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Abstract

In the present work sequential type decomposition scheme of the fourth order of

accuracy for the solution of evolution problem is offered. For the considered scheme

the explicit a priori estimations are obtained.
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1. Introduction

One of the most effective methods to solve multi-dimensional evolution
problems is a decomposition method. Decomposition schemes with first
and second order accuracy were constructed in the sixties of the XX cen-
tury (see [7], [11] and references therein). Q. Sheng has proved that in
the real number field there do not exist automatically stable decomposition
schemes with an accuracy order higher than two (see [12]). Decomposition
schemes are called automatically stable if a sum of the absolute values of
its split coefficients (coefficients of exponentials’ products) equals to one,
and the real parts of exponential powers are positive. In the work [1] there
is constructed decomposition schemes with the higher order accuracy, but
their corresponding decomposition formulas are not automatically stable.
In the works [2]-[5] introducing the complex parameter, we have constructed
automatically stable decomposition schemes with third order accuracy for
two- and multi-dimensional evolution problems and with fourth order ac-
curacy for two-dimensional evolution problem (evolution problem with the
operator A is called m-dimensional, if it can be represented as a sum of
m summands A = A1 + ... + Am ). The new idea is an introduction of a
complex parameter, which allows us to break the order 2 barrier.
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Decomposition formulas constructed in the above mentioned works rep-
resent formulas of exponential splitting. Exponential splitting is called a
splitting which approximates a semigroup by a combination of semigroups
generated by the summands of the operator generating the given semigroup.

In the present work, we have constructed the fourth order precision
exponential splitting for an evolution problem. For the For the consid-
ered scheme the explicit a priori estimate are obtained. In [12] we have
constructed and ivestigated analogical type third order of accurate decom-
position scheme.

2. Statement of the Problem

Let us consider the Cauchy abstract problem for an evolution equation in
the Banach space X:

du(t)
dt

+ Au(t) = 0, t > 0, u(0) = ϕ, (2.1)

where A is a linear closed operator with a definition domain D(A) , which
is everywhere dense in X, ϕ is a given element from D (A).

Suppose that the operator (−A) generates a strongly continuous semi-
group {exp(−tA)}t≥0. Then the solution of problem (2.1) is given by the
following formula [8,9]:

u(t) = U(t, A)ϕ, (2.2)

where U(t, A) = exp(−tA) is a strongly continuous semigroup.
Let A = A1 + A2, where Ai (i = 1, 2) are closed operators, densely

defined in X.
Let us introduce a grid set:

ωτ = {tk = kτ, k = 1, 2, ..., τ > 0}.

Together with problem (2.1), on each interval [tk−1, tk], we consider a
sequence of the following problems:

dv
(1)
k (t)
dt

+
α

4
A1v

(1)
k (t) = 0, v

(1)
k (tk−1) = uk−1 (tk−1) ,

dv
(2)
k (t)
dt

+
α

2
A2v

(2)
k (t) = 0, v

(2)
k (tk−1) = v

(1)
k (tk) ,

dv
(3)
k (t)
dt

+
1
4
A1v

(3)
k (t) = 0, v

(3)
k (tk−1) = v

(2)
k (tk) ,

dv
(4)
k (t)
dt

+
α

2
A2v

(4)
k (t) = 0, v

(4)
k (tk−1) = v

(3)
k (tk) ,
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dv
(5)
k (t)
dt

+
α

2
A1v

(5)
k (t) = 0, v

(5)
k (tk−1) = v

(4)
k (tk) ,

dv
(6)
k (t)
dt

+
α

2
A2v

(6)
k (t) = 0, v

(6)
k (tk−1) = v

(5)
k (tk) ,

dv
(7)
k (t)
dt

+
1
4
A2v

(7)
k (t) = 0, v

(7)
k (tk−1) = v

(6)
k (tk) ,

dv
(8)
k (t)
dt

+
α

2
A1v

(8)
k (t) = 0, v

(8)
k (tk−1) = v

(7)
k (tk) ,

dv
(9)
k (t)
dt

+
α

4
A2v

(9)
k (t) = 0, v

(9)
k (tk−1) = v

(8)
k (tk) ,

where α is a complex number with the positive real part, Re (α) > 0;
u0(0) = ϕ. Suppose that the operators (−Aj) , (−αAj) , (−αAj) , j = 1, 2
generate strongly continuous semigroups.

uk(t), k = 1, 2, .., is defined on each interval [tk−1, tk] as follows:

uk(t) = v
(9)
k (t) . (2.3)

We declare function uk(t) as an approximated solution of problem (2.1) on
each interval [tk−1, tk].

3. Estimate of Error of the Approximated Solu-
tion

We need the natural powers (As, s = 2, 3, 4, 5) of the operator A = A1 +
A2. They are defined as usually. It is obvious that the definition domain
D (As) of the operator As represents an intersection of definition domains
of its addends.

Let us introduce the following notations:

‖ϕ‖A = ‖A1ϕ‖+ ‖A2ϕ‖ , ϕ ∈ D (A) ;
‖ϕ‖A2 =

∥∥A2
1ϕ

∥∥ +
∥∥A2

2ϕ
∥∥ + ‖A1A2ϕ‖

+ ‖A2A1ϕ‖ , ϕ ∈ D
(
A2

)
,

where ‖·‖ is a norm in X. ‖ϕ‖As , (s = 3, 4, 5) is defined analogously.
Theorem. Let the following conditions be fulfilled:
(a) α = 1

2 ± i 1
2
√

3

(
i =

√−1
)

;
(b) Operators (−γAj), γ = 1, α, α (j = 1, 2) and (−A) generate

strongly continuous semigroups, for which the following estimates are true:

‖U(t, γAj)‖ ≤ eωt,

‖U(t, A)‖ ≤ Meωt, M = const > 0;

92



+ Fourth Order of Accuracy Sequential Type ... AMIM Vol.10 No.2, 2005

(c) U (s,A) ϕ ∈ D
(
A5

)
for each fixed s ≥ 0.

Then the following estimate holds:

‖u(tk)− uk(tk)‖ ≤ ceω0tktkτ
4 sup

s∈[0,tk]
‖U (s,A) ϕ‖A5 ,

where c and ω0 are positive constants.
Proof. According to the following formula (see [8], p. 603):

A

t∫

r

U (s,A) ds = U (r,A)− U (t, A) , 0 ≤ r ≤ t,

we can obtain the expansion:

U(t, A) =
k−1∑

i=0

(−1)i t
i

i!
Ai + Rk(t, A), (3.1)

where

Rk(t, A) = (−A)k

t∫

0

s1∫

0

...

sk−1∫

0

U(s,A)dsdsk−1...ds1. (3.2)

From formula (2.2) we obtain:

uk(tk) = V k (τ) ϕ, (3.3)

where

V (τ) = U

(
τ,

α

4
A1

)
U

(
τ,

α

2
A2

)
U

(
τ,

1
4
A1

)
U

(
τ,

α

2
A2

)
U

(
τ,

α

2
A1

)

×U
(
τ,

α

2
A2

)
U

(
τ,

1
4
A1

)
U

(
τ,

α

2
A2

)
U

(
τ,

α

4
A1

)
.

Remark 2.1. Stability of the considered scheme on each finite time
interval follows from the first inequality of the condition (b) of the Theorem.
In this case, for the solving operator, the following estimate holds:

∥∥∥V k (τ)
∥∥∥ ≤ eω1tk , (3.4)

where ω1 is a positive constant.
We introduce the following notations for combinations (sum, product) of

semigroups. Let T (τ) be a combination (sum, product) of the semigroups,
which are generated by the operators (−γAi) (i = 1, 2). Let us decompose
every semigroup included in operator T (τ) according to formula (3.1), mul-
tiply these decompositions on each other, add the similar members and,
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in the decomposition thus obtained, denote coefficients of the members
(−τAi),

(
τ2AiAj

)
,
(−τ3AiAjAk

)
and

(−τ4AiAjAkAl

)
(i, j, k, l = 1, 2) re-

spectively by [T (τ)]i, [T (τ)]i,j , [T (τ)]i,j,k and [T (τ)]i,j,k,l.
If we decompose all the semigroups included in the operator V (τ) ac-

cording to formula (3.1) from left to right in such a way that each residual
term appears of the fifth order, we will obtain the following formula:

V (τ) = I − τ
2∑

i=1

[V (τ)]i Ai + τ2
2∑

i,j=1

[V (τ)]i,j AiAj

−τ3
2∑

i,j,k=1

[V (τ)]i,j,k AiAjAk

+τ4
2∑

i,j,k,l=1

[V (τ)]i,j,k,l AiAjAkAl + R5 (τ) . (3.5)

According to the first inequality of the condition (b) of the Theorem,
for R5 (τ), the following estimate holds:

‖R5 (τ) ϕ‖ ≤ ceω0ττ5 ‖ϕ‖A4 , ϕ ∈ D
(
A5

)
, (3.6)

where c and ω0 are positive constants.
Let us calculate the coefficients [V (τ)]i corresponding to the first order

members in formula (3.5). It is obvious that the members, corresponding to
these coefficients, are obtained from the decomposition of only those factors
(semigroups) of the operator V (τ) , which are generated by the operators
(−γAi), and from the decomposition of other semigroups only first addends
(the members with identical operators) will participate.

On the whole, we have two cases: i = 1 and i = 2. Let us consider the
case i = 1. We obviously have:

[V (τ)]1 = [U (τ,A1)]1 = 1. (3.7)

Analogously for i = 2 we have:

[V (τ)]2 = [U (τ,A2)]2 = 1. (3.8)

By combining formulas (3.7) and (3.8), we will obtain:

[V (τ)]i = 1, i = 1, 2. (3.9)

Let us calculate the coefficients [V (τ)]i,j (i, j = 1, 2) corresponding to
the second order members included in formula (3.5). On the whole we
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have two cases: (i, j) = (1, 1), (1, 2), (2, 1), (2, 2) . Let us consider the case
(i, j) = (1, 1). We obviously have:

[V (τ)]1,1 = [U (τ, A1)]1,1 =
1
2
. (3.10)

Analogously for (i, j) = (2, 2) we have:

[V (τ)]2,2 = [U (τ, A2)]2,2 =
1
2
. (3.11)

Let us consider the case (i, j) = (1, 2), we obviously have:

[V (τ)]1,2 =
[
U

(
τ,

α

4
A1

)]

1

(
2

[
U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

1
4
A1

)]

1

([
U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

α

2
A1

)]
1

([
U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

=
α (α + α)

4
+

α + 2α

8
+

α (α + α)
4

+
α

8

=
2α + 1 + α + 2α + α

8
=

1
2
. (3.12)

For (i, j) = (2, 1) we have:

[V (τ)]2,1 =
1
2
. (3.13)

Here we used the identity α + α = 1.
By combining formulas (3.10) - (3.13), we will obtain:

[V (τ)]i,j =
1
2
, i, j = 1, 2. (3.14)

Let us calculate the coefficients [V (τ)]i,,j,k (i, j, k = 1, 2) correspond-
ing to the third order members in formula (3.5). On the whole we have
eight cases: (i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2),
(2, 2, 1), (2, 2, 2). Let us consider the case (i, j, k) = (1, 1, 1). We obviously
have:

[V (τ)]1,1,1 = [U (τ, A1)]1,1,1 =
1
6
. (3.15)

Analogously for (i, j) = (2, 2, 2) we have:

[V (τ)]2,2,2 = [U (τ, A2)]2,2,2 =
1
6
. (3.16)
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Thus Let us calculate the case (i, j, k) = (1, 1, 2). We have:

[V (τ)]1,1,2 =
[
U

(
τ,

α

4
A1

)]

1,1

(
2

[
U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

1
4
A1

)]

1,1

([
U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

α

2
A1

)]
1,1

([
U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

1
4
A1

)]

1,1

[
U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

1
4
A1

)]

1

×
([

U

(
τ,

α

2
A2

)]

2

+ 2
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A1

)]
1

×
([

U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

α

2
A1

)]
1

×
([

U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A2

)]
2

)

+
[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

=
α2 (α + α)

32
+

α + 2α

64
+

α2 (α + α)
16

+
α

64
+

α (α + 2α)
32

+
αα (α + α)

16
+

α2

32
+

α (α + α)
16

+
α

32
+

αα

16
=

1
6
. (3.17)

For (i, j, k) = (2, 1, 1) we have:

[V (τ)]2,1,1 =
1
6

(3.18)

Here we used the identities α + α = 1, αα = 1
3 and α2 + α2 = 1

3 .
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Thus Let us calculate the case (i, j, k) = (1, 2, 2). We have:

[V (τ)]1,2,2 =
1
6
. (3.19)

For (i, j, k) = (2, 1, 1) we have:

[V (τ)]2,1,1 =
1
6

(3.20)

Here we used the identities α + α = 1, αα = 1
3 and α2 + α2 = 1

3 .
Thus Let us calculate the case (i, j, k) = (1, 2, 1). We have:

[V (τ)]1,2,1 =
[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

×
([

U

(
τ,

1
4
A1

)]

1

+
[
U

(
τ,

α

2
A1

)]
1

+
[
U

(
τ,

1
4
A1

)]

1

+
[
U

(
τ,

α

4
A1

)]

1

+
[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

×
([

U
(
τ,

α

2
A1

)]
1
+

[
U

(
τ,

1
4
A1

)]

1

+
[
U

(
τ,

α

4
A1

)]

1

)

+
[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

×
([

U

(
τ,

1
4
A1

)]

1

+
[
U

(
τ,

α

4
A1

)]

1

)

+
[
U

(
τ,

α

4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

[
U

(
τ,

α

4
A1

)]

1

+
[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

×
([

U
(
τ,

α

2
A1

)]
1
+

[
U

(
τ,

1
4
A1

)]

1

+
[
U

(
τ,

α

4
A1

)]

1

)

+
[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

α

2
A2

)]
2

×
([

U

(
τ,

1
4
A1

)]

1

+
[
U

(
τ,

α

4
A1

)]

1

)

+
[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

[
U

(
τ,

α

4
A1

)]

1

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

α

2
A2

)]
2

97



AMIM Vol.10 No.2, 2005 J.Rogava, M.Tsiklauri +

×
([

U

(
τ,

1
4
A1

)]

1

+
[
U

(
τ,

α

4
A1

)]

1

)

+
[
U

(
τ,

α

2
A1

)]
1

[
U

(
τ,

α

2
A2

)]

2

[
U

(
τ,

α

4
A1

)]

1

+
[
U

(
τ,

1
4
A1

)]

1

[
U

(
τ,

α

2
A2

)]

2

[
U

(
τ,

α

4
A1

)]

1

=
α2 (2 + 2α + α)

32
+

αα (1 + 2α + α)
32

+
αα (1 + α)

32
+

α3

32

+
α (1 + 2α + α)

32
+

α (1 + α)
32

+
α2

32
+

α2 (1 + α)
16

+
αα2

16
+

α2

32

=
4 + 2α− 2

3 + 2α

32
=

6− 2
3

32
=

1
6
. (3.21)

For (i, j, k) = (2, 1, 2) we have:

[V (τ)]2,1,2 = [U (τ, αA2)]2

[
U

(
τ,

1
2
A1

)]

1

[U (τ, αA2)]2

= α
1
2
α =

1
6
. (3.22)

Here we used the identities α + α = 1, αα = 1
3 and α2 + α2 = 1

3 .
By combining formulas (3.15) - (3.22), we will obtain:

[V (τ)]i,j,k =
1
6
, i, j, k = 1, 2. (3.23)

Analogouosly we can show that

[V (τ)]i,j,k,l =
1
24

, i, j, k, l = 1, 2. (3.24)

From equality (3.5), taking into account formulas (3.9), (3.14), (3.23)
and (3.24), we will obtain:

V (τ) = I − τ
2∑

i=1

Ai +
1
2
τ2

2∑

i,j=1

AiAj − 1
6
τ3

2∑

i,j,k=1

AiAjAk

+
1
24

τ4
2∑

i,j,k,l=1

AiAjAkAl + R5 (τ)

= I − τ
2∑

i=1

Ai +
1
2
τ2

(
2∑

i=1

Ai

)2

− 1
6
τ3

(
2∑

i=1

Ai

)3

+
1
24

τ4

(
2∑

i=1

Ai

)4

+ R5 (τ)

= I − τA +
1
2
τ2A2 − 1

6
τ3A3 +

1
24

τ4A4 + R5 (τ) . (3.25)
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According to formula (3.1) we have:

U (τ, A) = I − τA +
1
2
τ2A2 − 1

6
τ3A3 +

1
24

τ4A4 + R5 (τ,A) . (3.26)

According to condition (b) of the second inequality of the Theorem, for
R5 (τ, A), the following estimate holds:

‖R5 (τ,A) ϕ‖ ≤ ceωττ5
∥∥A5ϕ

∥∥ ≤ ceωττ5 ‖ϕ‖A5 . (3.27)

According to equalities (3.25) and (3.26) we have:

U (τ,A)− V (τ) = R5 (τ, A)−R5 (τ) .

From here, taking into account inequalities (3.6) and (3.27), we will obtain
the following estimate:

‖[U (τ,A)− V (τ)]ϕ‖ ≤ ceω2ττ5 ‖ϕ‖A5 . (3.28)

From equalities (2.2) and (3.3), taking into account inequalities (3.4)
and (3.28), we will obtain:

‖u(tk)− uk(tk)‖ =
∥∥∥
[
U(tk, A)− V k (τ)

]
ϕ
∥∥∥ =

∥∥∥
[
Uk (τ, A)− V k (τ)

]
ϕ
∥∥∥

=

∥∥∥∥∥

[
k∑

i=1

V k−i (τ) [U (τ, A)− V (τ)]U ((i− 1) τ, A)

]
ϕ

∥∥∥∥∥

≤
k∑

i=1

‖V (τ)‖k−i ‖[U (τ,A)− V (τ)]U ((i− 1) τ, A) ϕ‖

≤
k∑

i=1

eω1(k−i)τceω2ττ5 ‖U ((i− 1) τ,A) ϕ‖A5

≤ ceω0tkτ5
k∑

i=1

‖U ((i− 1) τ, A) ϕ‖A5

≤ kceω0tkτ4 sup
s∈[o,tk]

‖U (s,A) ϕ‖A5

≤ ceω0tktkτ
4 sup

s∈[o,tk]
‖U (s,A) ϕ‖A5 ¥

Remark 2.2. The fourth order of accurate decomposition formula in
case of Multidimensional problem has the following form:

V (m) (τ) =, m ≥ 2.
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