CONVERGENCE OF COSTS IN AN OPTIMAL STOPPING PROBLEM FOR A PARTIALLY OBSERVABLE MODEL

P. Babilua, I. Bokuchava, B. Dochviri, M. Shashiashvili

Iv. Javakhishvili Tbilisi State University 0143 University Street 2, Tbilisi, Georgia

(Received: 17.08.05; accepted: 21.03.06)

Abstract

The problem of optimal stopping of a stochastic process with incomplete data is reduced to the problem of optimal stopping of a stochastic process with complete data and the convergence of payoffs is proved when $\varepsilon_1 \rightarrow 0$, $\varepsilon_2 \rightarrow 0$, where ε_1 and ε_2 are small perturbation parameters of the observable process. Kalman–Bucys continuous and discrete models of partially observable random processes is considered.

Key words and phrases: Partially observable stochastic process, gain function, payoff, optimal stopping, stopping time.

AMS subject classification: 60J05, 91B28, 91B70.

1 Introduction

Let us consider a partially observable stochastic process (θ_t, ξ_t) , $0 \le t \le T < \infty$, of Kalman–Bucys model

$$d\theta_t = [a_0(t) + a_1(t)\theta_t + a_2(t)\xi_t] dt + b_1(t)dW_1(t) + b_2(t)dW_2(t), \quad (1.1)$$

$$d\xi_t = [A_0(t) + A_1(t)\theta_t + A_2(t)\xi_t] dt + \varepsilon_1 dW_1(t) + \varepsilon_2 dW_2(t), \quad (1.2)$$

where $\varepsilon_1 > 0$, $\varepsilon_2 > 0$ are constants, the coefficients $a_i(t)$, $A_i(t)$, i = 0, 1, 2, $b_k(t)$, k = 1, 2, are nonrandom measurable functions, $W_1(t)$ and $W_2(t)$ are independent Wiener processes. It is assumed that in model (1.1), (1.2), θ_t is the nonobservable process and ξ_t is the observable process, where $A_1(t) \neq 0$ [1].

We consider a linear gain function

$$g(t,x) = f_0(t) + f_1(t)x, \ x \in R,$$
(1.3)

and define payoffs by the equalities

$$s^{\circ} = \sup_{\tau \in \mathfrak{M}^{\theta}} Eg(\tau, \theta_{\tau}), \quad s = \sup_{\tau \in \mathfrak{M}^{\xi}} Eg(\tau, \theta_{\tau}),$$
 (1.4)

+

where $f_0(t)$, $f_1(t)$ are nonrandom measurable functions; \mathfrak{M}^{θ} , \mathfrak{M}^{ξ} are the classes of stopping times with respect to the families of σ -algebras $\mathcal{F}_t^{\theta} = \sigma\{\theta_s: 0 \leq s \leq t\}$ and $\mathcal{F}_t^{\xi} = \sigma\{\xi_s: 0 \leq s \leq t\}$.

The following notation is introduced:

$$m_t = E(\theta_t | \mathcal{F}^{\xi}), \quad \gamma_t = E(\theta_t - m_t)^2.$$

2. Continuous model

For explain the quite part of this work we should use some notations and restrictions. We assume, that for every $t, 0 \le t \le T$, the following conditions are satisfied

$$1) \ 0 \le f(t) \le F < \infty;$$

$$2) \ b_1^2(t) + b_2^2(t) \le B^2 < \infty;$$

$$3) \ 0 < \underline{A} \le A_1(t) \le \overline{A} < \infty;$$

$$4) \ 0 < \underline{a} \le a_2(t) \le \overline{a} < \infty;$$

$$5) \ \Phi_{i1}(t) = \exp\left[\int_0^t a_1(s) \, ds\right] < c_1 < \infty, \ i = 1, 2;$$

$$6) \ \Phi_{j2}(t) = \exp\left[\int_0^t A_2(s) \, ds\right] < c_2 < \infty, \ j = 1, 2.$$

$$(2.1)$$

Theorem 2.1 Let partially aftervable random process (θ_t, ξ_t) , $0 \le t \le T$, be given by (1.1), (1.2) expressions and payoffs are explained. If conditions (2.1) are satisfied, then the following estimate

$$s^{0} - s^{\varepsilon_{1},\varepsilon_{2}} \le F[2B\pi^{-1}(\underline{A}^{-1} + \underline{a}^{-1})]^{-1/2}(c_{1} + c_{2})(\varepsilon_{1} + \varepsilon_{2})^{1/2}$$
(2.2)

is valid.

Poof. Let's use following notations

$$m_t = E(\theta_t | \mathcal{F}_t^{\xi}), \quad \gamma_t = E(\theta_t - m_t)^2, \tag{2.3}$$

$$\widetilde{m}_t = E(\xi_t | \mathcal{F}_t^{\theta}), \quad \widetilde{\gamma}_t = E(\xi_t - \widetilde{m}_t)^2.$$
(2.4)

According to Theorem 12.1, [1], there exist $W = (W(t), \mathcal{F}_t^{\xi})$ Wiener's process, with which process θ_t and \tilde{m}_t can be considered by following stochastic differentiable equalities

$$d\theta_t = [a_0(t) + a_1(t)\theta_t + a_2(t)\widetilde{m}_t] dt + \frac{a_2(t)\widetilde{\gamma}_t}{\sqrt{b_1^2(t) + b_2^2(t)}} dW(t), \qquad (2.5)$$

$$d\widetilde{m}_t = [A_0(t) + A_1(t)\theta_t + A_2(t)\widetilde{m}_t]dt + \frac{a_2(t)\widetilde{\gamma}_t}{\sqrt{b_1^2(t) + b_2^2(t)}}dW(t)$$
(2.6)

7

+

and according to Theorem 10.3 of the same reference

$$\frac{d\gamma_t}{dt} = 2a_1(t)\gamma_t + b_1^2(t) + b_2^2(t) - \frac{A_1^2(t)\gamma_t^2}{\varepsilon_1^2 + \varepsilon_2^2}, \qquad (2.7)$$

$$\frac{d\tilde{\gamma}_t}{dt} = 2A_1(t)\tilde{\gamma}_t + b_1^2(t) + b_2^2(t) - \frac{a_1^2(t)\tilde{\gamma}_t^2}{\varepsilon_1^2 + \varepsilon_2^2}.$$
(2.8)

Now let us define random process $\tilde{\theta}_t$ and n_t by following equalities:

$$d\widetilde{\theta}_t = \left[a_0(t) + a_1(t)\widetilde{\theta}_t + a_2(t)n_t\right]dt + \frac{A_2(t)\gamma(t)}{\sqrt{\varepsilon_1^2 + \varepsilon_2^2}}\,dW(t),\tag{2.9}$$

$$dn_t = [A_0(t) + A_1(t)\widetilde{\theta}_t + A_2(t)n_t] dt + \sqrt{\varepsilon_1^2 + \varepsilon_2^2} dW(t).$$
(2.10)

As [4], we can show, that

$$s^{\varepsilon_1,\varepsilon_2} = \sup_{\tau \in \mathfrak{M}^{\varepsilon}} Eg(\tau, m_{\tau}) = \sup_{\tau \in \mathfrak{M}^{\theta}} Eg(\tau, \widetilde{\theta}_{\tau}), \qquad (2.11)$$

where $\tilde{\theta}_t$ process is defined with (2.9). Then with notice 1) of (2.1) we have

$$s^{0} = s_{1}^{\varepsilon_{1},\varepsilon_{2}} \leq FE[\sup_{t \leq T}(\theta_{t} - \widetilde{\theta}_{t})].$$
(2.12)

Now, to proof of theorem we need to estimate supremum of mathematical expectation of the deferens $\theta_t - \tilde{\theta}_t$ in the interval [0, T]. For this reason we use Theorem 4.10 [1] and then consider random process θ_t and $\tilde{\theta}_t$ as the decision of according to system (2.5), (2.6). Then we can write

$$\begin{aligned} \theta_t - \widetilde{\theta}_t &= \Phi_{11}(t) \Biggl[\int_0^t \Phi_{11}^{-1}(s) \Biggl(\sqrt{b_1^2(s) + b_2^2(s)} - \frac{A(s)\gamma_s}{\sqrt{\varepsilon_1^2 + \varepsilon_2^2}} \Biggr) dW(s) + \\ &+ \int_0^t \Phi_{12}(t) \Biggl(\frac{a_2(s)\widetilde{\gamma}_s}{\sqrt{b_1^2(s) + b_2^2(s)}} - \sqrt{\varepsilon_1^2 + \varepsilon_2^2} \Biggr) dW(s) \Biggr] + \\ &+ \Phi_{12}(t) \Biggl[\int_0^t \Phi_{21}^{-1}(s) \Biggl(\sqrt{b_1^2(s) + b_2^2(s)} - \frac{A_1(s)\gamma_s}{\sqrt{\varepsilon_1^2 + \varepsilon_2^2}} \Biggr) dW(s) + \\ &+ \int_0^t \Phi_{22}^{-1}(s) \Biggl(\frac{a_2(s)\widetilde{\gamma}_s}{\sqrt{b_1^2(s) + b_2^2(s)}} - \sqrt{\varepsilon_1^2 + \varepsilon_2^2} \Biggr) dW(s) \Biggr]. \end{aligned}$$
(2.13)

Now, for i = 1, 2, take in following notations

$$Q_i(t) = \int_0^t \Phi_{i1}^{-1} \left(\sqrt{b_1^2(s) + b_2^2(s)} - \frac{A_1(s)\gamma_s}{\sqrt{\varepsilon_1^2 + \varepsilon_2^2}} \right) dW(s),$$
(2.14)

$$\widetilde{Q}_{i}(t) = \int_{0}^{t} \Phi_{i2}^{-1} \left(\frac{a_{2}(s)\widetilde{\gamma}_{s}}{\sqrt{b_{1}^{2}(s) + b_{2}^{2}(s)}} - \sqrt{\varepsilon_{1}^{2} + \varepsilon_{2}^{2}} \right) dW(s).$$
(2.15)

Besides, we can notice, that from the differential equalities (2.7) and (2.8) we get such estimation for values γ_t and $\tilde{\gamma}_t$ as

$$\gamma_t = A^{-1}B(\varepsilon_1 + \varepsilon_2), \quad \widetilde{\gamma}_t \le \underline{a}^{-1}B(\varepsilon_1 + \varepsilon_2).$$
 (2.16)

It is easy to show with these estimation, that

$$E \sup_{t \le T} \Phi_{1i}(t) Q_i(t) \le c_1 \sqrt{2B\underline{A}^{-1} \pi^{-1}(\varepsilon_1 + \varepsilon_2)}, \qquad (2.17)$$

$$E \sup_{t \le T} \Phi_{1i}(t) \widetilde{Q}_i(t) \le c_2 \sqrt{2B\underline{a}^{-1}\pi^{-1}(\varepsilon_1 + \varepsilon_2)}.$$
(2.18)

To sum (2.18), (2.18), estimations $\Phi_{11}(t) = \Phi_{21}(t)$, $\Phi_{12}(t) = \Phi_{22}(t)$ and dependents (2.12), (2.13) we get the proof of theorem.

3. Discrete model

Let us now consider Kalman-Busy's discrete model for the sequence $(\theta_n, \xi_n), n = 0, 1, 2, \ldots, N < \infty$, where

$$\theta_{n+1} = a_0(n) + a_1(n)\theta_n + b_1(n)\eta_1(n+1) + b_2(n)\eta_2(n+1), \quad (3.1)$$

$$\xi_{n+1} = A_0(n) + A_1(n)\theta_n + \varepsilon_1\eta_1(n) + \varepsilon_2\eta_2(n), \qquad (3.2)$$

where $a_i(n)$, $A_i(n)$, i = 0, 1, $b_k(n)$, k = 1, 2, are nonrandom functions, $\varepsilon_1 > 0$, $\varepsilon_2 > 0$ are constants, $\eta_n(n)$ and $\eta_2(n)$ are independent standard normal random values.

We consider a linear gain function

$$g(n,x) = f_0(n) + f_1(n)x, \ x \in R$$
(3.3)

and define payoffs of by the equalities

$$s^{0} = \sup_{\tau \in \mathfrak{M}^{\theta}} Eg(\tau, m_{\tau}),$$

$$s = \sup_{\tau \in \mathfrak{M}^{\epsilon}} Eg(\tau, \theta_{\tau}),$$
(3.4)

where $f_0(n)$, $f_1(n)$ are nonrandom functions, \mathfrak{M}^{θ} , \mathfrak{M}^{ξ} are the classes of stopping times with values in $\{0, 1, 2, \ldots, N\}$ with respect to the families of σ -algebras $\mathcal{F}_n^{\theta} = \sigma\{\theta_i, o \leq n\}$ and $\mathcal{F}_n^{\xi} = \sigma\{\xi_i, i \leq n\}$.

The following notation is introduced:

$$m_n = E(\theta_n | \mathcal{F}_n^{\xi}), \quad \gamma_n = E[(\theta_n - m_n) | \mathcal{F}_n^{\xi}].$$
(3.5)

Let us assume, that the following conditions are satisfied

1)
$$a_2^2(n) < \infty$$
, $b_1^2(n) < \infty$, $i = 0, 1, A_0^2(n) < \infty$,
2) $a_1^2(n) \le q, \ 0 < q < 1$,
3) $0 < \underline{A}_1 \le A_1^2(n) \le \overline{A}_1 < \infty$, (3.6)
4) $0 \le f_1(n) \le H < \infty$.

The following theorem is analogously in result of Fermann's theorem.

Theorem 3.1 Let, partially observable random sequence (θ_n, ξ_n) is given by system (3.1), (3.2) and conditions (3.5) are satisfied. Then the following estimate

$$0 < s^0 - s \le 2H\sqrt{B(1+C)} \cdot (\varepsilon_1 + \varepsilon_2) \tag{3.7}$$

is valid, where B and C constants are defined by equalities

$$B = \underline{A}_{1}^{-1} \max\left\{1; 2 \max\left[\max_{0 \le n \le N} a_{1}^{2}(n); q\right]\right\},$$
(3.8)

$$C = \max\left\{\max_{1 \le n \le N} \left[\sum_{k=1}^{n} \left(\prod_{j=k}^{n} a_{1}^{2}(j)\right)\right]; \frac{q}{1-q}\right\}.$$
 (3.9)

Poof. At first notice that following expression of payoff is

$$s = \sup_{\tau \in \mathfrak{M}^{\xi}} Eg(\tau, m_{\tau}) = \sup_{\tau \in \mathfrak{M}^{\widetilde{\theta}}} Eg(\tau, \widetilde{\theta}_{\tau})$$
(3.10)

is valid, where $\tilde{\theta}_n$ sequence is explained by means of following recurrence equalities (see [1])

$$\widetilde{\theta}_{n+1} = a_0(n) + a_1(n)\widetilde{\theta}_n + \beta_n\eta_{n+1}, \qquad (3.11)$$

$$\beta_n = P(n)Q^{-1/2}(n),$$
 (3.12)

$$P(n) = (b_1^2(n) + b_2^2(n))A_1(n+1) + a_1^2(n)A_1(n+1) \cdot \gamma_n, \quad (3.13)$$

$$Q(n) = (b_1^2(n) + b_2^2(n))A_1^2(n+1) + a_1^2(n)A_1^2(n+1) \cdot \gamma_n + \varepsilon_1^2 + \varepsilon_2^2(3.14)$$

After, we notice, that value γ_n satisfies the recurrence equality (see [1])

$$\gamma_{n+1} = a_1^2(n)\gamma_n + b_1^2(n) + b_2^2(n) - P^2(n) \cdot Q^{-1}(n), \qquad (3.15)$$

from which we easily get the estimation of γ_n

$$\gamma_n \le \underline{A}_1^{-1}(\varepsilon_1^2 + \varepsilon_2^2). \tag{3.16}$$

Now, estimate the deference $s^0 - s$. We have

$$s^{0} - s \le HE \Big\{ \sup_{n \le N} (\theta_{n} - \widetilde{\theta}_{n}) \Big\},$$
(3.17)

where random sequence $\tilde{\theta}_n$ is defined by (3.11)–(3.14) and θ_n sequence can be considered as follows (see [1])

$$\theta_n = a_0(n) + a_1(n)\theta_n + \sqrt{b_1^2(n) + b_2^2(n)} \cdot \eta_{n+1}, \qquad (3.18)$$

where as in (3.11) η_n is the standard normal random values.

Using the equalities (3.11) and (3.18), we get that

$$\theta_{n+1} - \tilde{\theta}_{n+1} = a_1(n)(\theta_n - \tilde{\theta}_n) + (\sqrt{b_1^2(n) + b_2^2(n)} - \beta_n)\eta_{n+1},$$

then with notice that $\theta_0 = \widetilde{\theta}_0 = 0$ we can write

$$\theta_n - \tilde{\theta}_n = \sum_{i=1}^n \delta_i^{(n-1)} (\sqrt{b_1^2(i-1) + b_2^2(i-1)} - \beta_{i-1})\eta_i, \qquad (3.19)$$

where

+

$$\delta_i^{(n)} = \prod_{j=1}^n a_1(j)$$

Besides, we can see that

$$Q(n) \ge \underline{A}_{1}^{2}(b_{1}^{2}(n) + b_{2}^{2}(n)), \qquad (3.20)$$

$$Q(n) \ge A_1^2(n+1)a_1^2(n)\gamma_n.$$
 (3.21)

According to condition 2) of (3.6) we get

$$a_1^2(n) \le \max\left\{q; \max_{0 \le k \le N} a_2^2(k)\right\},\$$

and according to (3.12), (3.19), (3.21) we can write

$$(\sqrt{b_1^2(n) + b_2^2(n)} - \beta_n)^2 \le B(\varepsilon_1^2 + \varepsilon_2^2).$$
(3.22)

Using the description of constant c in the last estimate, with simple transformation we get estimate (3.7).

References

- Liptzer R., Shiryaev A. Statistics of Random Processes, Nauka, Moscow, 1974 (in Russian).
- Dochviri B. M., Shashiashvili M. A. On the convergence of costs in the problem of optimal stopping of stochastic processes in the scheme of Kalman-Bucy. Comm. Statist. C—Sequential Anal. 1 (1982), No. 3, 163–176.
- Dochviri B., On optimal stopping with incomplete data. Probability theory and mathematical statistics, Proc. 5th Jap.-USSR Symp., Kyoto/Jap. 1986, Lect. Notes Math. 1299, 64–68, 1988.
- Dochviri B., Shashiashvili M., On the convergence of costs in the problem of optimal stopping in the scheme of Kalman-Bucy. Reports of the Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics, 15 (2000), No. 2, 47–49.