
THE DYNAMICS OF ROSSBY AND INERTIAL WAVES IN THE
IONOSPHERE WITH AN INHOMOGENEOUS ZONAL WIND:

AMPLIFICATION AND MUTUAL TRANSFORMATIONS

G.D. Aburjania and O.A. Kharshiladze

I.Vekua Institute of Applied Mathematics
Tbilisi State University

0143 University Street 2, Tbilisi, Georgia

(Received: 12.01.05; accepted: 17.05.05)

Abstract

The generation and further dynamics of planetary magnetized Rossby waves and

inertia waves are investigated in the rotating dissipative ionosphere in the presence of a

smooth inhomogeneous zonal wind (shear flow). Magnetized Rossby waves appear as a

result of the interaction of the medium with the spatially inhomogeneous geomagnetic

field and are ionospheric manifestation of usual tropospheric Rossby waves. An effec-

tive linear mechanism responsible for the intensification and mutual transformation of

Rossby and inertia waves is found. For shear flows, the operators of the linear problem

are nonselfconjugate and therefore the eigenfunctions of the problem are nonorthog-

onal and can hardly be studied by the canonical modal approach. Hence it becomes

necessary to use the so-called nonmodal mathematical analysis which has been actively

developed in recent years. The nonmodal approach shows that the transformation of

wave disturbances in shear flows is due to the nonorthogonality of eigenfunctions of

the problem in the conditions of linear dynamics. Thus there arise a new degree of

freedom and a new way for the evolution of disturbances in the medium. Using the

numerical modeling, we illustrate the peculiar features of the interaction of waves with

the background flow, as well as the mutual transformation of wave disturbances in

the D, E and F-regions of the ionosphere. It is established that the presence of a

geomagnetic field, Hall and Pedersen currents in the ionospheric medium improve the

interaction and mutual energy exchange between waves and a shear flow.

Key words and phrases: Shear flow, inhomogeneous geomagnetic field, Rossby

wave transformation.
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1. Introduction

Large-scale wave motions play an important role in the processes connected
with energy balance and atmosphere and ocean circulation. As a simple
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theoretically possible kind of large-scale motion in the ionosphere, we can
name geostrophic motion, i.e. motion in whose dynamic equations the
horizontal pressure gradient and the Coriolis force have the same order,
while the other terms are negligibly small. As the classical investigations
in this area showed [Rossby, 1938; Obukhova, 1949; Kibel, 1955], real large-
scale motions are characterized by a continuous process of adaptation to
geostrophic motion. For synoptic practice, the geostrophic approximation
gives a satisfactory accuracy especially for lower atmospheric layers (except
the Earth’s boundary layer, frontal surfaces and jet flows) [Gandin et al.,
1952; Holton, 1976].

However, as different from lower atmospheric layers, when studying the
dynamics of large-scale planetary processes in the ionosphere, it is neces-
sary to take into account the inhomogeneous and non-stationary properties
of a wind process, a turbulent state of the lower ionosphere, and the in-
fluence of inhomogeneous electromagnetic forces. These factors, which are
especially strongly pronounced because of a low density of the medium in
the ionosphere and a relatively high conductivity of the ionospheric gas,
may cause essential deflections of the real wind (usual Rossby planetary
wave) from geostrophic motion. Hence the general ionospheric circulation
has certain peculiarities that are not observed in the conditions of the tro-
posphere.

A stationary problem on the existence of large-scale (planetary) Rossby
waves (horizontal winds) in the ionosphere was for the first time discussed
in [Dokuchayev, 1959] for the case of a rectilinear homogeneous flow of the
medium in the geomagnetic field. It was found, that for theoretical investi-
gation and interpretation of the dynamics of winds above 100 km, it is nec-
essary to take into consideration possible deflections from the geostrophic
wind, which arise under the action of electromagnetic forces. In the sub-
sequent years, there appeared a number of other works [Bramley, 1967;
Geisler, 1967; Khantadze, 1968; Khantadze, Sharikadze, 1969; Aburjania,
Kahntadze, 2002 and others], in which consideration was given to nonsta-
tionary evolutions of wind structures in the conducting ionospheric medium
under the influence of a spatially inhomogeneous geomagnetic field.

The action of a geomagnetic field leads, on the one hand, to the in-
ductive damping of Rossby type planetary waves, which is connected with
Pedersen or transverse (relative to a magnetic field) conductivity, and, on
the other hand, to the gyroscopic effect caused by the Hall conductivity
of the ionosphere and having an impact on disturbances like the Coriolis
force. As a result of the joint action of the spatially inhomogeneous Coriolis
force and the electrodynamic (connected with the geomagnetic field) force,
in the ionosphere there may exist a new type of waves which physically
differ from the usual Rossby wave and which are called magnetized Rossby
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or Rossby type waves.
In the above references and other earlier works, the Rossby wave or

magnetized Rossby wave dynamics was studied, at best, in the presence of
the constant homogeneous zonal wind. Hence the corresponding dynamic
equations were solved by the canonical modal approach, i.e. by the spectral
(Fourier or Laplace) expansion of wave values with respect to time.

However, many-year observations [Khantadze, 1973; Gossard, Hooke,
1975; Pedlosky, 1978; Kazimirovski, Kokourov, 1979; Kamide, 1980] show
that the atmospheric and ionospheric layers always have spatially inhomo-
geneous zonal winds (shear flows) produced by a nonuniform heating of
the atmospheric layers by solar radiation. In this connection, it becomes
important to investigate the problem on generation and evolution of usual
and magnetized Rossby waves at their interaction with the inhomogeneous
zonal wind (shear flow).

The interest in shear flows exist, generally speaking, due to their oc-
currence both in the near-earth space (as has been mentioned above) and
astrophysical objects (galaxies, stars, jet outbursts, the world ocean and so
on) and in the laboratory and engineering equipment (oil and gas pipelines,
plasma magnetic traps, magnetodynamic generators and so on). A flow ve-
locity shear is a powerful source of various energy-consuming processes in
a solid medium. Though these processes have been studied in the course
of many years, their theoretical interpretation is difficult even in terms of
linear approximation. The canonical (modal) investigation of linear wave
processes (spectral expansion disturbances with respect to time followed
by analysis of the eigenvalues) in shear flows does not take into account a
highly important physical process, namely, the mutual transformation of
wave modes [Reddy et al., 1993; Trefenthen et al., 1993].

A strict mathematical description of the peculiarities of shear flows
revealed [Reddy et al., 1993] that in the case of canonical (modal) analysis
of linear processes the operators figuring in dynamic equations are not self-
conjugate [Trefenthen et al., 1993] and, as a result, the eigenfunctions of
the problem are not orthogonal to each other – they strongly interfere with
each other. One of the results of this fact consists in the following: even
if all eigenfunctions decrease monotonically (exponentially) with respect
to time (i.e. if the complex parts of all eigenfrequencies are negative), a
particular solution might show a large relative growth on the finite time
interval. Therefore analysis of individual eigenfunctions and eigenvalues
does not help us to form a judgement about the linear stage of the evolution
of shear flow disturbances. Thus, for a correct description of phenomena
it becomes necessary to carry out accurate calculations of effects of the
interference of eigenfunctions, which sometimes turns out to be the problem
of insurmountable difficulty.
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There also exists another so-called nonmodal analysis of linear processes
in shear flows, which takes its origin in the time of Kelvin [1887]. With
this approach, the modified initial problem (Cauchy problem) is solved by
tracing the evolution of spatial Fourier-harmonics (SFH) of wave distur-
bances in time and not using any spectral expansion with respect to time
[Graik et al., 1986; Farrell, Ioannou,1993; Chagelishvili et al., 1994; Chage-
lishvili et al., 1996; Kalashnik et al., 2004]. Being an optimal “language”,
the nonmodal approach much simplifies a mathematical description of the
dynamics of shear flow disturbances and makes it possible to reveal the
key phenomena (caused by the nonorthogonality of linear dynamics) which
have escaped the notice in the case of modal analysis. A lot of unexpected
new results have already been obtained within the framework of this ap-
proach. They include in particular the evolution of acoustic disturbances,
an energy exchange between the corresponding SFH and a horizontal shear
flow [Chagelishvili et al., 1994; Chagelishvili et al., 1996]; a new mecha-
nism of linear transformation of waves in shear flows has been discovered
[Chagelishvili et al., 1995; Chagelishvili et al., 1997].

Usually, when investigating the dynamics of Rossby type waves in the
dispersed medium (atmosphere, ionosphere, ocean), in the corresponding
closed system of hydro- or magnetohydrodynamic equations, we perform
expansion with respect to the small parameter (Rossby parameter). This
is in fact the averaging over a high-frequency inertial branch of oscillations
and, as a result, we obtain the vortex transfer equation or the Charney-
Obukhov equation [Charney, 1947; Obukhov, 1949] analyzed in most of the
works dealing with the dynamics of Rossby type waves [Rossby, 1949; Gos-
sard, Hooke, 1978; Monin, 1978; Pedlosky, 1978; Gill, 1982; Petviashvili,
Pokhotelov, 1992; Nezlin, Snezhkin, 1993]. Such an approximation cer-
tainly excludes a possible occurrence of fast processes in the system and
ignores a possible transformation of Rossby type waves to high-frequency
gyroscopic waves in the presence of zonal shear flows (wind) and thereby
may strongly distort the picture of wave processes in the atmosphere.
Therefore such an approach closes the channel through which a greater
part of energy of Rossby type waves is transferred.

We will show below that even in the case of a simple shear flow (smooth-
inhomogeneous wind) the use of the Charney-Obukhov equation as a base
model leads to ignoring the important process of energy exchange between
high-frequency (inertial) waves and low-frequency (Rossby) ones. Here we
actually mean the transformation of waves of a low-frequency branch to
waves of a high-frequency branch, i.e. we can speak of an essential change
occurring in the time scale of the wave process. The matter is that in shear
flows, waves of various scales become connected: in equations describing
their evolution and written with appropriate notation, there appear con-
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nected (linked) terms which for certain values of system parameters lead
to intensive mutual transformations of modes.

In this paper we investigate the linear evolution of Rossby type waves
in shear zonal flows (winds) in D, E and F-regions of the ionosphere. In
dynamic equations, the disturbed magnetohydrodynamic values are repre-
sented through SFH. This corresponds to nonmodal analysis in the coordi-
nate system which moves with the background wind. This spatial Fourier
expansion allows us to replace, in the basic equations, the spatial inhomo-
geneity connected with the inhomogeneity of the basic zonal flow by the
time-dependent inhomogeneity and to trace how the SFH of disturbances
evolved in time.

2. Initial equations and the basic principles of
nonmodal analysis

In this paper we are interested mainly in large-scale (planetary) wave mo-
tions in the ionospheric medium (consisting of electrons, ions and neutral
particles), which have a horizontal linear scale Lh of order 103 km and
higher, a vertical scale Lv of altitude scale order H0 ( Lv ≈ B0) and a time
scale τ of half-day order and higher. It is such motions that are connected
with global distributions of the ionospheric structure and its large-scale
daily, seasonal, 27-day and other variations. According to experimental
data [Ratclife, Weeks, 1960; Gossard, Hooke, 1975; Holton, 1975; Kaz-
imirovski, Kokourov, 1979; Kamide, 1980], in ionospheric large-scale mo-
tions the relation of the characteristic vertical velocity Vv to the horizontal
one Vh is small: Vv/Vh ≤ Lv/Lh < 10−2 . The latter relation implies that
large-scale motions in the ionosphere are mostly quasi-horizontal. The dy-
namic properties of such a medium are defined by the neutral component
because of the fulfillment of the condition Ne,i/Nn << l (where Ne, Ni, Nn

are the concentration of electrons, ions and the neutral component, respec-
tively). The presence of charged particles makes the considered medium
electroconductive.

Among theoretically possible ionospheric large-scale wave motions we
can single out a class of disturbances for which the effective Reynolds mag-
netic number is Reff ≈ 4πσeffV ·L · c−2 << 1 (where σeff is an effective
value of ionospheric conductivity, c is the light velocity, V and L are the
characteristic velocity and disturbance sizes), which is sufficiently well ful-
filled nearly up to the ionospheric F-layer [Khantadze, 1973; Kazimirovski,
Kokourov, 1979; Kamide, 1980]. Hence for the lower ionosphere we can
neglect the induced magnetic field b ≈ ReffB and the vortical electric
field Ev˜Reff (V B) that arises at the change of b. Thus for the consid-
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ered class of wave disturbances the magnetic field can be assumed to be
given and equal to the external spatially inhomogeneous geomagnetic field
B0(B = b + B0 ≈ B0, Ev → 0). It satisfies the equations divB0 = 0 ,
rotB0 = 0. Having such an induction-free approximation, it is sufficient
to consider only currents j arising in the medium, while the magnetic field
generated by these currents can be neglected. In that case, the action
of the geomagnetic field B0 on the induction current J in the ionospheric
plasma makes it necessary to take into consideration the ponderomotive
force j×B0 in the well known equations of ionospheric dynamics (in addi-
tion to the pressure, Coriolis and viscous friction forces). The presence of
this force not only modifies the geostrophic wind (because of Hall currents),
but makes the deflect wind from the geostrophic wind due to the appear-
ance of inductive deceleration (caused by Pedersen currents) in the Earth’s
ionosphere which is more essential than viscous decceleration [Dokuchayev,
1959; Gershman et al., 1984], especially in the F-region [Khantadze, 1973;
Kamide, 1980].

It might seem that large-scale Rossby type disturbances in the ionosphere
could be described by shallow water equations. However, when using these
equations for atmospheric long-wave processes, the atmosphere is usually
assumed to be barotropic and in reality, as is seen from synoptic maps, this
assumption does not hold always. In [Petviashvili, Pokhotelov, 1992] it is
shown that the system of shallow water equations should take into account
the medium compressibility.

In the light of the above reasoning, the basic properties of a Rossby type
planetary wave in the ionosphere should be considered by using as initial
data the equation for the horizontal velocity V⊥(Vx, Vy), where acceler-
ation is defined by the pressure gradient, Coriolis force, volumetric elec-
trodynamic force and viscous friction [Dokuchayev, 1959; Gossard, Hooke,
1975; Pedlosky, 1978; Kamide, 1980]:

∂V⊥
∂t

+ (V⊥O)V⊥ = −OP

ρ
− 2 [Ω0 ×V⊥] +

1
ρc

[j×B0] + ν4⊥V⊥, (2.1)

the continuity equation [Petviashvili, Pokhotelov, 1992]

∂ρ

∂t
+ (V⊥O)ρ + ργ−1divV⊥ = 0 (2.2)

and the medium state equation

∂P

∂t
+ (V⊥O)P + PdivV⊥ = 0 . (2.3)

Here P and ρ = NnM are the pressure and the density of the medium,
M is the mass of an ion or a neutral particle (molecule), g is the gravity
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force acceleration, γ is the ratio of specific heats, ν is the kinematic viscos-
ity, 4⊥ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian. The ponderomo-
tive force j × B0 defines to a considerable extent the peculiar behavior of
ionospheric motions [Aburjania, Khantadze, 2002; Aburdjania et al., 2004].
The inductive current j density is defined from the generalized Ohm’s law
for the ionosphere [Khantadze, 1973; Kamide, 1980; Gershman et al., 1984]:

j = σ‖Ed‖ + σ⊥Ed⊥ +
σH

B0
[B0 ×Ed] , (2.4)

where the parallel conductivity (in the direction of the magnetic field B0)
, the Pedersen or transverse conductivity (across B0) and the Hall conduc-
tivity are defined by the following expressions:

σ‖ = e2N

(
1

mνe
+

1
Mνin

)
,

σ⊥ = e2N

(
νe

m
(
ν2

e + ω2
Be

) +
νin

M
(
ν2

in + ω2
Bi

)
)

, (2.5)

σH = e2N

(
ωBe

m
(
ν2

e + ω2
Be

) − ωBi

M
(
ν2

in + ω2
Bi

)
)

,

where e, m, νe = νei + νen, ωBe = eB0/m are the charge, mass, frequency
of collisions of electrons with ions and neutral molecules and the cyclotronic
frequency of electrons, respectively; νin and ωBi = eB0/M are the corre-
sponding ion values. Assuming that the ionosphere is quasi-neutral to a
high accuracy degree, we have neglected the electrostatic part Ee = −∇Φ
(Φ is an electrostatic potential) and the vortical part Ev of the electric
field. Now, if we take into account the motion of the medium, then the
electric field intensity in equation (2.4) is defined only by the dynamo-field
[Dokuchayev, 1959; Khantadze, 1973; Kamide, 1980]

Ed = [V ×B0] (2.6)

Since the length of planetary waves is comparable with the Earth’s radius
R, we investigate such notions in approximation of the β-plane, which was
specially developed for analysis of large-scale processes [Gossard, Hooke,
1975; Pedlosky, 1978], in the “standard” coordinate system [Gandin et
al., 1955; Holton, 1975]. In this system, the x-axis is directed along the
parallel to the east, the y-axis along the meridian to the north and the z-
axis vertically upwards (the local Cartesian system). The differentials dx,
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dy, dz are related to the parameters of the spherical system of coordinates
λ, θ, r by the following approximate formulas: dx = R sin θdλ, dy = −Rdθ,
dz = dr. The velocties are respectively equal to Vx = Vλ, Vy = −Vθ,
Vz = Vr. Here θ = π/2−ϕ is the colatitude, ϕ is the geographical latitude,
λ is the longitude, r is counted from the center along the Earth’s radius.
In the sequel, we assume that Vz = 0 (by virtue of the above reasoning)
and the geomagnetic field B0 (B0x, B0y, B0z) is dipolar and has in the
chosen coordinate system the following components [Dokuchayev, 1959;
Khantadze, 1973]

B0x = 0, B0y = −Be sin θ
′
, B0z = −2Be cos θ

′
, (2.7)

where Be ≈ 3, 5×10−5Tesla (T) is the value of geomagnetic field induction
at the equator. In this case, the total induction of the geomagnetic field is

B0 = Be

(
1 + 3 cos2 θ

′
)1/2

and θ
′
= π/2− ϕ

′
, where ϕ

′
is the geomagnetic

latitude. In the same coordinate system, the components of the angular
velocity vector of the Earth’s rotation Ω0 (Ω0x, Ω0y, Ω0z) can be written as

Ω0x = 0, Ω0y = Ω0 sin θ, Ω0z = Ω0 cos θ, (2.8)

It is assumed that the geographical ϕ and geomagnetic ϕ
′

latitudes coin-
cide ϕ = ϕ

′
, θ = θ

′
and disturbances occur in the neighborhood of the

latitude ϕ0 = π/2 − θ0. Further, system (2.1)–(2.5) is linearized against
the background of a plane zonal shear flow (wind) V0: V = V0 +V

′
(x, y),

ρ = ρ0 + ρ
′
(x, y), P = P0 + P

′
(x, y), where the values with a prime are

the disturbed ones, while the mean (background) values have the sub-index
zero (for simplicity, in the sequel we omit the prime of the perturbed val-
ues). Thus the initial system of equations for large-scale small (linear)
disturbances can be written in the form
dV⊥
dt

+ (V⊥O)V0 = −OP

ρ0
− 2Ω×V⊥ (2.9)

+
σ⊥
ρ0c2

(B2
0V⊥ −B0yVyB0) +

B0σH

ρ0c2
V ×B0 + ν4V,

γ
dρ

dt
+ γ(V⊥O)ρ0 + ρ0divV⊥ = 0 , (2.10)

dP

dt
+ (V⊥O)P0 + P0divV⊥ = 0 , (2.11)

Here d/dt = ∂/∂t+V0O, V0(V0x, 0, 0) is the background zonal wind velocity
which, for the horizontal shear flow, is given in the form

V0 = ayex (2.12)
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where a is the wind shear constant parameter, ex is the unit vector directed
along the x-axis.

In the chosen local Cartesian system for components (2.9) – (2.11) we
obtain the following system of equations

(
∂

∂t
+ ay

∂

∂x

)
Vx = − 1

ρ0

∂P

∂x
− σ⊥B2

0

ρ0c2
Vx (2.13)

+
(

2Ω0z +
σHB0B0z

ρ0c2
− a

)
Vy + ν4Vx,

(
∂

∂t
+ ay

∂

∂x

)
Vy = − 1

ρ0

∂P

∂y
− σ⊥B2

0z

ρ0c2
Vy (2.14)

−
(

2Ω0z +
σHB0B0z

ρ0c2

)
Vx + ν4Vy,

γ

(
∂

∂t
+ ay

∂

∂x

)
ρ + ρ0

(
∂Vx

∂x
+

∂Vy

∂y

)
= 0, (2.15)

(
∂

∂t
+ ay

∂

∂x

)
P + P0

(
∂Vx

∂x
+

∂Vy

∂y

)
= 0. (2.16)

Note that in the motion equation (2.14) we have discarded the term
2Ω0zV0xρ/ρ0, because it is much smaller than the third term in the right-
hand part of (2.14). Indeed, for the considered large-scale small distur-
bances Vx/V0x >> ρ/ρ0 [Gossard, Hooke, 1975; Pedlosky, 1984; Gill, 1986].
In this case, equation (2.15) becomes independent and defines the dis-
turbed density of the medium when the distribution values of the velocity
Vx,y(x, y, t) are known. Thus the closed system of equations for our problem
consists of three equations (2.13), (2.15) and (2.16).

To proceed with our analysis of the peculiar properties of a magnetized
Rossby wave in the ionosphere, it is convenient to introduce the coordinate
system with the moving axes X101Y , whose origin and 01 and Y1-axis
coincide with their counterparts of the equilibrium local system X0Y , while
the X1-axis moves together with the undisturbed (background) flow (see
Fig. 1). For our problem, this is equivalent to the replacement of the
variables

x1 = x− ayt y1 = y, t1 = t, (2.17)

or to

∂

∂t
=

∂

∂t1
− ay

∂

∂x1
,

∂

∂x
=

∂

∂x1
,

∂

∂y
=

∂

∂y1
− at1

∂

∂x1
. (2.18)
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In the new variables, equations (2.13), (2.14), (2.16) take the form

∂Vx

∂t
= − 1

ρ0

∂P

∂x1
− σ⊥B2

0

ρ0c2
Vx +

(
2Ω0z +

σHB0B0z

ρ0c2
− a

)
Vy (2.19)

+ν

(
∂2

∂x2
+

(
∂

∂y1
− at1

∂

∂x1

)2
)

Vx,

∂Vy

∂t
= − 1

ρ0

∂P

∂x1
− σ⊥B2

0

ρ0c2
Vy −

(
2Ω0z +

σHB0B0z

ρ0c2

)
Vx (2.20)

+ν

(
∂2

∂x2
+

(
∂

∂y1
− at1

∂

∂x1

)2
)

Vy,

∂P

∂t
+ P0

(
∂Vx

∂x1
+

(
∂

∂y1
− at1

∂

∂x1

)
Vy

)
= 0. (2.21)

The above replacement of the variables does not mean that we have phys-
ically passed over to a new counting system, since the values Vx, Vy, P in
equations (2.9)–(2.11), ((2.19)–(2.21)) are equivalent to the velocity and
pressure components of wave disturbance in the Cartesian system X0Y .
The coefficients of the initial system of linear equations (2.9)–(2.11) (or
(2.13)–(2.16)) depended on the spatial coordinate y. The above mathe-
matical transformations have changed this spatial inhomogeneity for time
inhomogeneity (see equations (2.19)—(2.21)). Thus the coefficients of sys-
tem (2.19)–(2.21) have become independent of the spatial variables x1, y1

and we are able now perform Frourier analysis of these equations with re-
spect to the spatial variables (x1, y1), and consider the time evolution of
these SFH separately:





Vx (x1, y1, t1)
Vy (x1, y1, t1)
P (x1, y1, t1)



 =

+∞∫ ∫ ∫

−∞
dkx1dky1





Ṽx (kx1 , ky1 , t1)
Ṽy (kx1 , ky1 , t1)
P̃ (kx1 , ky1 , t1)




× exp(ikx1 + iky1y1),

(2.22)

here the multipliers marked by the tilde (for instance, Ṽx) denote the PFH
of the corresponding physical values.

In order to clarify the details of what is going on, we split the velocity
of the medium into the vortical and the potential component, and intro-
duce respectively the vorticity Ω = rotzV⊥ = ∂Vy/∂x − ∂Vx/∂y and the
divergence ξ = divV⊥ = ∂Vx/∂x + ∂Vy/∂y . Using these new functions, we

10



+ The Dynamics of Rossby and Inertial Waves ... AMIM Vol.10 No.2, 2005

can reduce the initial dynamic equations to the equations possessing a re-
markable peculiarity – for large-scale processes the terms containing a time
derivative have the same order as the other terms (equations of ionospheric
medium motion in form (2.19), (2.20) do not have this property). Another
important peculiarity of the obtained equations is that they naturally take
into account the effects produced by spatial inhomogeneities of the angular
velocity of the Earth’s rotation Ω0 and by the geomagnetic field B0. We
next introduce the Rossby parameter β = ∂2Ω0z/∂y = 2Ω0 sin θ0/R > 0,
and also the magnetic analogies of the Rossby parameter

βHz =
∂

∂y

(
σHB0B0z

ρ0c2

)
, β⊥z =

∂

∂y

(
σ⊥B2

0z

ρ0c2

)
, bHz =

σHB0B0z

ρ0c2
,

b⊥y =
σ⊥B2

0y

ρ0c2
, b⊥z =

σ⊥B2
0z

ρ0c2
. (2.23)

If we substituting representation (2.22) into equations (2.19)–(2.21), omit
the tilde symbol in the Fourier harmonics of the physical values and pass
to the dimensionless values

τ ⇒ 2Ω0zt1; Ω ⇒ Ω
R

V0
; ξ ⇒ ξ

R

V0
; P ⇒ P

ρ0V0 · 2Ω0z ·R ;

β ⇒ β
R

2Ω0z
; βHz ⇒ βHz

R

2Ω0z
; β⊥z ⇒ β⊥z

R

2Ω0z
; δ ⇒ P0

ρ0 (2Ω0zR)2
,

(2.24)

bHz ⇒ bHz

2Ω0z
b⊥y ⇒

b⊥y

2Ω0z
; b⊥z ⇒ b⊥z

2Ω0z
; S ⇒ a

2Ω0z
; ν ⇒ ν

2Ω0zR2
,

kx = kx1 · L; ky = ky(0)− kxSτ ; ky(0) = ky1(0)R; k(τ) = (k2
x + k2

y(τ))1/2,

then for each SFH we will have

∂Ω
∂τ

=

[
i

kx

k2(τ)
(β + βHz)− b⊥z −

k2
y(τ)

k2(τ)
b⊥y − νk2(τ)

]
Ω−

−
[
l − S − i

ky(τ)
k2(τ)

(β + βHz) + bHz − kxky(τ)
k2(τ)

b⊥y

]
ξ, (2.25)

11
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∂ξ

∂τ
= −

[
2S

kxkx(τ)
k2(τ)

− i
kx

k2(τ)
(β + βHz) (2.26)

−i
ky(τ)
k2(τ)

β⊥z + b⊥z +
k2

x

k2(τ)
b⊥y + νk2(τ)

]
ξ

+
[
1− 2S

k2
x

k2(τ)
− i

ky(τ)
k2(τ)

(β + βHz) +
kx

k2(τ)
β⊥z + bHz

+
kxky(τ)
k2(τ)

b⊥y

]
Ω + k2(τ)P,

∂P

∂τ
= −δξ. (2.27)

As seen from equations (2.25)–(2.27), the Hall conductivity (i.e. the terms
with coefficients with index H) imparts the ionospheric medium an addi-
tional gyroscopicity like the Coriolis force but in the opposite direction,
while the Pedersen conductivity (i.e. the terms with coefficients with index
”⊥”) intensifies the dissipative property (inductive decceleration) of the
medium [Dokuchayev, 1959; Khantadze, 1973].

In the space of wave numbers, the density of total energy of wave dis-
turbances, whose SFH are defined by formulas (2,25)—(2.27), have the
form:

E [k] =
ΩΩ∗

k2(τ)
+

ξξ
∗

k2(τ)
+

PP ∗

δ
, (2.28)

where the asterisk denotes the complex conjugacy.
Thus, the density of total energy of wave disturbance E [k] = Eν +Ec +

Ee consists of three parts: Eν = ΩΩ∗/k2(τ), where the first term is the
energy of the vortical part of disturbances, Ec = ξξ

∗
/k2(τ); the second term

is the compressible part of the energy, Ee = PP
∗
/δ; the third term is the

elastic (potential) energy (due to disturbance elasticity), . In the absence
of a shear flow (S = 0)and dissipative processes (ν = 0, σ⊥ = 0), the
total energy density of the considered wave disturbances in the ionosphere
preserves its value ∂E(τ)/∂τ = 0.

3. General analysis of the problem

In this paper we want to discuss the mistake made in describing the evo-
lution of Rossby type waves in the presence of zonal shear flows. More
specifically, it will be shown that in flows with a moderate shear, low-
frequency Rossby waves, which are mostly vortical, transform – with a
lapse of time – to high-frequency potential inertial waves. Actually, we

12
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mean that as a result of transformation the time scale of a wave process
changes essentially. This new kind of wave transformation existing in shear
flows was for the first time described in [Chagelishvili et al.,1996] for the
case of magnetohydrodynamic waves. The physics of the process is simple
and easy to understand by means of an example of a system of connected
linear oscillators.

Let us consider two pendulums, the length of each of them changing in
time (adiabatically). Such a situation makes the eigenfrequencies of these
pendulums and depend on time ω1(t) and ω2(t). Assume that between
them there exists a weak connection. Denoting the connection coefficient
by χ(t) (which in the general case is also time-dependent), we can write
oscillation equations of such connected pendulums in the form

∂2X1

∂t2
+ ω2

1(t)X1 = χ(t)X2,
∂2X2

∂t2
+ ω2

2(t)X2 = χ(t)X1, (3.1)

where X1 and X2 and are the oscillating variables characterizing the motion
of the pendulums. If the frequencies of these pendulums differ considerably,
then, irrespective of the connection, there is practically no energy exchange
between them. An effective energy exchange begins as soon as the oscillator
frequencies come closer to each other. The necessary conditions for an
effective energy exchange are as follows [Kotkin, Serbo, 1969]:

(A) the existence of a “degeneration region”, where
∣∣ω2

1(t)− ω2
2(t)

∣∣ .
|χ(t)|;

(B) a slow passage through the “degeneration region” during a time
period essentially exceeding χ(t): |dω1(t)/dt|, |dω2(t)/dt| << |χ(t)|.

In other words, if at the beginning it was only the first pendulum that
oscillated, after the change of its length the frequencies might come closer
to each other ω1(t) and ω2(t) so that the conditions (A) and (B) be fulfilled.
In this case, an essential (if not a greater) part of the oscillatory energy
of the first pendulum is imparted to the second pendulum, which might
develop strong oscillations, while the first pendulum might completely stop
to oscillate. An analogous scenario might take place for Rossby type waves
as well.

Indeed, the conditions (A) and (B) are valid for arbitrary oscillatory
systems with connections, to which we can reduce the description of a
whole number of natural physical processes. These systems are also directly
applicable for analysis of the linear interaction of waves of different branches
(including Rossby type waves) when their frequencies approach each other.

The evolution of each wave mode depends on the relation between four
principal linear processes: (a) the drift of each SFH in the kj-space; (b)
the energy exchange between a mean flow and a SFH; (c) the mutual trans-
formation of modes; (d) disturbance energy dissipation. The process (a) is

13
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universal and takes place practically in the same manner for all wave types.
The intensity of the processes (b) and (c) largely depends on a wave type
and on the parameters of the system. The effectiveness of the process (d)
is defined by a concrete type of dissipation.

Let us discuss each of the above processes in greater detail.
(a). From expressions (2.22), (2.24) it follows that the wave numbers of

each SFH change with time along the direction normal to the background
flow velocity (i.e. along the y-axis): ky = ky(0) − Skxτ . Therefore each
SFH drifts in the k-space in terms of linear approximation.

(b). The values of spatial characteristics (of the wave numbers (kx, ky(τ)
)) largely define the intensity of energy exchange between a SFH and the
background shear flow. Therefore a linear drift brings about a change in the
intensity of this exchange. However not all SFH can absorb the shear energy
and gain in intensity. Only the SFH occurring in the definite region of the
k-space (in the sequel called the intensification region, see below) increase
their intensity. Each one of the harmonics keeps gaining in intensity within
a limited time interval until it leaves the intensification region as a result
of a linear drift. Moreover, the occurrence of SFH in this region imposes
a condition on the direction (but not on the value) of their wave vector.
Therefore the process of energy exchange between wave disturbances and a
shear flow has an obvious anisotropic character in the k-space. Thus, there
exist disturbances which in the linear stage of their evolution can absorb
the shear flow energy only within a limited time interval and experience a
temporary (transient) growth.

(c). Transformation of wave modes is a resonance process. Resonance
transformation can be expected if:

- in the medium there might exist at least two wave modes;
- wave frequencies change with a lapse of time;
- the condition (a) and (b) are fulfilled.
(d). Viscous dissipation. This phenomenon becomes effective when the

wave numbers grow. In the end, if some nonlinear phenomenon does not
show up, then this process converts the SFH energy to heat.

It should be specially noted that in shear flows (for S 6= 0), because
of the dependence of a wave amplitude on time a dispersion equation,
which can be obtained from equations (2.25) – (2.27), is, strictly speaking,
rather conditional. Nevertheless, it allows us to qualitatively understand
the change of the wave frequency characteristic, and also to estimate an ex-
tent of convergence of different wave branches that takes place for certain
values of ky(τ). In the case of graphic representation of dispersion curves of
Rossby and inertial waves, we always take into account the dependence on
the latitudinal wave vector kx [see, for instance, Petviashvili, Pokhotelov,
1992]. But in our case, for the clearness of the described phenomenon

14
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of wave transformation, it is convenient to consider the dependence of a
frequency on ky.

For disturbances of the plane wave type, from system (2.25)–(2.27) we
obtain a conditional dispersion equation of third order for the frequency
ω(kx, ky) (see, for instance, equation (4.7)). Solutions of this dispersion
equation for different values of the shear parameter S are given in Figs. 2
and 3.

Fig. 2 shows solutions of the dispersion equation in the D-region of the
atmosphere at S = 0. In this case there are three branches of waves (in the
dimensional form):

a) branch I with frequencies ω much smaller than 2Ω0 consists of Rossby
waves:

ωH = − kxVR

1 + k2r2
R

, (3.2)

where VR = βr2
R is the Rossby velocity, rR = Ca/(2Ω0z) is the Rossby ra-

dius, Ca = (P0/ρ0)1/2. In the E-region the Rossby parameter β is replaced
by the Rossby magnetic parameter β → β − (

1/
(
ρ0c

2
))

∂(σHB0B0z)/∂y,
while for the F -region we retain β;

b) branch II with frequencies ω ∼ 2Ω0 consists of inertial (gyroscopic)
waves:

ω2
I = (2Ω0z)

2 (
1 + k2r2

R

)
. (3.3)

c) branch III with frequencies ω À 2Ω0 consists of long acoustic waves:

ω2
a = k2C2

a . (3.4)

For large k, inertial waves of branch II transform to long acoustic waves III
running with velocity Ca.

Branch I that describes Rossby type waves practically coincides with the
ky-axis (Fig. 2), since the frequencies of these waves are much smaller than
those of waves of branches II and III. It is obvious that the conditions (a)
and (b) are far from being fulfilled. Thus Rossby waves are not connected
with inertial waves and therefore the mutual transformation of waves does
not take place for S = 0.

Next, let us trace the change of dispersion curves for S 6= 0 (see Fig.
3.). We will consider the interconnection of branches I and II, since they
are the only branches whose group velocities may coincide and which may
have a resonance connection. Hence it is only these waves that the mutual
transformation can be expected of. When the shear value is S = 0, 8,
there exists a range of wave numbers kx, ky(τ), for which the low-frequency
branch I and the high-frequency branch II converge and even merge.
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There appears the region of degeneration (encircled by the dotted line
in Fig. 3) where the conditions of wave transformation (conditions (A)
and (B)) are obviously fulfilled, i.e. if it assumed that at the initial time
moment only the low-frequency Rossby wave with a large value of ky(0) the
vector was excited (i.e. ky(0)/kx >> 1, under this condition disturbances
are practically insensitive to the presence of a shear flow), then, with a lapse
of time and with a change of ky(τ), its frequency grows, it arrives in the
region of degeneration (its frequency coincides with the frequency of inertial
wave II) and a certain part of its energy transforms to the energy of another
wave branch (branch II). Here we obviously have a complete analogy with
the interacting (connected) pendulums of variable length. Such an analogy
has been discussed at the beginning of this section.

We are interested in finding out what stipulates the time dependence
of wave frequencies in shear flows and what are the results of this time
dependence.

The frequencies of the considered waves (for instance, (3.2), (3.3)) are
the well-defined functions of the wave number ky(τ). With a lapse of time,
the change of ky(τ) leads to a time variation of the SFH frequency – the
wave “slides” along the dispersion curve of the considered modes. Hence,
for certain parameter values of the system, the dispersion curves of the
interacting waves in the neighborhood of the singular point ( ky(τ) → 0)
converge and the wave frequencies might coincide within a limited time
interval. This fact leads to the resonance of waves and the mutual trans-
formation of their energy even in the case of a small time variation of wave
frequencies. A typical picture of the evolution of the considered process is
shown in Fig. 4.

Let us assume that a wave harmonic of lower branch II (inertial wave)
with the wave number ky(0) = 0, 4 occurred initially at point 1. Because
of the variation of ky(τ) with a lapse of time, the wave slides along the dis-
persion curve ( 1 → 2 → 3) and its frequency varies. In the neighborhood
of point 3, there also lies a part of the dispersion curve of upper branch I
(Rossby wave), i.e. on the dispersion curve there appears the region of de-
generation. Thus the frequency of the upper branch at point 4 very closely
approaches the frequency of the lower branch at point 3 (both frequencies
may even coincide). Now it becomes possible for the resonance interaction
– transformation of waves (points 3 → 4) to take place. The transformed
wave (i.e. the wave of the upper branch) continues to slide along the upper
dispersion curve (along points 4 → 5 → 6).

Thus, the appearance of the degeneration region on the dispersion curve
brings about an energy exchange between wave disturbance SFH in shear
flows and the sliding of wave SFH along the dispersion curve make the
process obvious.
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The basis of energy exchange between wave disturbances and a shear
flow is the so-called lift-up mechanism [Landahl,1975; Chagelishvili et al.,
1996], when disturbances transfer fluid from the regions with a higher flow
velocity to the ones with a lower velocity, and vice versa. The energy
exchange between SFH and a mean flow is the more intensive, the higher is
the velocity with which a disturbed fluid element moves along the shear or,
in other words, the larger is the projection of the velocity of perturbation
SFH along the shear (in our case, along the Y-axis). Note that the values of
this velocity essentially differ for SFH of incompressible and compressible
wave disturbances.

For SFH of incompressible waves we have the relation k ⊥ V. So, for
ky(0) >> kx, i.e. when the wave vector is practically directed along the Y-
axis (along the shear), the SFH velocity is almost normal to this direction.
As a result, the velocity projection along the shear is small and, by the
lift-up mechanism, there is practically no energy exchange between SFH
and the mean flow. A small energy exchange for these SFH may occur only
in a limited time interval when ky(τ) ≤ kx (a temporary (transient) growth
of disturbances).

The situation is radically different for SFH of compressible waves. In
this case, the angle between k and V differs considerably from π/2. More-
over, V is nearly parallel to k. It is obvious that for this a direction of
the velocity V, the energy exchange between SFH and the background flow
may take place even for ky(τ) >> kx (see Section 4).

Thus we see that the flow of a fluid element along the shear cannot
uniquely provide an energy exchange between SFH of wave disturbances
and the mean flow. According to [Landahl,1975; Chagelishvili et al., 1996],
the energy exchange between the mean flow and a wave may take place
if, besides the flow along the shear, the waves also produce a disturbance
of thermal pressure. Hence it can be assumed that SFH of ionospheric
Rossby type waves and inertial waves, which exchange their energy with
the mean flow for certain values of ky(τ), also produce disturbances of
thermal pressure (see Section 4, Figs. 5 and 12).

4. Results of the numerical solution

In order to trace the evolution of SFH of a magnetized Rossby wave and
an inertial wave in ionospheric shear flows (in zonal winds), we performed
the numerical solution of equations (2.25)–(2.28). We solved the initial
Cauchy problem for a system consisting of three linear ordinary differential
equations of first order with complex coefficients. More exactly, we solved
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the following system of six equations but with real coefficients:

∂Ω1

∂τ
= −a2Ω1 − a1Ω2 − a3ξ1 − a4ξ2, (4.1)

∂Ω2

∂τ
= −a2Ω2 − a1Ω1 − a3ξ2 − a4ξ1, (4.2)

∂ξ1

∂τ
= −b1ξ1 − b2ξ2 + b3Ω1 + b4Ω2 + k2(τ)P1, (4.3)

∂ξ1

∂τ
= −b1ξ2 − b2ξ1 + b3Ω2 + b4Ω1 + k2(τ)P2, (4.4)

∂P1

∂τ
= −δξ1, (4.5)

∂P2

∂τ
= δξ2. (4.6)

Here we introduced new variables Ω = Ω1 + iΩ2, ξ = ξ1 + iξ2, P = P1 +
iP2, i is the imaginary unity, while the real coefficients a1, a2, ..., b1, b2, ..., δ
are related to the coefficients of equations (2.25)–(2.27) and have different
values for different ionospheric layers (D, E, F ). The expressions for them
will be given below.

Calculations were performed for different values of the parameters of the
medium and wave disturbances. Analysis of the numerical solution showed
the energy exchange between various wave branches as well as between
waves and the background flow.

4.1. A choice of initial physical values.
To single out an individual kind of waves in the initial state and in the

pure form, the physical values of waves were chosen under the assumption
that, initially, only a certain (Rossby type or inertial) wave without any
noticeable admixtures of other modes was excited.

Thus, the initial data for the physical values contained in equations
(2.25)–(2.28) can be chosen from these equations provided that ky(0) >> kx

and, accordingly, S ≈ 0. Indeed, for |ky(τ)/kx| >> 1, in the formula for
the meridianal wave number ky(τ) = ky(0) − kxS · r can be assumed that
ky(τ) ≈ ky(0) during a moderate time interval, Sτ . 1. Note that the
choice of a value ky(0)/kx >> 1 as an initial one does not restrict the vari-
ation region of the parameter ky(τ)/kx, since, with a lapse of time, first
|ky(τ)/kx| monotonically drops to zero and then grows and takes all real
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values. Therefore we can neglect the influence of the shear flow on the
initial distribution of physical values in the system, i.e. for the initial time
moment it can be assumed S → 0 in the right-hand parts of equations
(2.25)—(2.27) that In this case, in system (2.25)–(2.27) all coefficients are
constant and the initial physical values can be defined by the representation
∂A(τ)/∂τ ≈ −iωA (τ), where ω is the initial excitement frequency. Now,
system (2.25)–(2.27) or, which is the same, system (4.1)– (4.6), transforms
to a homogeneous system of six algebraic equations for six unknowns (for
the real and the imaginary part of the physical values: Ω0 = Ω0

1 + iΩ0
2,

ξ0 = ξ0
1 + iξ0

2 , P 0 = P 0
1 + iP 0

2 ). Hence expressions for the initial physical
values Ω0

1,Ω
0
2,...,P

0
1 ,P 0

2 (whose explicit expressions are not given here be-
cause of their inconvenience) includes as a parameter the frequency of the
considered wave disturbance ωI,II = ωI,II

1 + ωI,II
2 . Further, we choose for

ωI or ωII the results of the corresponding numerical solution of the third or-
der conditional dispersion equation obtained from equations (2.25)—(2.28)
(see also Section .3)

ω3 + [a1 + b2 + i (b1 + a2)]ω2+

+
[
a1b2 + a4b4 − a2b1 − a3b3 − δk2 + +i (a1b1 + a2b2 + a3b4 + a4b3)

]
ω−

−δk2 (a1 + ia2) = 0. (4.7)

Substituting the corresponding root of equation (4.7) into the expressions
for Ω0

1,Ω
0
2,...,P

0
1 ,P 0

2 and taking into account that S 6= 0, we can obtain the
initial excitement of an individual mode of the magnetized Rossby wave or
of the inertial wave. Using these initial data and the numerical results ob-
tained for equations (4.1) – (4.6), we can trace the evolution of the initially
singled out (excited) wave disturbance in the dissipative ionosphere.

In addition to the physical values, the initial equations (4.1)–(4.6) in-
clude as coefficients the parameters characterizing the equilibrium state of
the medium. Since throughout the ionospheric thickness, the equilibrium
parameter values vary in a wide range, the wave disturbance characteris-
tics will accordingly be essentially different for different layers ( D,E, F ).
Therefore it is advisable to give the coefficient values of the initial equations
(4.1)–(4.7) for different layers of the ionosphere.

D- layer.The characteristic values of this layer which is up to 80 km
high satisfy the relations νen >> νei, νinνei >> ωBeωBi and ωBe >>
νen. Moreover, by virtue of relations (2.5) we see that the terms with
the coefficients σH and σ⊥ in the right-hand parts of equations (4.1)–(4.6)
are much smaller than the terms with β and Ω0z, and the corresponding
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coefficients are defined by the expressions

a1 =
kx

k2(τ)
β, a2 = νk2(τ), a3 = 1− S, a4 =

ky(τ)
k2(τ)

β,

b1 = νk2(τ) + 2S
kxky(τ)
k2(τ)

, b2 =
kx

k2(τ)
β, b3 = 1− 2S

k2
x

k2(τ)
, b4 =

ky(τ)
k2(τ)

β.

(4.8)

Thus in the initial equations (4.1)–(4.7) there remain only the terms char-
acterizing the neutral atmosphere and, accordingly, they describe the evo-
lution of the usual Rossby wave (3.2), the inertial wave (3.3) and the long
gravitation wave (3.4).

E- layer. For the ionospheric E-layer, whose height varies from 80
to 150 km, it can be assumed that νe ≈ νen, ωBeωBi >> νinνen; ν2

in >>
ω2

Bi. In this case the Hall conductivity is σH ≈ eN/B0 and prevails over
the transverse conductivity σH >> σ⊥ ≈ σHωBi/νin. In the respective
equations (4.1)–(4.6) the terms with σH become of the same order as the
terms with coefficients Ω0z. Thus, for the E-layer, the coefficients in the
right-hand parts of equations (4.1) – (4.6) take the form:

a1 =
kx

k2(τ)
βHz, a2 = νk2(τ), a3 = l − S − bHz, a4 =

ky(τ)
k2(τ)

βHz;

b1 = νk2(τ) + 2S
kxky(τ)
k2(τ)

, b2 =
kx

k2(τ)
βHz, (4.9)

b3 = 1− 2S
k2

x

k2(τ)
− bHz, b4 =

ky(τ)
k2(τ)

βhz, bHz =
N

Nn

ωie

Ω0z
cos θ0,

βHz = β − N

Nn

ωie

Ω0z
cos θ0, ωie =

eB0

M
.

The influence of the equilibrium geomagnetic field is described by the pa-
rameters βHz, bHz and is produced by the presence of Hall currents in the
ionospheric E-region.

F - layer. Throughout the F -layer (150 to 500 km high) the fol-
lowing relations are fulfilled: ωBeωBi >> νeνen and ωBi >> νin. Ac-
cording to (2.5), the F -layer has the prevailing transverse conductivity
σH/σ⊥ ≈ (MωBi −mωBe)/(mνe) → 0. Therefore for the coefficients a, b
and β we have

a1 =
kx

k2(τ)
β, a2 = νk2(τ) +

ky(τ)
k2(τ)

b⊥y + b⊥z,
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a3 = l − S − kxky(τ)
k2(τ)

b⊥y, a4 =
ky(τ)
k2(τ)

β

b1 = νk2(τ) + 2S
kxky(τ)
k2(τ)

+
k2

x

k2(τ)
b⊥y + b⊥z, b2 =

1
k2(τ)

(kxβ + kyβ⊥z),

b3 = 1− 2S
k2

x

k2(τ)
+

kxky(τ)
k2(τ)

b⊥y, b4 =
1

k2(τ)
(ky(τ)β − kxβ⊥z),

β⊥z =
N

Nn

νin

Ω0z

2 sin 2θ0

(1 + 3 cos2 θ0)2
(4.10)

b⊥y =
N

Nn

νin

Ω0z

sin2 θ0

2(1 + 3 cos2 θ0)
, b⊥z =

N

Nn

νin

Ω0z

2 cos2 θ0

1 + 3 cos2 θ0
.

The presence of the equilibrium inhomogeneous geomagnetic field in the
medium is reflected in expressions for the parameters b⊥y,z, β⊥z, while the
interaction of this field with the medium is due to Pedersen currents.

4.2. Energy exchange with the background flow and the trans-
formation of a magnetized Rossby wave to inertial waves

We begin the analysis of numerical experiments by considering the case
of excitation of Rossby type waves in the ionospheric D-region.

Intensification. At the initial time moment, only the low-frequency
planetary Rossby wave with a large value of the meridianal wave vector
ky(0), ky(0)/kx = 50 >> 1 and β = 0.1, S = 0.8, δ = 1, ν = 0, kx =
2, ky(0) = 100, P 0

1 = 1 was excited. Some of the results of numerical
solution of equations (4.1)–(4.6) and (2.28) are presented in Figs. 5—11.
When ky(0)/kx >> 1, the Rossby wave is mainly vortical (see Fig. 9, the
vortex energy has the largest share in the total energy) and practically
incompressible (at the initial evolution stage, the compressible and the
elastic part of the excitement energy are equal to zero, see Figs. 10 and 11).
As mentioned at the end of Section 3, in the incompressible stage, wave
excitations may absorb the background flow energy only if ky(τ) ≈ kx.
Indeed, as seen from Figs. 5—8, due to the linear drift, ky(τ) decrease
with a lapse of time, but for ky(τ) >> kx the energy exchange between the
background flow and the SFH of the Rossby wave is not essential. For times
when already ky(τ) ≈ kx the SFH of the Rossby wave actively absorbs the
shear energy and gains in intensity (Fig. 8), i.e. the SFH is now in the
region of intensification (see also Section 3). The SFH intensification stops
at the time moment ky(τ∗) = 0 (see Fig. 8 for τ = τ∗ = ky(τ∗)/(Skx) ≈
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62.5). Then, for ky(0)/kx < 0 or in a time interval τ∗ < τ ≤ τ1, it begins
to give back some part of the energy to the mean flow.

It should be noted that irrespective of the fact that in an initial time
interval 0 ≤ τ < τ∗, a Rossby type wave is always present the medium
necessarily (see Fig. 9), while in Figs. 5—7 its presence is practically
unnoticeable (an almost straight line in the figures) because of its large
time scale (as compared with an inertial wave).

Fig. 5 shows that in ionospheric shear flows, a Rossby type wave causes
a strong excitation of the thermal pressure of the P medium and, accord-
ing to Section 3, there occurs an intensive energy exchange between the
background flow and the wave.

Transformation. As seen from Figs. 8 and 9, with the evolution of
the initial excitement, the share of the vortex component in the total en-
ergy keeps decreasing until it becomes negligibly small (for τ2˜80) and a
greater part of the Rossby wave energy is pumped into the energy of iner-
tial waves. Thus the Rossby wave transforms to inertial waves. (The total
energy (Fig. 8) and the SFH (Figs. 5—7) now have high-frequency oscil-
lations). Thus, τ = 0 the energy is concentrated in vortical low-frequency
modes (Rossby waves), for τ >> τ∗ the whole energy is concentrated in
potential high-frequency disturbances, i.e. in inertial waves (Figs. 10 and
11). Transformation of Rossby type waves to inertial ones starts from the
moment τ = τ∗ and goes on within a limited time interval in which the
conditions (A) and (B) (see Section 3) are fulfilled and these two branches
get interconnected. It should be noted that the waves of branches I and II
are connected not only with each other, but (as mentioned above) also with
the mean flow and thus they exchange their energy with the latter flow. A
greater part of the Rossby wave energy undergoes transformation. It can
be said that by the time moment τ = τ1(see Fig. 8) only the (inertial) wave
of branch II remain in the flow. With a lapse of time, the latter wave inten-
sifies by absorbing the shear energy (see the part of the curve for τ > τ1 in
Fig. 8). Figs. 8—11 clearly demonstrate how much the evolution process
of a Rossby wave changes because of the transformation of this wave to an
inertial wave: if the latter process had not taken place, then the Rossby
energy would have weakened according to the law marked by the dotted
line in Fig. 8 and given its energy to the background flow.

From the numerical results it also follows that at the levels of the E-
region, where βHz = 0 (at an altitude of 115 km in the daytime and 150 km
at night) [Aburjania et al., 2003], planetary Rossby type waves practically
do not get excited, but at these altitudes inertial waves might make their
appearance.

As the parameter bHz increases (for βHz 6= 0), the interaction of Hall
currents with the ionospheric E-layer and the geomagnetic field B0 becomes
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essential and the evolution dynamics of the initially excited magnetized
Rossby wave changes noticeably. Wave excitations first absorb the shear
energy and the whole SFH disturbance energy keeps increasing until the
time moment τ = τ∗ = ky(τ∗)/(Skx). Further, disturbances (for τ > τ∗,
ky(0)/kx < 0 ) give back their energy to the background flow (Fig. 12).
During this process, the initially excited Rossby type wave (with ky(0)/kx =
50 >> 1 ) begins with a lapse of time (when ky(τ) ≈ kx ) to transform to
an inertial wave and keeps giving the latter wave the bulk of its energy until
the time moment τ∗ = 6.25 (see Fig. 13). It should be specially noted that
the reverse process takes place with a lapse of time (when τ > τ∗ = 62.5):
the inertial wave returns the bulk of its energy to the Rossby type wave
(Figs. 13 and 14). Finally, for τ ≥ τ∗ and ky(0)/kx < 0, the combined
inertial wave and Rossby type wave return their energy to the medium
even in the absence of dissipative processes (see Figs. 12–14, where ν = 0,
and compare with Figs. 8–10). Here, too, the energy exchange with the
shear flow occurs by the lift-up mechanism (see Section 3).

In the ionospheric F -region, the excitation dynamics of a magnetized
Rossby wave and its further evolution depend on the interaction of Peder-
sen currents with the medium and the geomagnetic field. This interaction
eventually reduces to the inductive damping of wave disturbances. As the
parameter β⊥z increases (at small values of the parameters b⊥y, b⊥z << 1),
the evolution of the initially excited Rossby type wave (generation, inten-
sification, and transformation to inertial waves) qualitatively occurs in the
same manner as in the D-region with the only difference that in this case
the interaction with the background flow is more effective and, accordingly,
the SFH disturbance amplitude has a noticeably higher value. As the pa-
rameters b⊥y, b⊥z increase, the inductive damping intensity of disturbances
(Rossby type and inertial waves) grows and the wave energy transforms to
heat (see Fig. 15).

4.3. Interaction of inertial waves with the background flow
and the transformation to a Rossby type wave.

If in the D-region of the ionosphere it is only the inertial wave (3.3) that
gets initially excited, then the evolution of the corresponding SFH in the
shear flow differs radically from the above-discussed case of Rossby type
waves.

In Figs. 16—21 we present some of the results of numerical solution of
equations (4.1)–(4.6) and (2.28), when at the initial time moment only the
inertial wave gets excited for β = 0.1, S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) =
100, P 0

1 = 1. As already mentioned in Section 3, an inertial (potential) wave
belongs to the class of compressible wave and therefore it has an intensive
energy exchange with the background flow for an arbitrary relation between
ky(0) and kx (as different from a Rossby wave which noticeably interacts
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with the background flow only at ky(0)˜kx).
We see that with a lapse of time the amplitudes (as well as their frequen-

cies) of inertial wave SFHs decrease (for τ = τ∗ = ky(τ∗)/(Skx) ≈ 62.5):
some part of the SFH energy is transferred to the background flow (Figs.
16—18). The meridianal wave vector also decreases with time, ky(τ∗) → 0
and, in the neighborhood of the time τ∗ = ky(τ∗)/(Skx) ≈ 62.5 the fre-
quency of inertial waves approaches that of the Rossby type wave and the
degeneration region is formed (see Section 3), where a part of the energy
of the initial inertial wave (Fig. 19) (approximately 20% as seen from Figs.
19—21) transforms to the energy of the Rossby type wave (Fig. 20). Thus
the generation of a Rossby type wave takes place (Fig. 20). Further, the
SFH arrives in the intensification region, where ky(0)/kx < 0 (for τ > τ∗)
and the combination of the inertial wave and the Rossby wave begins to
absorb the background flow energy: we observe the growth of SFH am-
plitudes P1, Ω1, ξ1, their frequencies (Figs. 16—18) and the SFH energy
(Figs. 19 and 21).

If the inertial wave is initially excited in the E-region of the ionosphere,
its further evolution occurs in a somewhat different manner. Because of the
Hall conductivity, the inertial wave first transfers a part of its energy to the
background flow, while a part of its energy simultaneously transforms to the
Rossby type wave energy. The transformation of waves takes place when
disturbance SFH arrive in the degeneration domain at τ = τ∗ = ky(0)/kx.
Next, for τ > τ∗, the combined inertial wave and magnetized Rossby wave
absorb the shear energy and gain in intensity. Finally, for τ >> τ∗, the wave
mixture returns the energy to the background flow even in the absence of
dissipative processes ( ν = 0). As the parameter bHz (i.e. the Hall current
amplitude) increases, the effectiveness of generation of a magnetized Rossby
wave grows.

In the F -region, the evolution of the initial inertial wave is mainly con-
dioned by the Pedersen conductivity (which bring about an intensive damp-
ing of disturbances, see, for instance, Fig. 15) and qualitatively coincides
with the evolution of a magnetized Rossby wave as described at the end of
Subsection 4.3.

4.4. Damping of large-scale wave disturbances in the shear
flow

As has already been mentioned, in the shear flow we observe the SFH
drift in the space of wave numbers. Thus, with a lapse of time, the radial
component of the SFH wave vector increases, ky(τ) = ky(0) − Skxτ , i.e.
the disturbance length decreases along the meridian (for τ → ∞, ly =
2π/ |ky(τ)| → 0). Usually, in a solid medium the subdivision of scales
takes place at the expense of nonlinear processes [Zaslavski, Sagdeev, 1988].
However in our case a monotone decrease of disturbance scales occurs in
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the linear regime. For short-wave disturbances, the influence of dissipative
processes (viscosity in our case) is essential (see Fig. 22, starting with
τ > 120). Due to dissipation, the disturbance energy is transferred in the
form of heat to the medium and, eventually, a practically complete damping
of wave disturbances takes place (see Fig. 22, at τ ≈ 300)

This process can be schematically described in the plane kxOky (see
Fig. 23). Here we will consider only the plane kx > 0, since the results
can analogously be applied to the plane kx < 0. Without taking nonlinear
processes into account, the dynamics of the considered (Rossby and inertial)
wave disturbances is defined by the following basic processes: 1) a SFH
drift in the k-space; 2) the drawing of the background flow energy by SFH;
3) mutual transformation of modes; 4) viscous and inductive dampings.
Each of these processes takes place for different values of the wave vector
k. Therefore, for a clear understanding and analysis of what is going on,
the region of evolution of these processes in the k-space can be considered
differentially. Let us assume that dissipation becomes essential for SFH
with a wave number satisfying the inequality |k| > kν (in Fig. 23 this region
is drawn by vertical lines to the outer part of the half-plane with radius |k| =
kν ), where kν depends on a concrete type of dissipation. We also assume
that the energy exchange between the shear flow and wave disturbances
takes place in the region drawn by horizontal and sloping lines in Fig. 23
(this is the region of intensification and transformation). Disturbances like
Rossby waves or inertial waves with an arbitrary point k can always be
generated in the ionospheric medium due to thermal fluctuation.

Let us discuss the evolution path of a SFH which at the initial time
moment is at point 1 in Fig 23. The wave number changes with time
along the Y -axis of this harmonic ky(τ), which leads to its drift along the
direction marked by the arrows. As soon as at a certain moment of time
τ the harmonic reaches point 2, its energy begins to grow (at the expense
of the shear energy) and keeps growing until it transforms to another wave
branch (point 3 in Fig. 23). Further, the combined initial and transformed
waves go on absorbing the shear energy and gain in intensity (the region
hatched by sloping lines). Then the drifting SFH reaches point 4, where
dissipative processes become active and transform the SFH energy to heat.
Other Fourier harmonics which correspond to other points of the k-space
evolve analogously. After the Fourier harmonic leaves point 1, this point
does not remain vacant, since because of thermal effects new fluctuations
occupy this points and evolve in an analogous manner.

Therefore the pumping of shear flow energy to the wave perturbation
energy and the mutual transformation of modes followed by their dissi-
pation in the medium are permanent processes, which may to a strong
heating of the medium. It is obvious that the heating intensity depends on
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the initial disturbance level and the shear flow parameter S.

5. Conclusion

In this paper we investigate the linear stage of the evolution of SFH of a
magnetized Rossby wave and inertial wave disturbances in the dissipative
ionosphere in the presence of a shear flow (smooth-inhomogeneous zonal
wind). Based on the numerical solution and theoretical analysis of the
corresponding system of dynamic equations, new mechanisms are found,
which account for the pumping of shear flow energy to wave disturbance
energy, an extremal intensification (by several orders) of waves, the mutual
transformation of eigenmodes and the conversion of perturbation energy to
heat.

The intensification of a magnetized Rossby wave and an inertial wave
may take place for certain values of the parameters of the medium, shear
and waves. This makes an unusual way of shear flow heating in the ionosphere:
waves draw up the shear flow energy and pump it through the mutual lin-
ear transformation and linear drift of SFH in the space of wave numbers
(subdivision of disturbance scales) to the damping domain. Finally, the
viscosity and inductive damping convert this pumped energy to heat. The
process is permanent and may lead to a strong heating of the medium.
The heating intensity depends on the initial disturbance level and shear
flow parameters.

A remarkable feature of a shear flow is the diminution of wave distur-
bance scales in the linear stage, which is due to a linear drift of disturbance
SFH in the space of wave numbers and, accordingly, to the pumping of
energy to the dissipation region (with short scales).

The intensification of wave disturbance SFH and the mutual transfor-
mation of modes take place within a limited time interval (transiently) as
long as the corresponding conditions of intensification and a sufficiently
strong interconnection of modes are fulfilled.

The mutual transformation of eigenmodes (of Rossby and inertial waves)
may take place even in the spatial-homogeneous ionosphere ( ρ0 = const),
when the background wind velocity is inhomogeneous. We should em-
phasize the fact that this transformation mechanism was revealed in the
framework of nonmodal mathematical analysis (these processes were not
taken into account in the case of a more traditional modal approach). Thus
the nonmodal approach that takes into account the non-orthogonality of
eigenfunctions of linear wave dynamics problems, has proved to be a more
adequate mathematical language for investigating wave processes in shear
flows.
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The character of the wave transformation mechanism considered in this
paper is essentially different from the previously known linear mechanism
of wave transformation in the inhomogeneous plasma [Erokhin, Moiseev,
1973]. The transformation of waves in the case of medium density inhomo-
geneities takes place in a limited space (across the density inhomogeneity)
as long as this inhomogeneity exists, while in our case the transformation
of linear waves occurs throughout the shear flow volume but in a limited
time interval (transiently). It is obvious that for this phenomenon to take
place it is necessary that at least two wave modes exist in the medium. The
realization of the considered wave transformation mechanism is possible if
the conditions (A) and (B) given in Section 3 are fulfilled.

The effect of the revealed mutual transformation of Rossby type waves
and inertial waves in the ionosphere with an inhomogeneous zonal wind
makes us revise some notions existing in dynamic meteorology and in the
models of general circulation of the atmosphere, ocean, ionosphere and mag-
netosphere with the participation of Rossby type planetary waves. This es-
pecially concerns the interpretation of experimental and observation data,
when it is necessary to take into account a possibility of mutual transfor-
mation of waves with different time and spatial scales in shear flows.

Thus, the use of the Charney-Obukhov equation or the vortex transfer
equation (where the averaging is performed over high frequency values) as
a mathematical model describing the dynamics of large-scale Rossby type
waves in the atmosphere or in the ocean is, mildly speaking, unjustified,
since shear flows always exist in the atmosphere and in the ocean. A more
adequate alternative is the mathematical model that takes into account the
fact that in the ionospheric medium there exist not only Rossby type waves
but also other wave modes differing essentially in a time scale from Rossby
waves.

The presence of the electromagnetic ponderomotive force, i.e. of an
inhomogeneous geomagnetic field, Hall and Pedersen currents in different
ionospheric layers increases the effectiveness of interaction and energy ex-
change between wave disturbances and the background shear flow.

Finally, note that our analysis is performed in the case of a homoge-
neous flow shear (assuming a linear dependence of the velocity on a coordi-
nate). However, the results will mainly be the same for an inhomogeneous
(non-linear) profile of the background shear velocity if the characteristic
transverse length of the wave ly is less than the characteristic length of the
nonlinear velocity profile Ly, ly << Ly, or if the background wind profile
is approximated by the linear term in a Taylor series [Volponi et al.,2001].
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Fig.1. The local Cartesian system with X1OY1-axes and the system
with moving -axes. The arrows show the directions of the background flow
velocity V0x = ay. The X1-axis moves together with the shear flow.

Fig.2. Dispersion curves for β = 0.1, S = 0, δ = 1, ν = 10−7, kx = 0.5,
ky(0) = 10, P 0

1 = 1.
Fig.3. Dispersion curves for β = 0.1, S = 0.8, δ = 1, ν = 10−7,

kx = 0.5, ky(0) = 10, P 0
1 = 1

Fig.4. A typical picture of wave transformation β = 0.15, S = 0.42,
δ = 1.8, ν = 10−6, kx = 0.4, ky(0) = 1, P 0

1 = 1.
Fig.5. The time evolution of SFH P1 = <P for the parameters β = 0.1,

S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100, P 0
1 = 1 in the D-region, when

only a Rossby type wave is excited at the initial moment of time.
Fig.6. The time evolution of SFH Ω1 = ReΩ for the parameters β =

0.1, S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100, P 0
1 = 1 in theD-region,

when only a Rossby type wave is excited at the initial moment of time.
Fig.7. The time evolution of SFH ξ1 = Reξ for the parameters β = 0.1,

S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100, P 0
1 = 1 in the D-region, when

only a Rossby type wave is excited at the initial moment of time.
Fig.8. The time dependence of the total SFH Et/E0 energy for β = 0.1,

S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100, P 0
1 = 1 in the D-region,

when only a Rossby type wave is excited at the initial moment of time
(E0 = Et(τ = 0)).

Fig.9. The time dependence of a ratio of the vortical energy part Eν to
the total energy Et for β = 0.1, S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100,
P 0

1 = 1 in the D-region, when only a Rossby type wave is excited at the
initial moment of time.

Fig.10. The time dependence of a ratio of the compressible energy part
Ec to the total energy Et for β = 0.1, S = 0.8, δ = 1, ν = 0, kx = 2,
ky(0) = 100, P 0

1 = 1 in the D-region, when only a Rossby type wave is
excited at the initial moment of time.

Fig.11. The time dependence of a ratio of the elastic energy part Ee to
the total energy Et for β = 0.1, S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100,
P 0

1 = 1 in the D-region, when only a Rossby type wave is excited at the
initial moment of time.

Fig.12. The time evolution of total SFH Et/E0 energy for β = 0.1,
S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100, P 0

1 = 1, bH = 5 in the
E- region, when only a magnetized Rossby wave is excited at the initial
moment of time.

Fig.13. The time dependence of a ratio of the vortical energy part
Ev to the total energy Et for β = 0.1, S = 0.8, δ = 1, ν = 0, kx = 2,
ky(0) = 100, P 0

1 = 1, bH = 5 in the E- region, when only a magnetized
Rossby wave is excited at the initial moment of time.
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Fig.14. The time dependence of a ratio of the elastic energy part Ee to
the total energy Et for β = 0.1, S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100,
P 0

1 = 1, bH = 5 in the E-region, when only a magnetized Rossby wave is
excited at the initial moment of time

Fig.15. The time evolution of the total SFH energy Et/E0 for β = 0.1,
S = 0.8, δ ≈ 2, ν = 0, kx = 2, ky(0) = 100, P 0

1 = 1, β1z = 5, b1y = 0.01,
b1z = 0.01 in F - region, when only a magnetized Rossby wave is excited at
the initial moment of time.

Fig.16. The time evolution of SFH P1 = ReP for β = 0.1, S = 0.8,
δ ≈ 1, ν = 0, kx = 2, ky(0) = 100, P 0

1 = 1, the parameters in the D- region,
when only an inertial wave is excited at the initial moment of time.

Fig.17. The time evolution of SFH Ω1 = ReΩ for β = 0.1, S = 0.8,
δ = 1, ν = 0, kx = 2, ky(0) = 100, P 0

1 = 1 the parameters in the D- region,
when only an inertial wave is excited at the initial moment of time.

Fig.18. The time evolution of SFH ξ1 = Reξ for β = 0.1, S = 0.6,
δ = 0.3, ν = 0, kx = 2.5, ky(0) = 50, P 0

1 = 1 the parameters in the
D-region, when only an inertial wave is excited at the initial moment of
time.

Fig.19. The time dependence of the logarithm of the total SFH energy
Et for β = 0.1, S = 0.6, δ = 0.3, ν = 0, kx = 2.5, ky(0) = 50, P 0

1 = 1 in
the D- region, when only an inertial wave is excited at the initial moment
of time.

Fig.20. The time dependence of the logarithm of the vortical energy
part Ev for β = 0.1, S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100, P 0

1 = 1 in
the D- region, when only an inertial wave is excited at the initial moment
of time.

Fig.21. The time dependence of the logarithm of the elastic energy
part Ee for β = 0.1, S = 0.8, δ = 1, ν = 0, kx = 2, ky(0) = 100, P 0

1 = 1 in
the D- region, when only an inertial wave is excited at the initial moment
of time.

Fig.22. The damping of the total SFH energy Et/E0 with a lapse of
time for β = 0.1, S = 0.8, δ ≈ 1, ν = 10−6, kx = 2, ky(0) = 100, P 0

1 = 1,
bH = 5 in the - region, when only the magnetized Rossby wave is excited
at the initial moment of time.

Fig.23. A qualitative representation of the evolution of wave distur-
bances in the kxOky-plane. In the region marked by horizontal and sloping
lines we observe the intensification and mutual transformation of wave dis-
turbances (Figs. 8 and 19). In the external region marked by vertical lines
the energy of disturbance transforms to heat due to dissipative processes
in the medium.
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