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Abstract

The problem of optimal stopping of a stochastic process with incomplete data

is reduced to the problem of optimal stopping of a stochastic process with complete

data and the convergence of payoffs is proved when ε1 → 0, ε2 → 0, where ε1

and ε2 are small perturbation parameters of the observable process. Kalman–Bucys

continuous and discrete models of partially observable random processes is considered.
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1 Introduction

Let us consider a partially observable stochastic process (θt, ξt), 0 ≤ t ≤
T < ∞, of Kalman–Bucys model

dθt = [a0(t) + a1(t)θt + a2(t)ξt] dt + b1(t)dW1(t) + b2(t)dW2(t), (1.1)
dξt = [A0(t) + A1(t)θt + A2(t)ξt] dt + ε1dW1(t) + ε2dW2(t), (1.2)

where ε1 > 0, ε2 > 0 are constants, the coefficients ai(t), Ai(t), i = 0, 1, 2,
bk(t), k = 1, 2, are nonrandom measurable functions, W1(t) and W2(t) are
independent Wiener processes. It is assumed that in model (1.1), (1.2),
θt is the nonobservable process and ξt is the observable process, where
A1(t) 6= 0 [1].

We consider a linear gain function

g(t, x) = f0(t) + f1(t)x, x ∈ R, (1.3)

and define payoffs by the equalities

s◦ = sup
τ∈Mθ

Eg(τ, θτ ), s = sup
τ∈Mξ

Eg(τ, θτ ), (1.4)
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where f0(t), f1(t) are nonrandom measurable functions; Mθ, Mξ are the
classes of stopping times with respect to the families of σ-algebras Fθ

t =
σ{θs : 0 ≤ s ≤ t} and Fξ

t = σ{ξs : 0 ≤ s ≤ t}.
The following notation is introduced:

mt = E(θt| Fξ), γt = E(θt −mt)2.

2. Continuous model

For explain the quite part of this work we should use some notations
and restrictions. We assume, that for every t, 0 ≤ t ≤ T , the following
conditions are satisfied

1) 0 ≤ f(t) ≤ F < ∞;
2) b2

1(t) + b2
2(t) ≤ B2 < ∞;

3) 0 < A ≤ A1(t) ≤ A < ∞;
4) 0 < a ≤ a2(t) ≤ a < ∞;

5) Φi1(t) = exp
[

t∫
0

a1(s) ds

]
< c1 < ∞, i = 1, 2; (2.1)

6) Φj2(t) = exp
[

t∫
0

A2(s) ds

]
< c2 < ∞, j = 1, 2.

Theorem 2.1 Let partially aftervable random process (θt, ξt), 0 ≤ t ≤ T ,
be given by (1.1), (1.2) expressions and payoffs are explained. If conditions
(2.1) are satisfied, then the following estimate

s0 − sε1,ε2 ≤ F [2Bπ−1(A−1 + a−1)]−1/2(c1 + c2)(ε1 + ε2)1/2 (2.2)

is valid.

Poof. Let’s use following notations

mt = E(θt| Fξ
t ), γt = E(θt −mt)2, (2.3)

m̃t = E(ξt| Fθ
t ), γ̃t = E(ξt − m̃t)2. (2.4)

According to Theorem 12.1, [1], there exist W = (W (t),Fξ
t ) Wiener’s pro-

cess, witle which process θt and m̃t can be considered by following stochastic
differentiable equalities

dθt = [a0(t) + a1(t)θt + a2(t)m̃t] dt + a2(t)γ̃t√
b21(t)+b22(t)

dW (t), (2.5)

dm̃t = [A0(t) + A1(t)θt + A2(t)m̃t] dt + a2(t)γ̃t√
b21(t)+b22(t)

dW (t) (2.6)
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and according to Theorem 10.3 of the same reference

dγt

dt
= 2a1(t)γt + b2

1(t) + b2
2(t)− A2

1(t)γ2
t

ε2
1+ε2

2
, (2.7)

dγ̃t

dt
= 2A1(t)γ̃t + b2

1(t) + b2
2(t)− a2

1(t)γ̃2
t

ε2
1+ε2

2
. (2.8)

Now let us define random process θ̃t and nt by following equalities:

dθ̃t = [a0(t) + a1(t)θ̃t + a2(t)nt] dt + A2(t)γ(t)√
ε2
1+ε2

2

dW (t), (2.9)

dnt = [A0(t) + A1(t)θ̃t + A2(t)nt] dt +
√

ε2
1 + ε2

2 dW (t). (2.10)

As [4], we can show, that

sε1,ε2 = sup
τ∈Mξ

Eg(τ, mτ ) = sup
τ∈Mθ

Eg(τ, θ̃τ ), (2.11)

where θ̃t process is defined with (2.9). Then with notice 1) of (2.1) we have

s0 = sε1,ε2
1 ≤ FE[ sup

t≤T
(θt − θ̃t)]. (2.12)

Now, to proof of theorem we need to estimate supremum of mathemat-
ical expectation of the deferens θt− θ̃t in the interval [0, T ]. For this reason
we use Theorem 4.10 [1] and then consider random process θt and θ̃t as the
decision of according to system (2.5), (2.6). Then we can write

θt − θ̃t = Φ11(t)
[

t∫
0

Φ−1
11 (s)

(√
b2
1(s) + b2

2(s)− A(s)γs√
ε2
1+ε2

2

)
dW (s) +

+
t∫
0

Φ12(t)
(

a2(s)γ̃s√
b21(s)+b22(s)

−
√

ε2
1 + ε2

2

)
dW (s)

]
+

+Φ12(t)
[

t∫
0

Φ−1
21 (s)

(√
b2
1(s) + b2

2(s)− A1(s)γs√
ε2
1+ε2

2

)
dW (s) +

+
t∫
0

Φ−1
22 (s)

(
a2(s)γ̃s√

b21(s)+b22(s)
−

√
ε2
1 + ε2

2

)
dW (s)

]
. (2.13)

Now, for i = 1, 2, take in following notations

Qi(t) =
t∫
0

Φ−1
i1

(√
b2
1(s) + b2

2(s)− A1(s)γs√
ε2
1+ε2

2

)
dW (s), (2.14)

Q̃i(t) =
t∫
0

Φ−1
i2

(
a2(s)γ̃s√

b21(s)+b22(s)
−

√
ε2
1 + ε2

2

)
dW (s). (2.15)
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Besides, we can notice, that from the differential equalities (2.7) and
(2.8) we get such estimation for values γt and γ̃t as

γt = A−1B(ε1 + ε2), γ̃t ≤ a−1B(ε1 + ε2). (2.16)

It is easy to show with these estimation, that

E sup
t≤T

Φ1i(t)Qi(t) ≤ c1

√
2BA−1π−1(ε1 + ε2) , (2.17)

E sup
t≤T

Φ1i(t)Q̃i(t) ≤ c2

√
2Ba−1π−1(ε1 + ε2) . (2.18)

To sum (2.18), (2.18), estimations Φ11(t) = Φ21(t), Φ12(t) = Φ22(t) and
dependents (2.12), (2.13) we get the proof of theorem. ¥

3. Discrete model

Let us now consider Kalman-Busy’s discrete model for the sequence
(θn, ξn), n = 0, 1, 2, . . . , N < ∞, where

θn+1 = a0(n) + a1(n)θn + b1(n)η1(n + 1) + b2(n)η2(n + 1), (3.1)
ξn+1 = A0(n) + A1(n)θn + ε1η1(n) + ε2η2(n), (3.2)

where ai(n), Ai(n), i = 0, 1, bk(n), k = 1, 2, are nonrandom functions,
ε1 > 0, ε2 > 0 are constants, ηn(n) and η2(n) are independent standard
normal random values.

We consider a linear gain function

g(n, x) = f0(n) + f1(n)x, x ∈ R (3.3)

and define payoffs of by the equalities

s0 = supτ∈Mθ Eg(τ,mτ ),
s = supτ∈Mξ Eg(τ, θτ ), (3.4)

where f0(n), f1(n) are nonrandom functions, Mθ, Mξ are the classes of
stopping times with values in {0, 1, 2, . . . , N} with respect to the families
of σ-algebras Fθ

n = σ{θi, o ≤ n} and Fξ
n = σ{ξi, i ≤ n}.

The following notation is introduced:

mn = E(θn| Fξ
n), γn = E[(θn −mn)| Fξ

n]. (3.5)

Let us assume, that the following conditions are satisfied

1) a2
2(n) < ∞, b2

1(n) < ∞, i = 0, 1, A2
0(n) < ∞,

2) a2
1(n) ≤ q, 0 < q < 1,

3) 0 < A1 ≤ A2
1(n) ≤ A1 < ∞, (3.6)

4) 0 ≤ f1(n) ≤ H < ∞.

The following theorem is analogously in result of Fermann’s theorem.
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Theorem 3.1 Let, partially observable random sequence (θn, ξn) is given
by system (3.1), (3.2) and conditions (3.5) are satisfied. Then the following
estimate

0 < s0 − s ≤ 2H
√

B(1 + C) · (ε1 + ε2) (3.7)

is valid, where B and C constants are defined by equalities

B = A−1
1 max

{
1; 2 max [max0≤n≤N a2

1(n); q]
}

, (3.8)

C = max
{

max1≤n≤N

[∑n
k=1

(∏n
j=k a2

1(j)
)]

; q
1−q

}
. (3.9)

Poof. At first notice that following expression of payoff is

s = sup
τ∈Mξ

Eg(τ, mτ ) = sup
τ∈Mθ̃

Eg(τ, θ̃τ ) (3.10)

is valid, where θ̃n sequence is explained by means of following recurrence
equalities (see [1])

θ̃n+1 = a0(n) + a1(n)θ̃n + βnηn+1, (3.11)
βn = P (n)Q−1/2(n), (3.12)

P (n) = (b2
1(n) + b2

2(n))A1(n + 1) + a2
1(n)A1(n + 1) · γn, (3.13)

Q(n) = (b2
1(n) + b2

2(n))A2
1(n + 1) + a2

1(n)A2
1(n + 1) · γn + ε2

1 + ε2
2.(3.14)

After, we notice, that value γn satisfies the recurrence equality (see [1])

γn+1 = a2
1(n)γn + b2

1(n) + b2
2(n)− P 2(n) ·Q−1(n), (3.15)

from which we easily get the estimation of γn

γn ≤ A−1
1 (ε2

1 + ε2
2). (3.16)

Now, estimate the deference s0 − s. We have

s0 − s ≤ HE
{

sup
n≤N

(θn − θ̃n)
}

, (3.17)

where random sequence θ̃n is defined by (3.11)–(3.14) and θn sequence can
be considered as follows (see [1])

θn = a0(n) + a1(n)θn +
√

b2
1(n) + b2

2(n) · ηn+1, (3.18)

where as in (3.11) ηn is the standard normal random values.
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Using the equalities (3.11) and (3.18), we get that

θn+1 − θ̃n+1 = a1(n)(θn − θ̃n) + (
√

b2
1(n) + b2

2(n)− βn)ηn+1,

then with notice that θ0 = θ̃0 = 0 we can write

θn − θ̃n =
n∑

i=1

δ
(n−1)
i (

√
b2
1(i− 1) + b2

2(i− 1)− βi−1)ηi, (3.19)

where

δ
(n)
i =

n∏

j=1

a1(j).

Besides, we can see that

Q(n) ≥ A2
1(b

2
1(n) + b2

2(n)), (3.20)
Q(n) ≥ A2

1(n + 1)a2
1(n)γn. (3.21)

According to condition 2) of (3.6) we get

a2
1(n) ≤ max

{
q; max

0≤k≤N
a2

2(k)
}

,

and according to (3.12), (3.19), (3.21) we can write

(
√

b2
1(n) + b2

2(n)− βn)2 ≤ B(ε2
1 + ε2

2). (3.22)

Using the description of constant c in the last estimate, with simple
transformation we get estimate (3.7). ¥
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