upon the notions
of a specific processes and Palm theory, while basing oneself on these two
concepts, one can study the stationarity of the networks where the laws of
entry and service are general. One needs two very useful properties, one is
a property of the recurrence, it is satisfied by a good number of queueing
systems, it acts of lapse memory property, the second is the coupling prop-
erty. By connecting the two properties, one will speak about the SWAP
i.e stable well autocoupled processes.

The work completed in this article is devoted to study the stability of
open stochastic networks; to give the sufficient conditions so that the sys-
tem is stable, and to seek the moments when the network becomes empty
or occupied by considering a queueing system made up of a finished number
of stations taken in parallels and each station is equipped by several servers
which serve the customers according to discipline FIFO (first in first out).

In its article of 1981, Numelin [9] studied the recurrence in GI/G/1
cascade queueing networks, Sigman [11] generalized the results of Numelin
and showed that the systems are regenerating by using the discipline RA
(Random assignment) which consists in allotting to each customer arriving
in the system a free server with an independent uniform probability.
We study a generalization of these results for the queueing systems quoted
with the top.

One gives the stability conditions for the network made up of N sta-
tions taken in parallels, then a detailed proof of the theorem ensuring the
existence of the freedom and occupation moments by making the study
station by station.

2 Open queueing Networks with several identical
servers

21. Stability study of the network

We consider an open queueing networks with m stations i.e a queueing
system in cascade. Station l has ql servers, ql ∈ N∗.

The entry-service process is a marked specific process of renewal with
marks in Rm

+ , and is defined by N =
∑

n∈Z δTn ⊗ δBn , on a real flood
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(Ω,A,P, Θ).

Bn = (B1
n, · · · , Bm

n ), n ∈ Z represent the services claimed successively
at the m stations by the customer arriving at the moment Tn in the system,
This customer is called the n-th customer, he passes successively in each
m services at moments Tn, T 1

n , · · · , Tm−1
n where T l

n, l ∈ 1, · · · ,m− 1 in-
dicates the exit moment of the n-th customer of the l-th station or the
moment of arrival of this customer to the (l + 1)-th station.

One notes

Sl = {sl = (s1
l , · · · , sq1

l ) ∈ Rql/0 ≤ s1
l ≤ · · · ≤ sq1

l

S = Πm
l=1Sl.

Let s = (s1, · · · , sm) ∈ S, for l ∈ {1, · · · ,m},W l(s, t) represents the load of
the l-th station at moment t− 0, with W l(s, 0) = sl and we note

W(s, t) = (W1(s, t), ...,Wm(s, t)).

One poses

W = (W(s, t), t ∈ R+, s ∈ S).

The moments of exit in transient state of the stations are defined by

∀s ∈ S, ∀n ∈ N, T 0
n(s) = Tn.

∀s ∈ S, ∀n ∈ N, ∀l ∈ {1, · · · ,m− 1},

T l
n(s) = T l−1

n (s) + W l,1(s, T l−1
n (s)) + Bl

n.

In the same way, if there is a stationary regime, one notes Ŵ l(t) the load
in stationary regime of the l-th station at moment t− 0, and we note

Ŵ (t) = (Ŵ 1(t), ..., Ŵm(t)).

The exit moments of l-th station in stationary regime are given by

∀n ∈ Z, T 0
n = Tn.

∀n ∈ Z, ∀l ∈ (i, ..., m− 1), T l
n = T l−1

n + Ŵ l,1(T l−1
n ) + Bl

n.
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+∞∑

n=0

δT l
n(s) ⊗ δBl

n
is nonstationary specific process, and

lim
n→+∞T l

n(s) = +∞

it makes it possible to define the process (W l(s, t), t ≥ 0).

T l
n(s) and T l

n, with n ∈ Z are not inevitably ordered by order ascending
of the indices and we don’t have inevitably T l

0 ≤ 0.

The following theorem gives us a sufficient condition of stability.

Theorem 21..1 (6) If for all C of the σ-algebra σ{Ai, i ∈ Z}, for all
l ∈ {1, · · · ,m}, for all Dl of the σ-algebra σ{Bl

i, i ≤ 0} and for all El of
the σ-algebra σ{Bl

i, i ≥ 1} :

P̂(C) > 0, P̂(Dl) > 0 et P̂(El) > 0 =⇒ P̂(C ∩
m⋂

l=l

Dl ∩ El) > 0

and if for all l, l ∈ {1, · · · ,m}
Ê(Bl

0) < qlÊ(A),

then the process (W,Q) is a stable well autocoupled process SWAP.

22. Occupation and freedom moments in open queueing
networks with several identical servers

Freedom moments

In its article of 1981, Numelin studied the recurrence of GI/G/1 in cascade

and showed that under the assumption
m∑

l=1

bl < a, the system becomes

empty an infinity of time. Us, we study a generalization of this result
for open networks with several identical servers. One supposes here that
N =

∑

nZ
εTn ⊗ εBn is a marked specific process of renewal and that the

sequences of random variables (An, n ∈ Z), (B1
n, n ∈ Z), . . . , (Bm

n , n ∈ Z)
are independent and for all l ∈ {1, . . . ,m}, one defines

bl = essinf Bl, b = (b1, . . . , bm)
a = esssup A
jl = max{k ∈ N/ka ≤ bl}, j =

∑m
l=1 jl

kl = max{kp ∈ N/kpa ≤ ∑l
i=1 bi}

hl = jl + kl−1 + 1.
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We have
j1 + . . . + jl ≤ kl ≤ j1 + . . . + jl + l − 1

While posing h = hm , one will have (according to the assumption of
stability)

∀l , 1 ≤ l ≤ m : 0 ≤ jl < ql.

Proposition 22..1 Under the assumption of stability

Ê(Bl
0) < qlÊ(A), ∀l, 1 ≤ l ≤ m

and if
∑m

l=1 bl < a , then for all initial state x in S, with probability
equalizes to 1, the system empties an infinity of time.

Proof
So that the demonstration is clear, one considers initially the case where

the sequences of random variables (An, n ∈ Z) and (Bn, n ∈ Z) are con-
stant, then we look at the general case.

First stage : The variables are constant
In this stage, one poses for all n ∈ Z, An = a and Bn = b.
Initially, it is supposed that the loads of all the servers at the moment
T0 are equal to 0 (in other words, one brings back the beginning of the
phenomenon to the moment T0), i.e

∀l = 1, . . . , m; W l(T0) = 0ql
.

Let W (T0) = 0ql
× . . .× 0qm be the initial state of the process

W = (W l, 1 ≤ l ≤ m).

The first customer who arrives just after the moment T0 i.e. at T0 + 0 to
the system, he asks for a service b1. Consequently, the load vector of the
servers becomes :

W (T0 + 0) = ((0q1−1, b
1); 0q2 ; . . . , 0qm),

this because when the customer arrives, he chooses one among the q1

servers, and when he is been useful, he leaves the first station at the mo-
ment T0 + b1 , then he returns in the second station and request another
service b2. However, no arrival is recorded until the customer is served in

all the stations , owing to the fact that
m∑

l=1

bl < a. From where

W (T0 + bl) = W (T0),
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then at the last station, the load vector of the servers is given by

W (
m∑

l=1

bl + 0) = (0q1 , . . . , 0qm−1, (0qm−1, b
m)).

Consequently, at moment
m∑

l=1

bl, one has

W (
m∑

l=1

bl) = (0q1 , . . . , 0qm−1, (0qm)),

and that wants to say that

W (
m∑

l=1

bl) = W (T0).

The customer leaves the system at the moment (T0 +
m∑

l=1

bl), and as from

this moment, a second customer can arrive at the moment T2 , he does the
same work as that of the first customer. Thus, by using the same stages
one obtains W (T1) = W (T0), and so on.
For all n ∈ Z, the system remains empty at Tn, and consequently, the mo-
ments of freedom are the moments Tn of customers’s arrivals.

It is supposed now that the initial loads of the services are not null, i.e

W x
0 = W (x, T0) = x = (x1, . . . , xm) ∈ S1×. . .×Sm , x 6= (0Rq1 , . . . , 0Rqm ).

The arrival of a first customer at the first station at the moment T0 + 0
results in the request for a service b1 and the load vector of the servers
checks

W (x, T0 + 0) ≤ ((xq1
1 eq1−1, x

q1
1 + b1), xq2

2 eq2 , . . . , x
qm
m eqm),

then, at moment when this customer finishes his first service, the load
vector of servers checks

W (x, b1) ≤ (((xq1
1 − b1)+eq1 − 1, xq1

1 ), (xq2
q2
− b1)+eq2 , . . . , (x

qm
m − b1)+eqm).

One continues in the same way for the following stations, and when the
customer completes his service, he leaves the network. From this moment,
another arrival is awaited, saying at the moment T1 + 0 . But just before
this arrival, i.e. at the moment T1 the load vector of the servers checks

W (x, T1) ≤ (((xq1
1 − a)+eq1 − 1, (xq1

1 + b1 − a)+), . . . ,
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((xqm
m − a)+eqm − 1, (xqm

m + bm − a)+)).

Thus, one finds oneself in the situation of the first case, i.e. W (x, T1) = 0q,
under the condition

xql
l + bl − a ≤ 0, ∀l ∈ {1, . . . , m}.

If not, one continues to calculate the load vector of the servers until there
in n such as

∃l ∈ {l, . . . ,m}; xql
l + n(bl − qla) > 0,

and
∀l ∈ {1, . . . ,m}, xql

l + (n + 1)(bl − qla) ≤ 0.

Thus, we have

W (x, Tnq) ≤ (xq1
1 + n(b1 − q1a))eq1 , . . . , (x

qm
m + n(bm − qma))eqm).

Of another share, we have

xql
l + (n + 1)(bl − qla) ≤ 0, ∀l ∈ {1, . . . , m},

from where
W (x, T(n+1)q1

) = 0ql
, ∀l ∈ {1, . . . , m}.

Thus,
W (x, T(n+1)q) = 0q.

Consequently, one will be able to determine the moments of freedom in the
network while choosing n such as

n = sup{[ xql
l

qla− bl
], 1 ≤ l ≤ m}+ 1.

Second stage : (An, n ∈ Z) and (Bn, n ∈ Z) are unspecified.
In this case, one defines for all n ∈ N the following event:

Hn = ∪n
k=1{Bk−1 ≤ b + εem, Ak > a− ε},

where ε is a strictly positive real number suitably chosen such as for all
l ∈ {1, . . . , m}, one has bl + 2ε < a.
In addition, one can notice that

∀n ∈ N, P̂(Hn) > 0.

Let us suppose moreover than the initial loads of the servers are not null,
and that the event Hn is carried out. It in result that

W (x, T0) = x 6= 0q.
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When the first customer arrives at the moment T0 + 0 at the first station,
the load vector of the servers checks the inequality :

W (x, T0 + 0) ≤ ((xq1
1 eq1 + b1 + ε, xq1

1 eq1−1), x
q2
2 eq2 , . . . , x

qm
m eqm),

and the same, at the moment when the customer finishes its first service,
the load vector of the servers will check

W (x, T0 +B1
0) ≤ ((xq1

1 +ε, (xq1
1 −b1)eq1−1), (x

q2
2 −b1)eq2 , . . . , (x

qm
m −b1)eqm).

The assumption
∑m

l=1 bl < a affirms us that no arrival is recorded before
the moment T1 . Thus, the load vector of the servers at this moment check

W (x, T1) ≤ (((xq1
1 − a + 2ε)+eq1 − 1, (xq1

1 + b1 − a + 2ε)+)

, ..., ((xqm
m − a + 2ε)+eqm − 1, (xqm

m + b1 − a + 2ε)+)).

Thus, T1 will be a freedom moment if

∀l ∈ {1, . . . , m}, xql
l + bl − a + 2ε ≤ 0.

If not, there is n such as

∃l ∈ {1, . . . , m}; xql
l + n(bl − qla) + 2ε > 0,

and
∀l ∈ {1, . . . , m}, xql

l + (n + 1)(bl − qla) + 2ε ≤ 0.

To determine the moments of freedom Tn on Hn, we will choose n such as

n = sup{[ xql
l

qla− bl − 2ε
], 1 ≤ l ≤ m}+ 1.

Thus, on Hn, we have W (x, Tn) = 0q. That completes the proof of the
proposition and gives the moments of freedom in the network.

23. Occupation moments

One sought in the preceding paragraph the moments of freedom in the
queueing system (open network with several identical servers), the follow-
ing paragraph will be devoted to the research of the occupation moments.
In other words, moments when the system is not empty.

One supposes that ∀t ≥ T0, there is at least an occupied server, i.e. a
station in load. From where, the contrary condition at times of freedom,
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i.e we are in the situation
∑m

l=1 bl ≥ a.

We will determine the moments of occupation by making the study
station by station, because it will pose the problem of customers reclassifi-
cation after having finished the service in each station.

Initially , we consider that the random variables (An, n ∈ Z) and
(Bn, n ∈ Z) are constant, then we will treat the case of them where the
variables are unspecified.

First stage : The variables are constant, An = a and Bn = b.

For all l ∈ {1, . . . , m}, one notes

v1 = (0, . . . , 0, bl − jla, . . . , bl − a)

vl = (0, . . . , 0, (
l∑

k=1

bk − hla)+,

l∑

k=1

bk − (hl − 1)a, . . . ,

l∑

k=1

bk(Kl−1 + 1)a).

By keeping the same notations used in preceding paragraph, one defines
also the vector

v = (v1, . . . , vm).

The following lemma shows that starting from a certain number N , every
moment are moments of occupation, i.e. at least, there is an occupied
server.

Lemma 23..1 For all initial state x ∈ S, there is N such as

∀n ≥ N, W (x, Tn) = v.

Proof: During the demonstration of the lemma, one will determine the
moments of occupation. Because of customers’s reclassification, one will
show this lemma station by station.

First station: The network contains m stations, which are equipped
by ql servers respectively with l ∈ {1, . . . ,m}. Let x1 ∈ S1 be the initial
state of the process W 1, i.e

W 1(x, T0) = x1 = (x1
1, . . . , x

q1
1 ) ∈ S1.

one tries to find N such as

∀n ≥ N, W 1(x1, Tn) = v1
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i.e. that starting from a certain number of customers, the first station be-
comes occupied. For that, one will discuss according to the initial state of
the process in the first station. Two possibilities are taken into account :

First case : (xq1
1 < q1a)

One has according to the definitions of the integers kj and a that
k1 < q1 and k1a ≤ x1

1 < (k1 + 1)a.
Thus, the load vector at Tk1 checks

W 1(x1, Tk1) ≥ (x1
1 − k1a, . . . , x1

1 − k1a, x1
1 + b1 − k1a, . . . , x1

1 + b1 − k1a).

Since x1
1− (k1 + 1) + a < 0 and x1

1− k1a ≥ 0. Then, at moment Tk1+1, this
vector checks

W 1(x1
1, Tk1+1) ≥ (0, . . . , 0, (x1

1 +b1−(k1 +1)a)+, . . . , (x1
1 +b1−(k1 +1)a)+).

Moreover, one has x1
1 − k1a ≥ 0, and b1 − a ≥ 0, so

x1
1 + b1 − (k1 + 1)a ≥ 0,

this returns the load vector at the moment Tk1+1 in the form :

W 1(x1
1, Tk1+1) ≥ (0, . . . , 0, x1

1 + b1 − (k1 + 1)a, . . . , (x1
1 + b1 − (k1 + 1)a).

Since jl being largest integer checking jla ≤ bl, then

b1 − j1a ≤ b1 − k1a,

and we have

x1
1 + b1 − (k1 + 1)a > (x1

1 − k1a) + b1 − j1a.

Moreover, one has according to the stability condition that

∀l ∈ {1, . . . ,m}, 0 ≤ jl ≤ ql.

Thus, at Tk1+q1 , one has

W 1(x1, Tk1+q1) ≥ (0, . . . , 0, b1 − j1a, . . . , b1 − a).

It is known in addition that the arrival of k1-th customer was characterized
by the load vector which checks

W 1(x1, Tk1) ≤ (xq1
1 −k1a, . . . , xq1

1 −k1a, (xq1
1 +b1−k1a), . . . , xq1

1 +b1−k1a)).
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By using the same reasoning as previously, but instead of the first server,
one speaks about q1-th server. Thus, one will have

W 1(x1
1, Tk1+1) ≤ (0, . . . , 0, (xq1

1 +b1−(k1 +1)a)+, . . . , (xq1
1 +b1−(k1 +1)a)+

i.e
W 1(x1, Tk1+q1) ≤ (0, . . . , 0, b1 − j1a, . . . , b1 − a),

and this is not other than v1 or v1. Thus, the load vectors W 1(x1, Tk1+q1)
and W 1(x1, Tk1+q1+1) are raised and undervalued by the same vector, from
where

W 1(x1, Tk1+q1) = W 1(x1, Tk1+q1+1) = v1 = v1.

Consequently, one has

∀n ≥ k1 + q1 : W 1(x1, Tn) = v1.

Since the sequence (Tn) is increasing and v1 is not null, then Tn, n ≥ k1+q1

are a moments of occupation in the system.

Second case: (xq1
1 ≥ q1a− b1)

In this case, instead of k1 one uses kp1 which is defined by

kp1 = [
xq1

1

q1a− b1
] + 1.

Thus, we have

kp1(q1a− b1) ≤ xq1
1 ≤ (kp1 + 1)(q1a− b1)

and
W 1(x1, Tkp1+q1

) ≤ (xq1
1 + kp1(b

1 − q1a))eq1 .

By using the condition xq1
1 ≥ q1a−b1 and the definition of j1, we will obtain

W 1(x1, T(kp1+q1)+j1
) ≤ (0, . . . , 0, b1 − j1a, . . . , b1 − a).

In addition, and by using the same stages that those of the first case, one
obtains

W 1(x1, T(kp1+1)q1+j1
) ≥ (0, . . . , 0, b1 − j1a, . . . , b1 − a).

From where
W 1(x1, T(kp1+1)q1+j1

) ≥ v1.

Thus, we choose N = max(k1 + q1, (kp1 + 1)q1 + j1) to have

∀n ≥ N, W 1(x1, Tn) = v1.
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Then, the network is occupied in every moments Tn with n ≥ N.

After having completed their services at the first station, the customers
arrive at the second station at the moments

T 1
n(x1) = na + b1 + W 1,1(x1, Tn).

But, the order of the customers will change. For that, one must order the
customers after their exits of the first station, as follows:
one has according to previously

∀n ≥ N,W 1(x1, Tn) = v1.

The first component of v1 is null, and the latter is nothing other than
W 1,1(x1, Tn). Thus, one has

T 1
n(x1) = na + b1 + W 1,1(x1, Tn) = na + b1.

However, Tn(x1), n ≥ N are ordered, since the sequence (na + b1)n≥N is
increasing. One can thus find oneself in the case of the first station while
posing

T 1
n(x1) = T 1

n(0).

In other words, starting from a certain number N , the process forgets its
initial state.

Second station: The second station contains q2 servers, reclassifi-
cation which was made before enables us to remake the same reasoning in
the second station. Let x2 ∈ S2 be the initial state of W 2 and xp2 the state
of W 2 at moment TN . We consider

kp2 = [
xq2

2

q2a− b2
] + 1.

For N p = max(k2 + q2, (kp2 + 1)q2 + j2 + N p), we have

∀n ≥ N p : W 2(x1, x2, Tn1(x1)) = v2.

Customers leave the second station at moments T 2
n(x1, x2), such that

T 2
n(x1, x2) = na + b1 + b2 + W 2,2(x1, x2, T

1
N p(x1)).

However, for n ≥ N p, one has W 2,2(x1, x2, T
1
N p(x1)) = 0, this owing to the

fact that it is the second component of v2 which is worth

(0, . . . , 0, b2 − j2a, . . . , b2 − a).
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From here, one has
T 2

n(x1, x2) = na + b1 + b2.

Since the sequence (na + b1 + b2)n≥N p is increasing, then the moments
T 2

n(x1, x2) are ordered. An identical work is done until the m-th station.

Let us seek now, the moments of occupation overall for all the stations.
When the customer number n enters in the system at the moment Tn, we
suppose that the customer number N p returns in the second station before
the (r1 +1)-th customer did not arrive in the system, where r1 is a natural
number higher than N p which corresponds to the number of the customer
arriving at the system at Tr1 . Consequently,

Tr1 ≤ T 1
N p(x1) < Tr1+1

and the time of service claimed at the first station checks

(r1 −N p)a ≤ b1 < (r1 −N p + 1)a.

In addition, one has

j1 = max{k ∈ N, k ≤ b1

a
} = [

b1

a
]

Then,

j1 ≤ b1

a
< j1 + 1,

i.e
j1a ≤ b1 < (j1 + 1)a.

Owing to the fact that j1a ≤ b1 < (r1 −N p + 1).a , one has

j1 < r1 −N p + 1,

and
(j1 + 1)a > b1 ≥ (r1 −N p)a,

i.e
j1 > r1 −N p − 1.

Of another share, and since these numbers are positive integers, therefore

r1 = j1 + N p.

Before the customer number r1 + 1 returns in the system, an arrival of a
customer at the moment T 1

N p + 0 at the second station results in the load
vector of the servers given by

W 2(x1, x2, T
1
N p + 0) = (0, . . . , 0, b2 − j2a, . . . , b2 − a, b2),
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and when the r1 + 1-th customer enters the first station, the load vector is
written as

W 2(x1, x2, Tr1+1) = (0, . . . , 0, b1+b2−(j1+j2+1)a)+, (b1+b2−(j1+j2a)+,

. . . , b1 + b2 − (j1 + 1)a).

Since b2 ≥ j2a, then one has

b1 + b2 ≥ (j1 + j2)a.

That entrains

(b1 + b2 − (j1 + j2)a)+ = b1 + b2 − (j1 + j2)a,

and we obtain

W 2(x1, x2, Tr1+1) = (0, 0, . . . , 0, b1 +b2−(j1 +j2 +1)a)+, b1 +b2−(j1 +j2a),

. . . , b1 + b2 − (j1 + 1)a).

We have

k2 = max{k ∈ N, k ≤ b1 + b2

a
} = [

b1 + b2

a
],

thus,
k2a ≤ b1 + b2 < (k2 + 1)a,

and as
(j1 + j2)a ≤ b1 + b2 < (j1 + j2 + 2)a,

then, for h2 = k1 + j2 + 1 = j1 + j2 + 1 ( since j1 = k1), one will have

W 2(x1, x2, Tr1+1) = (0, 0, . . . , 0, b1 + b2 − h2a)+, . . . , b1 + b2 − (k1 + 1)a).

But this quantity is nothing other than v2. And in the same way, one
continues for each station until the existence of a natural number N (m)

such as
∀n ≥ N (m) : W (x1, xm, Tn) = v,

i.e the moments (Tn)n≥N(m) are an occupation moments in the system un-

der the condition
m∑

l=1

bl ≥ a.

Now, one looks at the case which the variables An and Bn, n ∈ Z are not
constant and one seeks inter alia the moments of occupation.
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Second stage: The variables are unspecified.
While looking at the event

Hn = ∩n
k=1{Bk−1 ≤ b + εem, Ak > a− ε}.

One has of course for all n , P̂(Hn) > 0.
One defines the vector vε

1, and for all l, (2 ≤ l ≤ m) the vectors vε
l by

vε
1 = {0, . . . , 0, b1 − j1a + (j1 + 1)ε, . . . , b1 − a + 2ε)

vε
l = {0, . . . , 0, bl − jla + (2jl + 1)ε, . . . , bl − a + 3ε.)

Then, one defines for all l, 1 ≤ l ≤ m the vectors vpεl , vε
l , vε

l by

vpεl = (0, . . . , 0, bl − jl(a + ε), . . . , bl − a− ε)
vε

l = (0, . . . , 0, (
∑l

i=1 bi − hl(a− 2ε))+, . . . ,
∑l

i=1 bi − (kl−1 + 1)(a− 2ε))
vε

l (0, . . . , 0, (
∑l

i=1 bi − hl(a− ε))+, . . . ,
∑l

i=1 bi − (kl−1 + 1)(a + ε)))

One poses for all l, 1 ≤ l ≤ m

V
ε
l = {xl ∈ Sl/vε

l ≤ xl ≤ vε
l }

and V
ε = V

ε
1 × . . .× V

ε
m.

Theorem 23..1 For all x ∈ S,W (x, Tn, n ∈ N) reaches V
ε with P̂-strictly

positive probability.

Proof: Let x ∈ S, and W 1(T0) = (x1
1, . . . , x

q1
1 ) ∈ S1. One follows the same

stages as those of the case where the variables were constant .

First station: for clarifying the demonstration well one discusses the
two following cases :

First case: (xq1
1 < q1(a− ε))

One chooses k1 = [ x
q1
1

q1(a−ε) ] + 1, one will have

W 1(x1, Tk1+q1) ≤ (0, . . . , 0, b1 − j1(a− 2ε), . . . , b1 − (a− 2ε)),

then

W 1(x1, Tk1+q1) ≥ (0, ..., 0, b1 − j1(a + ε), . . . , b1 − (a + ε)).

The two inequalities are true only on Hn, and according to the definition
of the two vectors vε

1 et vε
1, one has

vε
1 ≤ W 1(x1, Tk1+q1) ≤ vε

1
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i.e
W 1(x1, Tk1+q1) ∈ V

ε
1.

In other words, at the moment Tk1+q1 , the process enters as a minimum set
V

ε
1. Then, Tk1+q1 is an occupation moment.

Second case: (xq1
1 ≥ q1(a− ε))

In this case, one is interested in

kp1 = [
xq1

1

q1(a− ε)− b1
] + 1.

One will have in the same way on Hn that

vε
1 ≤ W 1(x1, T(kp1)q1+j1

) ≤ vε
1.

Thus, there exists a natural number N , N ≥ max((kp1 +1)q1 + j1, (k1 + j1))
such as

∀k : max((kp1 + 1)q1 + j1, (k1 + j1)) ≤ k ≤ n, W 1(x1, Tk) ∈ V
ε
1,

thus, the moments Tk, N ≤ k ≤ n are an occupation moments under the
condition

xq1
1 ≥ q1(a− ε).

While passing to the second station, customers leave the first station at
moments T 1

k (x1) such that on Hn, one has

∀k, N ≤ k ≤ n; T 1
k (x1) = T 1

k (0).

Moments T 1
k (0) are ordered, one will thus proceed of the same reasoning

as that of the first station.

Second station: One poses xp2 = W 2(x1, x2, TN (x1)). The two follow-
ing cases are discussed :

First case: (xpq2
2 < q2(a− 2ε)).

We choose kp2 = [ x
pq2
2

q2(a−ε)−b2
] + 1, thus one has for n enough large, and

on Hn,
W 2(x1, x2, T

1
N+kp2+q2

(x1)) ∈ V
ε
2.

i.e the moment T 1
N+kp2+q2

is an occupation moment.
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Second case: (xpq2
2 > q2(a− 2ε)− b2).

We have

kp2(a2(a− 2ε)b2) ≤ xpq2
2 < (kp2 + 1)(q2(a− 2ε)− b2),

and the same for

N p = max(k2 + q2, (kp2 + 1)q2 + j2) + N.

Moreover, one has for all k, N p ≤ k ≤ n

W 2(x1, x2, T
1
k (0)) ∈ V

ε
2.

i.e the moments T 1
k (0), N p ≤ k ≤ n are an occupation moments in the

system.

We study now, the load vector of servers at moments Tn. Let r1 ( such
that r1 ≥ N p ) be a natural integer which corresponds to the customer’s
number arriving at the system at the moment Tr1 . One supposes that the
N p-th customer enters the second station before the (r1 + 1)-th customer
arrives at the network, it results in :

Tr1 ≤ T 1
N p(0) < Tr1+1.

Thus,

(p1 −N2)(a− ε) < (p1 −N2)(a + ε) ≤ b1 < (p1 −N2 + 1)a,

and for ε enough small, we will have

r1 = j1 + N p.

When a customer arrives at moment T 1
N p +0 at the second station, one has

W 2(x1, x2, T
1
N p+0) = (0, . . . , 0, b2−j2a+(2j2+1)ε, . . . , b2−(a−3ε), b2+ε),

and when the (r1+1)-th customer enters the system, the load vector checks

W 2(x1, x2, Tr1+1) = (0, . . . , 0, (b1 + b2 − (j1 + j2 + 1)a + (j1 + 2j2 + 3)ε)+,

, . . . , b1 + b2 − (j1 + 1)a + (j1 + 2)ε).

Since h2 = j1 + j2 + 1 , then

W 2(x1, x2, Tr1+1) = (0, . . . , 0, (b1+b2−h2(a−2ε))+, . . . , b1+b2−(h1+1)(a−2ε1)).
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In the same way,

W 2(x1, x2, Tr1+1) ≥ (0, . . . , 0, (b1 + b2 − (j1 + j2 + 1)a− j2ε)+,

. . . , b1 + b2 − (j1 + 2)a− ε, b1 + b2 − (j1 + 1)(a + ε))

i.e.

W 2(x1, x2, Tr1+1) ≥ (0, . . . , 0, (b1 + b2 − h2(a + ε))+, . . . , b1 + b2−

(k1 + 2)(a + ε), b1 + b2 − (k1 + 1)(a + ε)).

Thus, one has
W 2(x1, x2, Tr1+1) ∈ V

ε
2.

One continues stage by stage for each m station until there is an integer n
such as

P̂(W (x, Tn) ∈ V
ε) ≥ P̂(Hn) > 0.

Thus, with a strictly positive probability and starting from a certain row,
Tn are a moments of occupation in the system.

Conclusion

The phenomenon of waiting, in particular the queueing systems is a
very wide field. It contains several branches, each one can be interpreted
various ways. Our work was devoted to the recurrence study in open net-
works. Our goal was to seek the freedom moments in this type of networks,
i.e. when all the servers are free. In this case, the customers any more will
not wait, it is the hoped situation.
Reciprocally, and with a little difficulty of reordonnement of customers af-
ter the exit of each station, one established the moments when the system
is occupied, i.e. the servers’s load in one of the stations is different from
zero (there is waiting).
Our work can intervene in fields such as the process of taking out of bond,
the consecutive operations within the data-processing framework, the ma-
chines which break down in ateliers, the people who solicitant a communi-
cation by the intermediary of a telephone switchboard, etc · · · .
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files d’attente, (1989).

7. Nev1 J.Neveu , Processus Ponctuels, Ecole d’été de Probabilité de
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