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Abstract

We develop here special technique for evaluating residual in finite volume schemes

for nonlinear scalar conservation laws. Traditionally for evaluating of similar terms

BV or weak BV type estimates are needed, or some special requirement on regularity

of mesh refinement procedure is needed in order to get the residual convergent to

zero. The technique we introduce here is called simple because it uses just uniform

L∞ estimate on approximate solutions constructed by means of kinetic finite volume

schemes. Coupling this technique with abstract convergence theorem introduced by

Botchorishvili, Perthame, Vasseur [3] we prove convergence of the explicit kinetic finite

volume schemes.
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Introduction

Consider the following scalar conservation law:

∂u

∂t
+

N∑
i=1

∂Ai(u)
∂xi

= 0, t ≥ 0, x ∈ IRN, (1.1)

u(0, x) = u0(x), u0(x) ∈ L∞(IRN), (1.2)

with smooth functions Ai(.), Ai ∈ C1(IR), 1 ≤ i ≤ N . The equation (1.1)
is endowed with the full family of entropy inequalities

∂S(u)
∂t

+
N∑

i=1

∂ηi(u)
∂xi

≤ 0, (1.3)
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for all convex entropy functions S(·) and corresponding entropy fluxes
ηi(·),1 ≤ i ≤ N , that are defined in accordance with the relation

ηi′(u) = S′(u)ai(u), ai(u) = A′i(u), 1 ≤ i ≤ N, (1.4)

see Kruzkov [10], Lax [12] for more details.

For numerical solution of the problem (1.1),(1.2) several different ap-
proaches exist, see e.g. [9],[13]. Finite volume schemes have proven to be
most suitable for this purpose. Standard monotone explicit finite volume
scheme on arbitrary meshes for the equation (1.1) writes:

un+1
j − un

j

∆t
+

1
|Cj |

∑
k

∑
l

|Γl
jk|A(un

j , u
n
k ,
−→n l

jk) = 0, (1.5)

where ∆t is discretization step in time, A(un
j , u

n
k ,
−→n jk) is a monotone nu-

merical flux function [15],[1] satisfying usual requirements on consistency:

A(u, u,−→n ) =< A(u),−→n >, < ·, · > is a scalar product in IRN,
A(u, v,−→n ) is Lifschitz continuous with respect to u, v,

and on monotonicity:

A(u, v,−→n ) is nondecreasing in u and nonincreasing in v;

un
j is approximate solution at time tn in nodal point −→xj of a finite volume

mesh, −→xj ∈ IRN, j = 0, 1, ..; Cj are cells associated with node −→xj and Γjk

is the interface between cells Cj and Ck, Γjk = Cj ∩ Ck, Γjk = ∪lΓl
jk,

−→n l
jk is the unit normal of Γl

jk directed into Ck. Notice that cell interface
Γjk can be composed by several subinterfaces Γl

jk. Notice also that here
and onward superscript l refers to subinterface number. We supply finite
volume scheme (1.5) with the following initial condition:

u0
j =

1
|Cj |

∫
Cj

u0(x)dx. (1.6)

Because of the nonlinearity of the problem under consideration and
because of the low regularity of its solution one of the main difficulties
associated with the investigation of convergence of finite volume schemes
is finding of suitable compactness framework. From this standpoint we can
characterize several different approaches as follows:

• approaches using BV estimates in case of (1.2) with initial value func-
tion of bounded variation, see e.g.[11],[15].
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• approaches using compensated compactness and DiPerna’s unique-
ness theorem[8] for measure valued solutions, see e.g. [7],[16].

• approaches based on weak BV type estimates, see e.g. [6].

• approaches based on kinetic formulation of scalar conservation laws[14]
and the uniqueness theorem for kinetic solutions[3],[2],[4].

For more information about the first three approaches see also review pa-
pers [1], [17] and references therein. Here we concentrate on the fourth
approach in the above list. In [3] for numerical approximations to scalar
conservation laws abstract convergence theorem was introduced and con-
vergence of kinetic schemes was proven in one space dimension. Notice that
this abstract convergence theorem provides general framework for any space
dimensions and contains just necessary set of suppositions for the proof of
convergence. However when using similar technique in several space di-
mensions on arbitrary finite volume meshes problem arises with estimation
of some residual term. In order to get such residual term vanishing some
additional supposition on a mesh refinement process was introduced in [2]
and convergence of kinetic schemes was proven. In the present paper we in-
troduce special technique that is simple and enables proving of convergence
for arbitrary finite volume meshes just using abstract convergence theorem
from [3].

The rest of the paper is organized as follows. In the section 2 we define
the residual term and estimate it using different approaches in one space
dimension. In the section 3 we develop simple technique and apply it for
evaluating mesh size dependent behavior of a residual of kinetic schemes
in one space dimension. In the section 4 we couple simple technique with
the abstract convergence theorem [3] and prove the convergence of kinetic
finite volume schemes on arbitrary unstructured meshes in several space
dimensions. Finally, conclusions are given in the last section.

2. Residual term in one space dimension

2.1. Numerical scheme

Monotone finite volume scheme (1.5) and its initial condition in one space
dimension writes:

un+1
j − un

j

∆t
+

AA(un
j+1,u

n
j )−AA(un

j ,u
n
j−1)

hj
= 0, (2.1)

3
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u0
j =

1
hj

∫ xj+1/2

xj−1/2

u0(x)dx, (2.2)

where hj = xj+1/2−xj−1/2 = 0.5(hj+1/2 +hj−1/2), xj+1/2 = 0.5(xj+1 +xj),
hj+1/2 = xj+1−xj , AA(., .) is consistent and monotone numerical flux func-
tion. Notice that the scheme (2.1),(2.2) is well investigated in scientific
literature and just for the convenience of further exposition we recall some
of its properties. We set:

uh(t, x) = un
j , (t, x) ∈ (tn, tn+1)× Cj , (2.3)

tn+1 = tn + ∆t, Cj = (xj−1/2, xj+1/2).

Proposition 1. Suppose u0(x) ∈ L∞(IR)
⋂

 L1(IR)
⋂

BV(IR) and the fol-
lowing CFL-condition

∆t
hj

( max
|u|,|v|≤‖u0‖∞

|AA′
u(u, v)|+ max

|u|,|v|≤‖u0‖∞
|AA′

v(u, v)|) ≤ 1 (2.4)

is valid. Then the following estimates hold true:

‖uh(t, .)‖L∞ ≤ ‖u0‖L∞ , ‖uh(t, .)‖L1 ≤ ‖u0‖L1 , varx[uh(t, x)] ≤ varx[u0],
(2.5)

S(un+1
j )− S(un

j )
∆t

+
ηη(un

j+1, u
n
j )− ηη(un

j , u
n
j−1)

hj
≤ 0, (2.6)

where ηη is numerical entropy flux consistent with the entropy function S
and numerical flux function AA.

2.2. Controlling residual term using BV estimate

For proving the convergence of finite volume schemes several approaches
exist. One way is to show that the family of approximate solutions is
compact and its any subsequence satisfies (1.1),(1.3) in the weak sense.
Clearly, the equation and the entropy condition are not satisfied exactly by
approximate solution. In particular, written in the weak form for uh they
contain some extra term called residual. For the simplicity of exposition
consider weak form of the finite volume scheme (2.1) that writes:∫ ∫

(uhgt +A(uh)gx)dxdt+ Ψh = 0, (2.7)

where uh is defined by (2.3), g is sufficiently smooth compactly supported
function, Ψh is the so called residual term,

−Ψh = ∆t
∑

n

∑
j

gn
j hj(

AA(un
j+1,u

n
j )−AA(un

j ,u
n
j−1)

hj
−
A(un

j+1)−A(un
j−1)

2hj
)

+ O(∆t+ h) = ψh +O(∆t+ h). (2.8)

4
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The residual term ψh equivalently writes:

ψh = ∆t
∑

n

∑
j

(gn
j − gn

j+1)[AA(un
j+1,u

n
j )− 1

2
(A(un

j+1) + A(un
j ))], (2.9)

|ψh| ≤
h

2
‖gx‖( max

|u|,|v|≤‖u0‖∞
|AA′

u(u, v)|

+ max
|u|,|v|≤‖u0‖∞

|AA′
v(u, v)|)var[u0]( max

gx(t,x) 6=0
{t}+ ∆t). (2.10)

2.3. Estimating residual term using regular mesh refine-
ment

Suppose no uniform BV or weak BV type estimates are available for ap-
proximate solutions. Then application of the technique considered in the
previous subsection is impossible. Though in case of uniform mesh and the
numerical flux function defined according to formula

AA(u, v) =
1
2

(A(u) + A(v))− 1
2

(Ã(u)− Ã(v)), Ã′(u) ≥ |A′(u)|, (2.11)

the problem is easily resolved by means of using integration by parts at a
discrete level. In particular, putting (2.11) in (2.12) yields:

ψh =
∆t
2

∑
n

∑
j

(gn
j+1 − gn

j )(Ã(un
j+1)− Ã(un

j ))

= −∆t
2

∑
n

∑
j

(gn
j+1 − 2gn

j + gn
j−1)Ã(un

j ), (2.12)

gn
j+1 − 2gn

j + gn
j−1 = (xj+1 − 2xj + xj−1)gn

xj + 0(h2),

ψh = −∆t
2

∑
n

∑
j

xj+1 − 2xj + xj−1

xj+1/2 − xj−1/2
gn
xjÃ(un

j )hj + 0(h2). (2.13)

Notice that if mesh is uniform, i.e. hj = h, then

xj+1 − 2xj + xj−1 = 0 (2.14)

and therefore ψh vanishes together with h. In case of arbitrary meshes
(2.14) is not valid, though its left hand side could be used as some measure
of mesh regularity. Regular mesh refinement [2],[4] claims that mesh must
be refined so that the following inequality be valid

|xj+1 − 2xj + xj−1

xj+1/2 − xj−1/2
| ≤ Khγ , 0 < γ < 1, (2.15)

5
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where K, γ are constants independent of a sequence of meshes as h→ 0. In
other words this means that on such meshes second order finite differences
vanish faster then the first order finite differences do. Notice that if (2.15)
is valid then the residual term ψh can be easily controlled.

3. Simple technique

The techniques presented in the previous section for evaluating residual
term in finite volume schemes have drawbacks in several space dimensions:
in the first case it is impossible to evaluate total variation of the approx-
imate solutions on arbitrary finite volume meshes and in the second case
mesh refinement is restricted by similar to (2.15) condition. Simple tech-
nique presented below is free of these drawbacks. It’s main component is
weak* continuity of uniformly bounded sequence of grid functions.

3.1. Weak* continuity of grid functions

Let ω(x) be smooth nonnegative compactly supported in unit cube function
such that ∫

IRN
ω(x) = 1, ω(x) = −ω(x). (3.1)

Then ω(x) can be used as regularization kernel for L∞ functions, e.g. as
follows:

ωε(x) =
1
ε
ω(
x

ε
), ε > 0,

vε(x) =
∫
IRN

ωε(x− y)v(y)dy, v ∈ L∞(IRN).

Lemma 2.(Regularization lemma.) Let h be characterizing size of finite
volume mesh, uh(t, x) be uniformly bounded sequence of L∞ functions such
that uh is piecewise constant at each finite volume cell. Suppose uh −→ u
in L∞ weak* and 0 < ε(h), ε(h) −→ 0 as h −→ 0. Then the following hold
true:

(uhε(h) − uh) −→ 0, in L∞ weak* as h −→ 0, (3.2)

|uhε(h)(t, xj)− uh(t, xk)| ≤ Kω
|xj − xk|

ε
‖uh‖L∞ , (3.3)

where
uhε(t, x) =

∫
IRN

ωε(x− y)u(t, y)dy,

|−→x j −−→x k| = (
N∑

i=1

(xji − xki)2)1/2, Kω = N
1
2 max

x,i
| ∂
∂xi

ω(x)|.

6
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Proof: Let g(t, x) ∈ L1(IR+
t × IRN). Then we can write:∫

IR+
t ×IRN

uhε(t, x)g(t, x)dxdt

=
∫
IR+

t ×IRN

∫
IRN

uhε(t, x)ωε(x− y)g(t, x)dydxdt

=
∫
IR+

t ×IRN
uh(t, x)gε(t, x)dxdt

=
∫
IR+

t ×IRN
uh(t, x)g(t, x)dxdt

+
∫
IR+

t ×IRN
uh(t, x)(gε(t, x)− g(t, x))dxdt. (3.4)

Notice that for any continuous and compactly supported function g we have

lim
h→0

∫
IR+

t ×IRN
uh(t, x)(gε(t, x)− g(t, x))dxdt = 0.

Therefore (3.4) yields that (3.2) is proven.

|uhε(t,−→x j)− uhε(t,−→x k)|| < ∇uhε(t,
−→
ζ ),−→x j −−→x k > |

≤ (
N∑

i=1

(
∂uhε

∂xi
)2)

1
2 (

N∑
i=1

(xi
j − xi

k)2)
1
2 (3.5)

where −→ζ = θ−→x j + (1− θ)−→x k, 0 < θ < 1.

(
N∑

i=1

(
∂uhε

∂xi
)2)

1
2 = (

N∑
i=1

(
∫
IRN

∂ωε(x− y)
∂xi

uh(t, y)dy)2)
1
2

≤ (
N∑

i=1

1
ε2

max
x

| ∂
∂xi

ω(x)|2)
1
2 ‖uh‖L∞ . (3.6)

(3.5) and (3.6) yield (3.3).

Proposition 2.(Weak* continuity of grid function.) Suppose h is
characterizing size of finite volume mesh, uh(t, x) is uniformly bounded
sequence of functions satisfying (2.3), g(t, x) is smooth and compactly sup-
ported in IR+

t × IRN. If

k(j) : IN → IN, |−→x k(j) −−→x j| ≤ Kk · h, (3.7)

7
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Kk is independent of h, then there exist subsequence of uh such that

lim
h→0

∑
n≥0

∑
j

∆t(un
j − un

k(j))g
n
j |Cj | = 0. (3.8)

Proof: We set

vh(t, x) = un
k(j), (t, x) ∈ (tn, tn+1)× Cj . (3.9)

Since uh, vh are uniformly bounded in L∞ one can extract weak* convergent
subsequences denoted again via uh and vh for the simplicity. Let u and v
be weak* limits of uh and vh respectively, ε be such that

0 < ε, ε = ε(h), lim
h→0

ε(h) = 0, lim
h→0

h/ε(h) = 0. (3.10)

We regularize uh and vh exactly in the same way as in the regularization
lemma and denote regularized functions as uhε and vhε respectively. Notice
that according to regularization lemma we have

(uhε(h) − uh) −→ 0, in L∞ weak* as h −→ 0,
(vhε(h) − vh) −→ 0, in L∞ weak* as h −→ 0. (3.11)

The expression under limit in (3.8) equivalently writes:∑
n≥0

∑
j

∆t(un
j − un

k(j))g
n
j |Cj |

=
∫
IRt

+×IRN
(uh(t, x)− vh(t, x))gh(t, x)dxdt

=
∫
IRt

+×IRN
(uh(t, x)− vh(t, x))g(t, x)dxdt+O(h)

=
∫
IRt

+×IRN
(uhε(h)(t, x)− vhε(h)(t, x))g(t, x)dxdt

+
∫
IRt

+×IRN
(uh(t, x)− uhε(h)(t, x))g(t, x)dxdt

−
∫
IRt

+×IRN
(vh(t, x)− vhε(h)(t, x))g(t, x)dxdt+O(h). (3.12)

On account of (3.11) the second and third terms in the right hand side of
(3.12) vanish together with h. Thus in order to get (3.8) proven it remains
to show that the first term in the right hand side of (3.12) converges to
zero as h→ 0. The term under consideration writes:∫

IRt
+×IRN

(uhε(h)(t, x)− vhε(h)(t, x))g(t, x)dxdt

8
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=
∑

j

∫
IRt

+

∫
Cj

(uhε(h)(t, x)− vhε(h)(t, x))g(t, x)dxdt

=
∑

j

∫
IRt

+

∫
Cj

(uhε(h)(t, x)− uhε(h)(t, xj))g(t, x)dxdt

−
∑

j

∫
IRt

+

∫
Cj

(vhε(h)(t, x)− vhε(h)(t, xj))g(t, x)dxdt

+
∑

j

∫
IRt

+

∫
Cj

(uhε(h)(t, xj)− vhε(h)(t, xj))g(t, x)dxdt. (3.13)

Notice that if x ∈ Cj then |x−xj | ≤ h. On account of regularization lemma,
in particular (3.3), and on account of the supposition (3.7) we have:

|
∫
IRt

+

∫
Cj

(uhε(h)(t, x)− uhε(h)(t, xj))g(t, x)dxdt|

≤ h

ε(h)
KkKω|uh|L∞

∫
IRt

+

∫
Cj

|g(t, x)|dxdt,

|
∫
IRt

+

∫
Cj

(vhε(h)(t, x)− vhε(h)(t, xj))g(t, x)dxdt|

≤ h

ε(h)
KkKω|vh|L∞

∫
IRt

+

∫
Cj

|g(t, x)|dxdt,

|
∫
IRt

+

∫
Cj

(uhε(h)(t, xj)− vhε(h)(t, xj))g(t, x)dxdt| =

|
∫
IRt

+

∫
Cj

(uhε(h)(t, xj)− uhε(h)(t, xk(j)))g(t, x)dxdt|

≤ h

ε(h)
KkKω|uh|L∞

∫
IRt

+

∫
Cj

|g(t, x)|dxdt. (3.14)

Thus we have

|
∫
IRt

+×IRN
(uhε(h)(t, x)− vhε(h)(t, x))g(t, x)dxdt|

≤ 3
h

ε(h)
KkKω|uh|L∞

∫
IRt

+×IRN
|g(t, x)|dxdt. (3.15)

On account of (3.10) we get from (3.15) that (uhε(h) − vhε(h)) → 0 in L∞

weak* as h→ 0. Proof is completed.

Proposition 3.(Weak* continuity of vector valued grid function.)
Suppose h is characterizing size of finite volume mesh, −→u h = (−→u h1, ...,

−→u hN )T ,

9
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uih(t, x), 1 ≤ i ≤ N, are uniformly bounded sequences of functions defined
according to (2.3), g(t, x) is smooth and compactly supported in IR+

t × IRN.
If (3.7) is valid and

|Γl
jk| · |−→x k(j) −−→x j | ≤ Kc · |C l

jk|, C l
jk = co{−→x j

⋃
Γl

jk}, (3.16)

Kc is independent of h, then there exist subsequence of −→u h such that

lim
h→0

∑
n≥0

∑
ijkl∈I

∆t < −→u n
j −−→u n

k(j),
−→n l

jk > (gn
j − gn

k(j))|Γ
l
jk| = 0, (3.17)

‖−→n l
jk‖ = 1, I is a set of reference numbers to cell interfaces.

Proof: The expression under limit in (3.17) equivalently writes:

∑
n≥0

∑
ijkl∈I

∆t < −→u n
j −−→u n

k(j),
−→n l

jk > (gn
j − gn

k(j))|Γ
l
jk| =

∑
n≥0

∑
j

∑
kl∈I|

1
2

∆t < −→u n
j −−→u n

k(j),
−→n l

jk > (gn
j − gn

k(j))|Γ
l
jk| =∑

n≥0

∑
j

∑
kl∈I|

< −→u n
j −−→u n

k(j),
−→ϕ ln

jk > ∆t|C l
jk|, (3.18)

where
−→ϕ ln

jk =
1
2
−→n l

jk(gn
j − gn

k(j))
|Γl

jk|
|C l

jk|
.

Notice that Cj =
⋃

kl∈I| C̄
l
jk, I| is a set of reference numbers to surrounding

cell Cj interfaces. We set:

−→ϕ h(t, x) = −→ϕ ln
jk, (t, x) ∈ (tn, tn+1)× C l

jk.

On account of smoothness and compact support of g we have:∫
IR+

t ×IRN
‖−→ϕ h(t, x)‖dxdt =

∑
n≥0

∑
j

∑
kl∈I|

1
2

∆t|gn
j − gn

k(j)||Γ
l
jk|

≤
∑
n≥0

∑
j

∑
kl∈I|

1
2

∆t|∇gn
kj ||−→x j −−→x k(j)||Γl

jk|

≤
∑
n≥0

∑
j

∑
kl∈I|

1
2

∆t|∇gn
kj |Kc|C l

jk| < +∞, (3.19)

where ∇gn
kj = g(tn,−→x jθ + −→x k(j)(1 − θ)), 0 ≤ θ ≤ 1. Thus ϕh(t, x) is L1

function. Application of the proposition 3 to (3.18) accomplishes the proof.

10
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3.2. Simple technique in one space dimension

Here we apply weak* continuity of grid functions for evaluating space
derivative and corresponding residual in finite volume schemes in one space
dimension. The case of numerical flux function defined by formula (2.11)
will be investigated. After multiplying (2.1) on ∆thjg

n
j the term corre-

sponding to space derivative writes:∑
n

∑
j

∆t[
1
2

(An
j+1 +An

j )− 1
2

(Ãn
j+1 − Ãn

j )

− 1
2

(Ajn +An
j−1) +

1
2

(Ãn
j − Ãn

j−1)]gn
j

=
∑

n

∑
j

∆t[
1
2

(An
j+1 +An

j )− 1
2

(Ãn
j+1 − Ãn

j )](gn
j − gn

j+1)

= −
∑

n

∑
j

∆tAn
j g

n
xjhj + ψh, (3.20)

where
ψh = O(h) + ψ1h + ψ2h,

ψ1h = −
∑

n

∑
j

∆t[
1
2

(An
j+1 +An

j )(gn
j+1 − gn

j )−An
j (gn

j+1/2 − gn
j−1/2)]

=
∑

n

∑
j

∆t[An
j hj −

1
2

(An
j+1 +An

j )hj+1/2]gxj + 0(h)

=
∑

n

∑
j

∆t[(hj −
1
2
hj+1/2)An

j −
1
2
hj+1/2A

n
j+1]gxj + 0(h)

=
1
2

∑
n

∑
j

∆t[hj−1/2A
n
j − hj+1/2A

n
j+1]gxj + 0(h)

=
1
2

∑
n

∑
j

∆thj−1/2A
n
j (gxj − gxj+1) + 0(h), (3.21)

ψ2h = −1
2

∑
n

∑
j

∆t(Ãn
j+1 − Ãn

j )](gn
j − gn

j+1)

=
1
2

∑
n

∑
j

∆t(Ãn
j+1 − Ãn

j )gn
xj+1/2hj+1/2 +O(h). (3.22)

Notice that first term in (3.20) is suitable weak form of first order space
derivative in scalar conservation law. Evidently the residual term ψ1h =

11
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O(h) and it vanishes together with h. Notice that approximate solutions
constructed by means of finite volume scheme are uniformly bounded, see
e.g. Proposition 1. Therefore ψ2h vanishes together with h because of
the proposition on weak* continuity of grid functions. The residual term
induced by space derivative in entropy condition (2.6) can be evaluated by
means of using the same technique as given above.

4. Application of simple technique to kinetic schemes
in several space dimensions

In this section we assume that unit vectors −→n l
jk, that are normal to cell

interfaces Γl
jk, do not depend on the space variable−→x . Here we also consider

finite volume scheme (1.5) with numerical flux function defined as follows:

AA(un
j , u

n
k ,
−→n l

jk) =
1
2
< (−→A (un

j ) +−→
A (un

k))− (
−→̃
A (un

j )−
−→̃
A (un

k)),−→n l
jk >,

−→̃
A = (Ã1, ..., ÃN )T , ãi(u) ≥ max{ai(u), 0},

ãi(u) = Ã′i(u), ai(u) = A′i(u), i = 1, 2, ..., N.(4.1)

We show below that finite volume scheme (1.5) with numerical flux func-
tion (4.1) can be interpreted as kinetic scheme. The basis for this is kinetic
formulation of nonlinear scalar conservation laws introduced by P.L.Lions,
B.Perthame and E.Tadmor[14]. Interpreting finite volume scheme as kinetic
scheme means rewriting of it in terms of the following kinetic ”density”
function

χ(ξ;u) =


+1, 0 < ξ ≤ u,
−1, u ≤ ξ < 0,

0, otherwise.
(4.2)

The following lemma, in fact, is a collection of well known properties of the
kinetic finite volume schemes.

Lemma 4. Suppose numerical flux function in (1.5) is defined by (4.1)
and the following CFL condition

∆t
Cj

max
j

max
|ξ|≤‖u0‖L∞

∑
k

∑
l

1
2
| < −→a (ξ) +−→̃

a (ξ),−→n l
jk > | ≤ 1 (4.3)

holds true. Then solution of the finite volume scheme (1.5) satisfy:

max
j,n

|un
j | ≤ ‖u0‖L∞ , un+1

j =
∫
IRξ

fn+1
j (ξ)dξ,

12
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χn+1
j (ξ)− χn

j (ξ)
∆t

+
1

2Cj

∑
k,l

[< −→a (ξ),−→n l
jk > (χn

j (ξ) + χk
j (ξ))

− <
−→̃
a (ξ),−→n l

jk > (χn
j (ξ)− χk

j (ξ))]
∂

=
∂ξmn+1

j (ξ),

χn
j (ξ) = χ(ξ;un

j ), mn+1
j (ξ) ≥ 0,

mn+1
j (ξ) =

1
∆t

∫ ξ

−∞
(χn+1

j (ξ)− fn+1
j (ξ))dξ. (4.4)

Proof: Derivation of the uniform L∞ estimate under CFL condition (4.3)
is trivial when using standard technique, see e.g. [4]. Nonnegativity of
mn+1

j (ξ) is a consequence of Brenier’s lemma [5], see e.g. [3]. Notice that
mn+1

j (ξ) is compactly supported in ξ because of its definition (4.2) and the
uniform boundedness of un

j . Integrating of

1
2

[< −→a (ξ),−→n l
jk > (χn

j (ξ) + χk
j (ξ))− <

−→̃
a (ξ),−→n l

jk > (χn
j (ξ)− χk

j (ξ))]

in ξ yields exactly (4.1). On account of this and compact support of
mn+1

j (ξ) we obtain that finite volume scheme (1.5) is recovered from (4.4)
by means of integration in ξ.

Lemma 5. Suppose the unit vectors normal to cell interfaces Γl
jk are

independent of x. If g(x) is sufficiently smooth function then for each Γl
jk

there exist xl
jk ∈ Γl

jk such that∫
Cj

<
−→
A (un

j ),∇g(x) > dx =
∑

k

∑
l

<
−→
A (un

j ),−→n l
jk > g(xl

jk)|Γl
jk|. (4.5)

Proof: First of all notice that because of the continuity of g(x) according
to mean value theorem for each Γl

jk there exist xl
jk such that∫

Γl
jk

g(x)dx = g(xl
jk)|Γl

jk|. (4.6)

On account of the latter we get:∫
Cj

<
−→
A (un

j ),∇g(x) > dx =< −→
A (un

j ),
∫

Cj

∇g(x)dx >

=< −→
A (un

j ),−→n l
jk

∑
k

∑
l

∫
Γl

jk

g(x)dx >

=< −→
A (un

j ),−→n l
jk

∑
k

∑
l

g(xl
jk)|Γl

jk| >

=
∑

k

∑
l

<
−→
A (un

j ),−→n l
jk > g(xl

jk)|Γl
jk|.

13
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Lemma is proven.

Lemma 6. Suppose numerical flux function is defined according to (4.1),
CFL condition (4.3) holds true, the unit vectors normal to cell subinter-
faces are independent of x and g(t, x) is sufficiently smooth function. Then
approximate solution defined by (1.5) satisfy∑

n≥0

∑
j

∑
k,l

−→
A (un

j , u
n
k ,
−→n l

jk)g(tn, xj)∆t|Γl
jk|

−
∫
IR+

t ×IRN
<
−→
A (uh),∇xg(t, x) > dx+ Ψh, (4.7)

where uh is defined according to (2.3) and limh→0 Ψh = 0.
Proof: Notice that ∑

k,l

<
−→
A (un

j ),−→n l
jk > |Γl

jk| = 0. (4.8)

On account of this formula we can rewrite the left hand side of (4.7) as
follows: ∑

n≥0

∑
j

∑
k,l

−→
A (un

j , u
n
k ,
−→n l

jk)g(tn, xj)∆t|Γl
jk|

= −
∑
n≥0

∑
j

∑
k,l

<
−→
A (un

j ),−→n l
jk > g(tn, xl

jk)∆t|Γl
jk|+ Ψh, (4.9)

where xl
jk are defined in accordance with (4.5), Ψh = Ψ1h + Ψ2h,

Ψ1h =
∑
n≥0

∑
j

∑
k,l

(
1
2
<
−→
A (un

j ) +−→
A (un

k),−→n l
jk > g(tn, xj)

+ <
−→
A (un

j ),−→n l
jk > g(tn, xl

jk))∆t|Γl
jk|

=
∑
n≥0

∑
j

∑
k,l

(
1
2
<
−→
A (un

k)−−→
A (un

j ),−→n l
jk > g(tn, xj)

+ <
−→
A (un

j ),−→n l
jk > g(tn, xl

jk))∆t|Γl
jk|

=
∑
n≥0

∑
ijkl∈I

([
1
2
<
−→
A (un

k)−−→
A (un

j ),−→n l
jk > g(tn, xj)

+ <
−→
A (un

j ),−→n l
jk > g(tn, xl

jk)]

+ [
1
2
<
−→
A (un

j )−−→
A (un

k),−→n l
kj > g(tn, xj)

+ <
−→
A (un

k),−→n l
kj > g(tn, xl

jk)])∆t|Γl
jk|

14
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=
∑
n≥0

∑
ijkl∈I

<
−→
A (un

k)−−→
A (un

j ),−→n l
jk > [

1
2
g(tn, xj)− g(tn, xl

jk)

+
1
2
g(tn, xj)], (4.10)

Ψ2h =
1
2

∑
n≥0

∑
j

∑
k,l

<
−→̃
A (un

j )−
−→̃
A (un

k),−→n l
jk > g(tn, xj)∆t|Γl

jk|

=
1
2

∑
n≥0

∑
j

∑
k,l

<
−→̃
A (un

j )−
−→̃
A (un

k),−→n l
jk >

· (g(tn, xj)− g(tn, xk))∆t|Γl
jk|. (4.11)

On account of the lemma 5 and smoothness and compact support of the
function g(t, x) the sum in the right hand side of (4.12) equivalently writes∑

n≥0

∑
j

∑
k,l

<
−→
A (un

j ),−→n l
jk > g(tn, xl

jk)∆t|Γl
jk|

=
∑
n≥0

∑
j

∫
Cj

<
−→
A (un

j ),∇xg(tn, x) > dx∆t

=
∑
n≥0

∫
IRN

<
−→
A (uh(tn, x)),∇xg(tn, x) > dx∆t

=
∫
IR+

t ×IRN
<
−→
A (uh(t, x)),∇xg(t, x) > dx∆t+O(∆t). (4.12)

Notice that |−→x j −−→x k| ≤ 2h, if −→x j and −→x k have common interface and h
is characterizing size of finite volume mesh. Therefore application of the
proposition 3 to (4.10) and (4.11) accomplishes the proof.

Theorem 7. Suppose numerical flux function is defined by (4.1), CFL
condition (4.3) and the inequality (3.16) hold true. Then approximate so-
lutions constructed by means of the finite volume scheme (1.5) converges
in L1

loc to the unique entropy solution of the problem (1.1),(1.2).

Proof: The proof is based on the coupling of the abstract convergence the-
orem from [3] and the simple technique developed in the previous section.
In particular the simple technique provides sufficient framework for the es-
timating behavior of residuals due to approximation of space derivatives in
finite volume schemes and thus it is important for verifying consistency of
finite volume schemes that is required by the abstract convergence theorem.
It should be emphasized that abstract convergence theorem provides gen-
eral necessary and sufficient framework for the convergence of approximate

15
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solutions to nonlinear scalar conservation laws, see e.g. [3]. Multidimen-
sional version of this theorem is given in [4].

Notice that suppositions of the theorem under consideration comprise
suppositions of the lemma 4 and lemma 6. The proof consists in verify-
ing suppositions of the abstract convergence theorem and is divided into
following steps.

• First the problem (1.1),(1.2) with compactly supported initial value
function is investigated. If for this case convergence is proved in
L1 then L1

loc convergence is obtained for general case by means of
using standard diagonalization process of approximate solutions cor-
responding to suitably selected different compactly supported initial
data, see e.g. [3].

• The requirement (C.16)[4] of the abstract convergence theorem, i.e.
uniform L∞ and L1 bounds on approximate solutions, is provided by
the lemma 4 and the compact support of the initial value function.

• Kinetic interpretation of the finite volume scheme under consider-
ation(C.16)[4], the nonnegativity and boundedness of the measure
(C.15)[4] in the right hand side of the kinetic scheme(C.13)[4] are
provided by the lemma 4.

• Let multiply (4.4) on ∆t|Cj |g(tn, xj , ξ), g is nonnegative, sufficiently
smooth and compactly supported, and sum the result with respect to
n and j and integrate in ξ. Then vanishing of the residual(C.14)[4]
together with the characterizing size of the finite volume mesh is easily
obtained by means of application of the lemma 6.

• The suppositions (C.17),(C.18)[4] are verified simply by means of us-
ing the technique similar to the one applied in the previous step.

Thus all the suppositions of the abstract convergence theorem are verified
and the proof is completed.

5. Conclusion

We have developed here simple technique for studying the behavior of the
residuals in finite volume schemes. It is based on the weak* continuity of
uniformly bounded sequences of approximate solutions. Using of the devel-
oped simple technique for verifying weak consistency of kinetic finite volume
schemes yields possibility of proving the convergence of these scheme by
means of using abstract convergence theorem [3]. It should be emphasized

16
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that though we have considered just first order explicit kinetic finite volume
schemes, the developed approach seems to be suitable for the proof of con-
vergence of schemes with more complicated space and time discretizations,
e.g. Runge-Kutta type, for fractional step schemes on arbitrary meshes
and even for conventional consistent and stable finite volume schemes. All
these will be addressed in separate paper.
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