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Abstract

The problem of optimal stopping of a stochastic process with incomplete data
is reduced to the problem of optimal stopping of a stochastic process with complete
data and the convergence of payoffs is proved when ¢1 — 0, ¢ — 0, where ¢,
and &5 are small perturbation parameters of the observable process. Kalman—Bucys
continuous and discrete models of partially observable random processes is considered.
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1 Introduction

Let us consider a partially observable stochastic process (0;,&;), 0 < t <
T < o0, of Kalman—Bucys model

do; = [ao(t) + a1 (t)@t + a2(t)£t] dt + by (t)dWl (t) + bz(t)dWQ(t), (1.1)
d&e = [Ao(t) + Ai1(1)0r + A2(t)&] dt + e1dWi (1) + e2dWa(t),  (1.2)

where €1 > 0, g9 > 0 are constants, the coefficients a;(t), A;(t), 1 =0,1,2,
bi(t), k = 1,2, are nonrandom measurable functions, Wi (t) and Wa(t) are
independent Wiener processes. It is assumed that in model (1.1),(1.2),
f; is the nonobservable process and & is the observable process, where
Aq(t) # 0 [1].

We consider a linear gain function
g(t,x) = fo(t) + fi(t)z, = € R, (1.3)
and define payoffs by the equalities

s® = sup Fqg(t1,0;), s= sup Eg(t,0;), (1.4)
TeM? TEME



Convergence of Costs in an Optimal ... AMIM Vol.11 No.1, 2006

where fo(t), f1(t) are nonrandom measurable functions; Y, M are the
classes of stopping times with respect to the families of o-algebras .’Ff =
o{ls: 0<s<t}and F* = o{&: 0<s <t}

The following notation is introduced:

my = B0y F), v = E(0 —my)*.

2. Continuous model

For explain the quite part of this work we should use some notations
and restrictions. We assume, that for every ¢, 0 < ¢t < T, the following
conditions are satisfied

1) 0< f(t) < F < oo
2) b(t) +b3(t) < B? < o0;
3) 0 <A< A1)
4) 0<a<ay(t)

5) ®;1(t) =exp {Oftal(s) ds} <c <oo, 1=1,2 (2.1)
6) Pjo(t) =exp |:bfA2(8) ds} <cg<oo, j=1,2.

Theorem 2.1 Let partially aftervable random process (0¢,&), 0 <t < T,
be given by (1.1), (1.2) expressions and payoffs are explained. If conditions
(2.1) are satisfied, then the following estimate

s0 — g2 < F[QB?Tﬁl(Afl + Qil)]_l/%cl + Cg)(El + 82)1/2 (2.2)
1s valid.

Poof. Let’s use following notations

me = E(6,] Ff), 7= B0 —m)’, (2:3)
= E(&| F), o= E(& — ). (2:4)
According to Theorem 12.1, [1], there exist W = (W (¢), .7-}5) Wiener’s pro-

cess, witle which process 6; and m; can be considered by following stochastic
differentiable equalities

Ay = [ao(t) + a1(t)8; + as(t)ig] dt + —2D3__ qw(¢),  (2.5)

/b7 (1) +b3(t)
=~ o az ()7
dm; = [A() (t) + A (t)gt + Ao (t)mt] dt + 2016300 dW(t) (26)
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and according to Theorem 10.3 of the same reference

dye 2 2 A3 (t)?

= = 2a1(t) e + b1 () + b5(t) — EI%JFEg ) (2.7)

d~ _ a2(1)32

=L = A + VR + () — B (2.8)
t 1 2

Now let us define random process gt and n; by following equalities:

A, = [ao(t) + a1 ()0, + as(t)ny] dt + f/%() AW (¢), (2.9)
dnt = [A()(t) + Al( )9,5 + A2 nt dt + \/81 + 62 dW (210)

As [4], we can show, that

s = sup Eg(r,m;) = sup Eg(r,0;), (2.11)
TEME TeM?

where 6; process is defined with (2.9). Then with notice 1) of (2.1) we have

s0 = 5% < FE[sup(0; — 0,)). (2.12)
t<T

Now, to proof of theorem we need to estimate supremum of mathemat-
ical expectation of the deferens 6, — 6, in the interval [0, T]. For this reason
we use Theorem 4.10 [1] and then consider random process 6; and f; as the
decision of according to system (2.5),(2.6). Then we can write

6 — 6; :<I>11(t)[ Of@fll(s)( BI(s) + 03(s) — L ) aw(s) +

¢
az(8)¥s
—l-beI)m(t)( TR — /&2 —i—aQ) dW (s )}

+a(t)| [ 05209 (VI T 0300) - ) aw o) +

t N
+{q>221(s)(m — /e +a§) dW(s)} (2.13)
Now, for ¢ = 1, 2, take in following notations

f@ ( s) + b3(s) — %) dW (s), (2.14)

0
t
Qi) =[5 (# VET+ ) W (s). (2.15)
0 b3 (5)+b3(s)
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Besides, we can notice, that from the differential equalities (2.7) and
(2.8) we get such estimation for values y; and 7; as

vt = AT B(e1 +e2), Y <a 'B(ey +e2). (2.16)

It is easy to show with these estimation, that

FE sup q)li(t)Qi(t) <c \/QBA_IW_I(El + 82) , (2.17)
t<T

Esup®1;(t)Q;(t) < car/2Ba~n1(e) + &) . (2.18)
t<T

To sum (2.18), (2.18), estimations ®11(t) = P21 (t), P12(t) = P22(t) and
dependents (2.12), (2.13) we get the proof of theorem. B

3. Discrete model

Let us now consider Kalman-Busy’s discrete model for the sequence
(0n,&n), n=0,1,2,..., N < 0o, where

Op+1 =ao(n)+a1(n)fp, +bi(n)m(n+1)+be(n)na(n+1), (3.1

En+1 = Ao(n) + A1(n)0, + e1mi(n) + e2m2(n), (3.2)

where a;(n), A;(n), i = 0,1, bg(n), k = 1,2, are nonrandom functions,

g1 > 0, g9 > 0 are constants, n,(n) and 72(n) are independent standard

normal random values.
We consider a linear gain function

g(n,z) = fo(n) + fi(n)z, z€R (3.3)
and define payoffs of by the equalities
¥ = sup,egne £g(1,m7),
s =sup,eone Eg(7,0;), (3.4)

where fo(n), fi(n) are nonrandom functions, 9%, ME are the classes of
stopping times with values in {0,1,2,..., N} with respect to the families
of o-algebras F¢ = o{6;, 0 < n} and Ft = of{&, i <n}.
The following notation is introduced:
my, = E(by] -7:5)’ Yo = E[(0n —my)| ‘7:5] (3.5)
Let us assume, that the following conditions are satisfied
1) a3(n) < o0, b3(n) <oo, i=0,1, A%(n) < oo,
2) af(n) <q, 0<q<1,
3) 0< A < A2(n) < Aj < o, (3.6)
4) 0< fi(n) < H < 0.

The following theorem is analogously in result of Fermann’s theorem.
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Theorem 3.1 Let, partially observable random sequence (0,,&,) is given
by system (3.1), (3.2) and conditions (3.5) are satisfied. Then the following

estimate
0<s’—5<2H\/B(1+C)- (g1 +e2) (3.7)

s valid, where B and C' constants are defined by equalities
B =A7! max{l;Qmax[maxOSnSN a%(n);q]}, (3.8)

¢ —max{mosicney S (o d0)]iity - 69

Poof. At first notice that following expression of payoff is

s = sup Eg(t,m;) = sup Eg(r, 57) (3.10)
TEME reMP

is valid, where gn sequence is explained by means of following recurrence
equalities (see [1])

Ont1 = ap(n) + a1 (n)gn + Buln+1, (3.11)

Bn = P(n)Q™*(n), (3.12)
P(n) = (b}(n) + B3(n))Ar(n + 1) + ai(n)Ar(n +1) - 7m,  (3.13)
Q(n) = (b3(n) +b3(n))A(n + 1) + af(n)AF(n + 1) -y + £f + €3(3.14)

After, we notice, that value -, satisfies the recurrence equality (see [1])
_ 2 2 2 2 -1
Tn+1 = ai(n)yn +bi(n) + b3(n) — P*(n) - Q" (n), (3.15)
from which we easily get the estimation of ~,
Y < ATV (] + £3). (3.16)
Now, estimate the deference s” — s. We have

SO—S§HE{ sup(@n—gn)}, (3.17)
n<N

where random sequence 6, is defined by (3.11)-(3.14) and 6, sequence can
be considered as follows (see [1])

0r, = ap(n) + a1(n)0, + /b3 (n) + b3(n) - Nny1, (3.18)
where as in (3.11) 7, is the standard normal random values.
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Using the equalities (3.11) and (3.18), we get that

On1 = 1 = a1(n) (6 — 0n) + (/03 (n) + 03 (1) = B,

then with notice that 8y = 50 = 0 we can write

0, — 0, = 25 1) \/b2 )+ b3(i — 1) = Bie1)mi, (3.19)

where .
= H a1(J)
j=1
Besides, we can see that
Q(n) > AL (n) +b3(n)), (3:20)
Q(n) > A2(n+ 1)a3(n)vn. (3.21)
According to condition 2) of (3.6) we get

af(n) < max {gs max_a3(k)},

and according to (3.12), (3.19), (3.21) we can write

(\/b3(n) +b3(n) — Bn)* < B(ef + 3). (3.22)

Using the description of constant ¢ in the last estimate, with simple
transformation we get estimate (3.7). W
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