
REGULARIZATION FOR INTEGRAL EQUATIONS OF THE FIRST
KIND IN THE THEORY OF THERMOELASTIC

PSEUDO-OSCILLATIONS

Angelica Malaspina

Department of Mathematics,
University of Basilicata,

V.le dell’Ateneo Lucano, 10
Campus of Macchia Romana, Potenza, Italy

malaspina@unibas.it

(Received: 09.07.04; accepted: 13.10.04)

Abstract

In this paper integral equations of the first kind arising in homogeneous isotropic

linear pseudo-oscillations thermoelastic theory are regularized. As a byproduct several

integral representations for the solutions of the four basic boundary value problems

of pseudo-oscillations thermoelastic theory are obtained. These representations are

different from the classical ones [11].
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1 Introduction

In this paper we study the four basic boundary value problems of the theory
of thermoelastic pseudo-oscillations for an isotropic elastic body. To solve
these problems we are inspired by a Fichera’s idea [8] developed by Cialdea
in [1] where he used this idea in order to solve the Dirichlet problem for
Laplace equation in any number of variables representing the solution by
means of a simple layer potential. The method does not use the theory of
pseudo-differential operators, but it hinges on the theory of reducing oper-
ators ([5], [7], [13]) and the theory of differential forms [6]. This approach
was applied also for solving the Neumann problem for Laplace equation
by means of a double layer potential [4] and it was generalized to the bi-
harmonic equation ([2], [3]) in any number of variables, to the Dirichlet
problem for Lamé and Stokes systems in [4] and to the traction problem
for Lamé and Stokes systems [12].
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The aim of the present paper is to extend this method in order to have
some representation theorems for the solutions of the four basic boundary
value problems of thermoelastic pseudo-oscillation’s theory. These integral
representations are obtained by means of thermoelasto-potentials and they
are different from the usual ones [11].

In the last section we show that the solutions of each of the four basic
boundary value problems of thermoelastic pseudo-oscillation’s theory can
be represented by any of the four thermoelasto-potentials provided that the
data are given in suitable spaces.

We note that the case of pseudo-oscillations is an essential element for
the dynamic problems of thermoelasticity theory (see [11], p. 572-591).

2 Formulation of the basic problems

The pseudo-oscillation equations of thermoelastic theory are [11]:

{
µ∆u(x) + (λ+ µ) grad div u(x)− γ gradϑ(x) + %ω2u(x) = 0

∆ϑ(x) +
iω

k
ϑ(x) + iωηdiv u(x) = 0,

(2.1)

where x = (x1, x2, x3) denotes the spatial variable; u = (u1, u2, u3) is the
displacement vector; ϑ is the temperature; ω = iτ , with <e τ > 0; %, λ, µ,
k, η, γ are constants satisfying the natural restrictions [9], [11]:

% > 0, µ > 0, 3λ+ 2µ > 0, k > 0, γ/η > 0.

In particular, % is the density, λ and µ are the Lamé constants and k is the
conductivity.

The equations of thermoelasto-static state are the following:
{
µ∆u+ (λ+ µ) grad div u− γ gradϑ = 0
∆ϑ = 0.

(2.2)

It is convenient to write the equations (2.1) in the following matrix
form:

B(∂x, ω)U(x) = 0, (2.3)

where

U = (u, ϑ), u = (u1, u2, u3),
B(∂x, ω) = ‖Bjk(∂x, ω)‖4×4,

Bjk(∂x, ω) = Ajk(∂x, ω), Bj4(∂x, ω) = −γ ∂

∂xj
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Ajk(∂x, ω) = δjk(µ∆ + %ω2) + (λ+ µ)
∂2

∂xj∂xk
,

B4k(∂x, ω) = iωη
∂

∂xk
j, k = 1, 2, 3, B44(∂x, ω) = ∆ +

iω

k
.

The matrix B̃(∂x, ω) = ‖B̃jk(∂x, ω)‖4×4 denotes the matrix whose elements
are:

B̃jk(∂x, ω) = Bkj(−∂x, ω).

We remark that the operator B̃(∂x, ω) can be obtained from the operator
B(∂x, ω) by replacing γ by iωη.
The matrix of fundamental solutions of the homogeneous equation (2.3) is:

Φ(x, ω) = ‖Φjk(x, ω)‖4×4,

where

Φkj(x, ω) =
3∑

l=1

{
(1− δk4)(1− δj4)

( δkj
2πµ

δ3l − αl ∂2

∂xj∂xk

)

+ βl

[
iωηδk4(1− δj4)

∂

∂xj
− γδj4(1− δk4)

∂

∂xk

]

+ δk4δj4γl

}eiλl|x|
|x| ,

δkj denotes Kronecker’s symbol and

αl =
(−1)l(1− iωk−1λ−2

l )(δ1l + δ2l)
2π(λ+ 2µ)(λ2

2 − λ2
l )

− δ3l

2π%ω2
,

3∑

l=1

αl = 0,

βl =
(−1)l(δ1l + δ2l)

2π(λ+ 2µ)(λ2
2 − λ2

l )
,

3∑

l=1

βl = 0,

γl =
(−1)l(λ2

l − kl1)(δ1l + δ2l)
2π(λ2

2 − λ2
1)

,
3∑

l=1

γl = 1,

k2
1 = λ2

2 =
%ω2

λ+ 2µ
, λ2

1 =
iω

k
, λ2

3 =
%ω2

µ
.

We note that each column vector in the matrix Φ(x, ω) has a unique
singularity at the point x = 0 of order not higher than 1/|x| and that each
column of the matrix Φ(x, ω) satisfies system (2.3) everywhere in the space
except the origin ([11], Theorem 3.1, p. 96). Moreover, the matrix Φ(x, ω)
is unsymmetrical and its rows considered as vectors do not satisfy (2.3).
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We denote by Φ̃(x, ω) = ‖Φ̃jk(x, ω)‖4×4 the matrix

Φ̃jk(x, ω) = Φkj(−x, ω). (2.4)

From the matrices Φ(x, ω) and Φ̃(x, ω) with ω = 0 we obtain

Φ(x) = ‖Φkj(x)‖4×4, Φ̃(x) = ‖Φ̃kj(x)‖4×4 = ‖Φjk(−x)‖4×4.

In this case, Φkj(x) has the following simple form:

Φkj(x) =

∥∥∥∥∥∥∥∥∥

Γ11(x) Γ12(x) Γ13(x) γ̃ x1
|x|

Γ21(x) Γ22(x) Γ23(x) γ̃ x2
|x|

Γ31(x) Γ32(x) Γ33(x) γ̃ x3
|x|

0 0 0 1
2π

1
|x|

∥∥∥∥∥∥∥∥∥

where
γ̃ =

γ

4π
1

λ+ 2µ
(2.5)

and Γ = ‖Γkj(x)‖3×3 is the Kelvin matrix whose entries are ([11], p. 84):

Γkj(x) =
1

2πµ

(δkj
|x| −

(λ+ µ)
2(λ+ 2µ)

∂2

∂xk∂xj
|x|
)
. (2.6)

We note that the matrices Φ(x) and Φ̃(x) satisfy the homogeneous static
equation (2.2).

We recall the following theorems ([11], p. 97) which we shall use in the
sequel:

Theorem 2.1 The elements of the matrices [Φ(x, ω)−Φ(x)] and [Φ̃(x, ω)−
Φ̃(x)] are bounded at x = 0, while the first derivatives have isolated singu-
larity of the kind |x|−1.

Theorem 2.2 The second derivatives of the elements of [Φkj(x, ω)−Φkj(x)]
and [Φ̃kj(x, ω)−Φ̃kj(x)] (k, j = 1, 2, 3), [Φ44(x, ω)−Φ44(x)] and [Φ̃44(x, ω)−
Φ̃44(x)] have a singularity of the kind |x|−1, while the second derivatives of
the elements [Φk4(x, ω) − Φk4(x)] and [Φ̃4j(x, ω) − Φ̃4j(x)] (k, j = 1, 2, 3)

are bounded. Moreover Φ44(x, ω) =
1

2π
1
|x| +O(|x|).

From now on, Ω is assumed to be a bounded domain of R3 such that its
boundary ∂Ω is a surface Σ of class C2,λ, λ ∈ (0, 1] and such that R3 −

is connected; ν(x) = (ν1(x), ν2(x), ν3(x)) denotes the unit normal vector at
the point x = (x1, x2, x3) ∈ Σ directed outside Ω.
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Further we recall the thermoelastic stress operator ([11], p. 60):

P (∂x, ν(x))U = T (∂x, ν(x))u− γν(x)ϑ (2.7)

where U = (u, ϑ) is a four-components vector and T is the following oper-
ator ([11], p. 57):

T (∂x, ν(x))u = λν(x)div u+ 2µ
∂u

∂ν(x)
+ µ(ν(x)× curl u). (2.8)

For the later, we shall use the following matrix differential operators:

(∂x, ν, γ) = ‖Qkj(∂x, ν, γ)‖4×4 =

=

∥∥∥∥∥∥∥∥

1 0
1 0

1 0
0 0 0 ∂

∂ν

∥∥∥∥∥∥∥∥
;

(∂x, ν, γ) = ‖Rkj(∂x, ν, γ)‖4×4 =

=

∥∥∥∥∥∥∥∥

T11(x) T12(x) T13(x) −γν1

T21(x) T22(x) T23(x) −γν2

T31(x) T32(x) T33(x) −γν3

0 0 0 ∂
∂ν

∥∥∥∥∥∥∥∥
; (2.9)

(∂x, ν, γ) = ‖Pkj(∂x, ν, γ)‖4×4 =

=

∥∥∥∥∥∥∥∥

T11(x) T12(x) T13(x) −γν1

T21(x) T22(x) T23(x) −γν2

T31(x) T32(x) T33(x) −γν3

0 0 0 −1

∥∥∥∥∥∥∥∥
, (2.10)

where Tkj(x) are the elements of (2.8).
In the following we denote by R̃ and P̃ the matrices obtained from (2.9)

and (2.10) substituting γ by iωη.
If A = ‖akj‖4×4 and B = ‖bkj‖4×4 are 4× 4 matrices and ϕ = (ϕ1, ϕ2,

ϕ3, ϕ4) is a vector, then

AB = ‖ckj‖4×4 where ckj =
∑

i

akibij ;
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Aϕ = ‖dk‖4×1 where dk =
∑

j

akiϕj ;

(AB′)′ϕ = BA′ϕ = ‖
∑

ij

akjbijϕj‖4×4;

the symbol ′ denotes the transposition operation.
Now we introduce the simple layer potential:

V (x) =
∫

Σ
Φ(x− y, ω)ϕ(y)dσy; (2.11)

the double layer potential:

W (x) =
∫

Σ

[
R̃(∂y, ν)Φ′(x− y, ω)

]′
ϕ(y)dσy; (2.12)

the following mixed potentials:

Z(x) =
∫

Σ

[
P̃(∂y, ν)Φ′(x− y, ω)

]′
ϕ(y)dσy; (2.13)

and
Y (x) =

∫

Σ

[
Q(∂y, ν)Φ′(x− y, ω)

]′
ϕ(y)dσy. (2.14)

Using the four potentials (2.11), (2.12), (2.13), (2.14) presented above,
one may develop the general theory for the basic boundary value problems
[11]. The first problem consists in finding the four-component vector U =
(u, ϑ) which in Ω satisfies the equations (2.1) by the boundary conditions:

u = f, ϑ = g. (2.15)

In second problem the boundary conditions are:

PU = f,
∂ϑ

∂ν
= g, (2.16)

in the third problem

u = f,
∂ϑ

∂ν
= g, (2.17)

and in the fourth problem

PU = f, ϑ = g. (2.18)

In the classical thermoelasticity theory (see [11]) the solution of the
basic boundary value problems (2.15), (2.16), (2.17), (2.18) are represented
in the form of (2.12), (2.11), (2.13), (2.14) respectively.
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3 First problem

In this section, we study the Dirichlet problem for the system of thermoe-
lastic pseudo-oscillations:





B(∂x, ω)U = 0 in Ω,
u = f, on Σ,
ϑ = f4, on Σ,

(3.1)

where ω = iτ , <eτ > 0. The data F = (f, f4) = (f1, f2, f3, f4) is assumed
to be in the space [W 1,p(Σ)]4, 1 < p <∞.

Preliminarily, we consider the following lemmas.

Lemma 3.1 The singular integral operator

J : Lp(Σ) −→ Lp1(Σ),

Jϕ(x) = − 1
4π

∫

Σ
ϕ(y)dx[

1
|x− y| ]dσy, (3.2)

where dx denotes the exterior differentiation [6] , can be reduced on the left
and

J
′

: Lp1(Σ) −→ Lp(Σ)

J
′
ψ(z) = ∗Σ

∫

Σ
ψ(x) ∧ dz[S1(z, x)] (3.3)

is a reducing operator for (3.2), where S1(z, x) is the double 1-form intro-
duced by Hodge [10]:

S1(z, x) = − 1
4π|z − x|

∑

j

dzjdxj . (3.4)

This theorem is proved in [1]. In particular we have that

J ′Jϕ(x) = −1
4
ϕ(x) +

∫

Σ
ϕ(y)L(x, y)dσy (3.5)

where L(x, y) has a weak singularity and thus the integral defines a compact
operator from Lp(Σ) into itself.

Lemma 3.2 The singular integral operator

R : [Lp(Σ)]3 −→ [Lp1(Σ)]3
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Rjϕ(x) =
∫

Σ
ϕk(y)dx[Γjk(x, y)]dσy (3.6)

(j = 1, 2, 3), where Γjk(x, y) are given by (2.6), can be reduced on the left
and

R
′
0 : [Lp1(Σ)]3 −→ [Lp(Σ)]3

where

R
′
0iψ =

(λ+ µ)(λ+ 2µ)
(λ+ 3µ)

Kjj(ψ)νi +2µ
(λ+ 2µ)
(λ+ 3µ)

Kij(ψ)νj +

+ µ
(λ+ µ)
(λ+ 3µ)

δijspνjKps(ψ) (3.7)

is a reducing operator for (3.6). Here Kij are the operators defined as
follows ([4], p. 37):

Kjs(ϕ) = ∗Σ
∫

Σ
dx[S1(x, y)]∧ϕj(y)∧dxs−δ123

ihp

∫

Σ

∂

∂xs
[Kij(x, y)]∧ϕh(y)∧dyp

(3.8)
where S1(x, y) is given by (3.4) and

Kij(x, y) =
1

4π

[
µ

(λ+ µ)
(λ+ 3µ)

∂|x− y|
∂yj

∂|x− y|
∂yi

] 1
|x− y| .

This lemma is proved in [4]. In particular we have that

R′0Rϕ = −1
4
ϕ+K2ϕ, (3.9)

where
Kjϕ(x) =

∫

Σ
ϕh(y)T 0

jx[Γh(x, y)] dσy,

and T 0u is the pseudostress [11].

Lemma 3.3 The singular integral operator

S0 : [Lp(Σ)]4 −→ [Lp1(Σ)]4

defined as

S0(ϕ)k = (1− δk4)[R(ϕ)k + Tk(ϕ4)]− 2δk4J(ϕ4) k = 1, 2, 3, 4 (3.10)

where R and J are given by (3.6) and (3.2) respectively,

Tkϕ4(x) = γ̃

∫

Σ
dx

[xk − yk
|x− y|

]
ϕ4(y) dσy, k = 1, 2, 3 (3.11)
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and γ̃ is given by (2.5), can be reduced on the left by

S′ : [Lp1(Σ)]4 −→ [Lp(Σ)]4

defined as

S′(ψ)k = (1− δk4)R′0(ψ)k − 1
2
δk4J

′(ψ4), k = 1, 2, 3, 4 (3.12)

where R′0 and J ′ are given by (3.3) and (3.7) respectively.

Proof. We have that

S′S0(ψ)k = (1− δk4)R′0(S0ψ)k + δk4J
′(S0ψ4) =

= (1− δk4)2((R′0Rψ)k +R′Tk(ψ4)) + δ2
k4J
′Jψ4,

and this is a Fredholm operator in view of (3.5), (3.9) and the compactness
of operators Tk.

Lemma 3.4 Let ω be a complex constant. The singular integral operator

S : [Lp(Σ)]4 −→ [Lp1(Σ)]4

defined as

Sϕ(x) =
∫

Σ
ϕ(y)dx[Φ(x− y, ω)]dσy

can be reduced on the left by S′ (3.12).

Proof. Set
S = (S − S0) + S0.

The operator S′ reduces S because

S′S = S′(S − S0) + S′S0

is a Fredholm operator, since (S−S0) is compact as it follows from theorem
2.1.

Theorem 3.1 Let ω be a complex constant. Given F ∈ [W 1,p(Σ)]4, there
exists a solution of the singular integral system:

∫

Σ
dx[Φ(x− y, ω)]ϕ(y)dσy = dF (x), (1)

1dF is the vector (dF1, dF2, dF3, dF4).
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if, and only if, ∫

Σ
γi ∧ dFi = 0 (3.13)

for any γ ∈ [Lq1(Σ)]4 solution of the homogeneous adjoint system:

S∗j γ(x) ≡
∫

Σ
γi(y) ∧ dy[Φij(y − x, ω)] = 0 a.e. x ∈ Σ (3.14)

j = 1, 2, 3, 4.

Proof. Because of lemma 3.4 the range of S is closed in [Lp1(Σ)]4. This
implies the result.

In order to apply this general result, it is necessary to determine ex-
plicitly the compatibility condition (3.13). We shall prove that (3.13) are
automatically satisfied in the thermoelastic pseudo-oscillation’s theory. In
this case the nonnegative number

σε =
λ+ 2µ
%k

(1− ε), (3.15)

where
ε =

kγη

λ+ 2µ
,

plays an important role. In fact in [11], p. 572, it is shown that if <e τ > σε,
the basic boundary value problems of the theory of thermoelasticity are
solvable and the solutions can be represented by means of the usual integral
representations.

Theorem 3.2 If <e τ > σε where σε is given by (3.15), the vector γ ∈
[Lq1(Σ)]4 is an eigensolution of S∗ if, and only if, γ is a weakly closed form,
i.e. ∫

Σ
γi ∧ dgi = 0, ∀ g ∈ [C∞(R3)]4.

Proof. If γ belongs to kernel of S∗, from (3.14) it follows that for any
p ∈ [Cλ(Σ)]4 we have

0 =
∫

Σ
pj(x) dσx

∫

Σ
γi(y) ∧ dy[Φij(y − x, ω)] =

∫

Σ
γi(y) ∧ dy

∫

Σ
pj(x) Φij(y − x, ω)dσx.

Let u be a smooth solution of BU = 0. We can represent u by means of a
simple layer potential ([11], p. 544):

ui(y) =
∫

Σ
pj(x) Φij(y − x, ω)dσx.
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Then we obtain that ∫

Σ
γi ∧ dui = 0.

Therefore∫

Σ
γi(y) ∧ dy[Φij(y − x, ω)] = 0, ∀ x ∈ R3 −
. (3.16)

Let us denote by wj(x), j = 1, 2, 3, 4, the left-hand side of (3.16). It follows
from (2.4) that B̃w = 0. Then

wj(x) =
∫

Σ
γi(y) ∧ dy[Φ̃ji(x− y, ω)]

and, for fixed i, (Φ̃1i, Φ̃2i, Φ̃3i, Φ̃4i)(x−y, ω) is solution of the system B̃xu =
0.
Now we consider v ∈ [C∞(R3)]4 and η ∈ [C1(Ω)]4 ∩ [C2(Ω)]4 such that
Bη = Bv in Ω and η = 0 on Σ. Such a solution does exist because of ([11],
Theorem 3.1, p. 572).

We have that∫

Ω
wj Bjv dx =

∫

Ω
wj Bjη dx =

∫

Ω
Bjη(x) dx

∫

Σ
γi(y) ∧ dy[Φ̃ji(x− y, ω)]

=
∫

Σ
γi(y) ∧ dy

∫

Ω
Bjη(x) Φ̃ji(x− y, ω) dx.

We remark that, from [11], (2.15) p. 536, it follows that

ηi(y) =
∫

Σ
Φ̃ji(x− y, ω)Rjη(x) dσx−

∫

Ω
Φ̃ji(x− y, ω)Bjη(x) dx, y ∈ Ω

(3.17)
where Rj are the operators defined by (2.9). Letting y → Σ, (3.17) gives
∫

Σ
Φ̃ji(x−y, ω)Rjη(x) dσx =

∫

Ω
Φ̃ji(x−y, ω)Bjη(x) dx y ∈ Σ. (3.18)

Therefore, from (3.18), (2.4), and (3.14), we get
∫

Ω
wj Bjv dx =

∫

Σ
γi(y) ∧ dy

∫

Σ
Φ̃ji(x− y, ω)Rjη(x) dσx =

=
∫

Σ
Rjη(x) dσx

∫

Σ
γi(y) ∧ dy[Φ̃ji(x− y, ω)] = 0. (3.19)

Let ψ ∈ [C∞(R3)]4 be a function with compact support. It follows from
(3.17) that

ψi(y) = −
∫

R3
Φ̃ji(x− y, ω)Bjψ(x) dx ∀ y ∈ R3
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and then, keeping in mind (3.16) and (3.19),

0 =
∫

R3
wjBjψ dx =

∫

R3
Bjψ(x) dx

∫

Σ
γi(y) ∧ dy[Φ̃ji(x− y, ω)] =

=
∫

Σ
γi(y) ∧ dy

∫

R3
Bjψ(x) Φ̃ji(x− y, ω) dx = −

∫

Σ
γi ∧ dψi.

and this concludes the proof.

Lemma 3.5 The solution of the following boundary value problem
{
B(∂x, ω)V = 0 in Ω,
V = C, on Σ

(3.20)

where C = (c1, c2, c3, c4) ∈ R4 can be represented by a simple layer potential
(2.11) with density ϕ0 ∈ C1,λ′(Σ), 0 < λ < λ′ ≤ 1.

Proof. The solution V = (v, ϑ̃) of (3.20) can be represented in the form
of double layer potential (2.12) ([11], p. 572):

v(x) =
∫

Σ

[
R̃(∂y, ν)Φ′(z − y, ω)

]′
ϕ0(y) dσy.

It follows from [11], p. 544, that

−ϕ0(z) +
∫

Σ

[
R̃(∂y, ν)Φ′(z − y, ω)

]′
ϕ0(y)dσy = C.

Because C is constant, we obtain from theorem 3.3 of [11], p. 359 that
ϕ0 ∈ C1,λ′(Σ), 0 < λ′ < λ ≤ 1 and it follows from theorem 7.1 of [11], p.
317, that v(z) ∈ C1,λ(Ω). Now we consider the following boundary value
problem





B(∂x, ω)U = 0 in Ω,
Pu = Pv, on Σ
∂ϑ

∂ν
=
∂ϑ̃

∂ν
on Σ

(3.21)

where (v, ϑ̃) is the solution of (3.20). Because the solution U of (3.21) can
be represented by a simple layer potential (2.11) ([11], p. 572) and since
(3.21) has only one solution we obtain U = V .

Now we show the following representation’s theorem of Dirichlet prob-
lem for pseudo-oscillation’s theory.
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Theorem 3.3 Given F ∈ [W 1,p(Σ)]4, the solution of problem (3.1) where
ω = iτ , <e τ > σε and σε is given by (3.15), does exist and can be repre-
sented by a simple layer potential (2.11) with density in the space [Lp(Σ)]4.

Proof. We seek a solution of Dirichlet problem for the pseudo-oscillation
system (2.1) in the form of a simple layer potential (2.11) V (x). Imposing
the boundary condition we obtain the following integral system of the first
kind: ∫

Σ
Φ(x− y, ω)ϕ(y) dσy = F (x), x ∈ Σ.

Taking the differential of both sides on Σ, we have the following system of
singular integral equations:

∫

Σ
dx[Φ(x− y, ω)]ϕ(y) dσy = dF (x), x ∈ Σ,

(in which the unknown is a vector whose components are scalar function
ϕi ∈ Lp(Σ), i = 1, 2, 3, 4, while the data is a vector whose components are
differential forms of degree one). Then we obtain the equation

Sϕ = dF. (3.22)

It follows from lemma 3.4 that S′ reduces S and from theorem 3.1, that
there exists a solution of (3.22) if and only if the data dF satisfies (3.13).
These compatibility conditions are satisfied in view of theorem 3.2 and then
there exists a solution of (3.22).
This means that there exists a solution of the following boundary value
problem

{
B(∂x, ω)W = 0 in Ω,
dW = dF, on Σ

and that W can be represented by a simple layer potential (2.11). Since
dW = dF on Σ, we have W = F + C on Σ, where C ∈ R4. Let V be the
solution of the boundary value problem (3.20). It is clear that W−V solves
the boundary value problem (3.1) and it can be represented by a simple
layer potential in view of lemma 3.5.

We observe that the hypothesis <e τ > σε assures that the solution of
the first problem is unique as shown in [11], Theorem 3.1, p. 572.
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4 Third problem

In this section, we study the third boundary value problem of equations of
thermoelastic pseudo-oscillations (2.1) with boundary conditions (2.16):





B(∂x, ω) = 0, in Ω,
u = f on Σ,
∂ϑ

∂ν
= f4 on Σ,

(4.1)

where ω = iτ , < eτ > 0, f = (f1, f2, f3) ∈ [W 1,p(Σ)]3 and f4 ∈ Lp(Σ),
1 < p <∞, satisfies the condition

∫
Σ f4 dσ = 0.

First we prove the following results.

Lemma 4.1 The operator

S0 : [Lp(Σ)]3 −→ [Lp1(Σ)]3

defined as
S0kϕ = Rk(ϕ) + Tk(ϕ4) k = 1, 2, 3 (4.2)

where R is given by (3.6) and Tk are given by (3.11), can be reduced on the
left by

S′ : [Lp1(Σ)]3 −→ [Lp(Σ)]3

defined as

S′k(ψ) = R′0k(ψ), k = 1, 2, 3 (4.3)

where R′0k is given by (3.7).

Proof. We have that

S′S0(ψ)k = R′0(S0ψ)k = (R′0Rψ)k +R′Tk(ψ4)

and this is a Fredholm operator, as it follows from lemma 3.2 and from the
compactness of the operators Tk (3.11).

Lemma 4.2 Let ω be a complex constant. The singular integral operator

Sk : Lp(Σ) −→ Lp1(Σ), k = 1, 2, 3

given by

(Sϕ)k(x) =
4∑

j=1

∫

Σ
dx[Φkj(x− y, ω)]ϕj(y) dσy k = 1, 2, 3

can be reduced on the left by S′k : Lp1(Σ) −→ Lp(Σ) (k = 1, 2, 3) where S′k is
given by (4.3).
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Proof. Set

Sk = (Sk − (S0)k) + (S0)k, k = 1, 2, 3

we have that S′k reduces Sk. In fact

(S′S)k = S′k(Sk − (S0)k) + (S′S0)k, k = 1, 2, 3

is a Fredholm operator, because (S−S0)k is a compact operator as it follows
from the theorem 2.1.

Theorem 4.1 Let ω be a complex constant. Given f ∈ [W 1,p(Σ)]3, there
exists a solution of the singular integral system

4∑

j=1

∫

Σ
dx[Φkj(x− y, ω)]ϕj(y) dσy = dfk(x), k = 1, 2, 3

if, and only if, ∫

Σ
γi ∧ dfi = 0, i = 1, 2, 3 (4.4)

for any γ ∈ [Lq1(Σ)]3 solution of the homogeneous adjoint system:

S∗j γ(x) ≡
∫

Σ
γi(y) ∧ dy[Φij(y − x, ω)] = 0 a.e. x ∈ Σ (4.5)

j = 1, 2, 3.

Proof. Because of lemma 4.2 the range of Sk is closed in Lp1(Σ), and
we have the result.

Now we recall the following theorem proved in [4] for any number of
variables.

Theorem 4.2 For any g ∈ Lp(Σ) such that
∫

Σ g dσ = 0, the solution of
Neumann problem for Laplace equation

{
∆u = 0 in Ω,
∂u

∂ν
= g on Σ,

can be represented in the form of a double layer potential

u(x) = − 1
4π

∫

Σ
ψ(y)

[ ∂

∂νy

1
|x− y|

]
dσy, x ∈ Ω, (4.6)

with ψ ∈W 1,p(Σ).
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Let us remark that the proof of this theorem hinges on the following
identity:

J ′(dψ) = −g, (4.7)

where J ′ is the operator previously introduced in (3.3).
Now we give the main result of this section.

Theorem 4.3 Given F = (f, f4) ∈ [W 1,p(Σ)]3×Lp(Σ) such that
∫

Σ f4 dσ =
0, the solution of the problem (4.1), where ω = iτ , <e τ > σε and σε is
given by (3.15), does exist and can be represented by a mixed potential
(2.14) with density in [Lp(Σ)]3 ×W 1,p(Σ).

Proof. We seek a solution of (4.1) in the form of a mixed potential
(2.14): Y . According to definition of Y , we have that





Yk(x) =
4∑

i,j=1

∫

Σ
Φkj(x− y, ω)ϕj(y) dσy, k = 1, 2, 3,

Y4(x) =
4∑

j=1

∫

Σ

∂

∂νy
Φ4j(x− y, ω)ϕj(y) dσy.

(4.8)

For k = 1, 2, 3, imposing the boundary condition u = f in (4.8)1, we
have an integral system of the first kind and, taking the differential, we
obtain the following system of singular integral equations:

4∑

j=1

∫

Σ
dx[Φkj(x− y, ω)]ϕj(y) dσy = dfk(x), x ∈ Σ, k = 1, 2, 3.

Thus we have the equation:

(Sϕ)k = dfk, k = 1, 2, 3. (4.9)

It follows from lemma 4.2 that S′k reduces Sk. Therefore, from theorem 4.1
there exists a solution ϕ of (4.9) if, and only if, dfk satisfy the compatibility
conditions (4.4) for k = 1, 2, 3. The (4.4) are satisfied in view of theorem
3.2. The thesis follows like in the theorem 3.3.
With regard to the last component, we consider

Y4(x) = Y04(x) + (Y4(x)− Y04(x)),

where Y04 is given by

1
2π

∫

Σ

∂

∂νy

[ 1
|x− y|

]
ϕ4(y) dσy. (4.10)

In view of (4.7) and theorem 2.2, imposing the boundary condition (4.1)4

we obtain a Fredholm equation.
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5 Second and fourth problem

We consider the following representation theorem related to the traction
three-dimensional problem (5.2) of elasticity theory for an isotropic homo-
geneous body.

Theorem 5.1 For any f ∈ [Lp(Σ)]3, 1 < p <∞, such that
∫

Σ
f · (a+ b ∧ x)dσ = 0, ∀ a, b ∈ R3 (5.1)

any solution of the following boundary value problem
{
µ∆u+ (λ+ µ) grad div u = 0 in Ω,
Tu = f on Σ,

(5.2)

where T is given by (2.8), can be represented in the form of an elastic double
layer potential

w(x) =
∫

Σ
[T (∂y, ν)Γ(y − x)]′ϕ(y) dσy, (5.3)

with the density ϕ ∈ [W 1,p(Σ)]3. Moreover (5.3) is a solution of (5.2) if,
and only if, its density ϕ is given by

ϕ(x) =
∫

Σ
ψ(y)Γ(x, y) dσy, x ∈ Σ,

ψ ∈ [Lp(Σ)]3 being a solution of the singular integral equation

−ψ + V 2ψ = f

where V is given by

V ψ(x) =
∫

Σ
[T (∂y, ν)Γ(x, y)]′ψ(y) dσy.

This theorem is proved in [12].
Now we show the following representation’s theorem of second boundary

value problem (5.4) for system of thermoelastic pseudo-oscillations.

Theorem 5.2 Given (f, f4) ∈ [Lp(Σ)]3 ×W 1,p(Σ), 1 < p < ∞, such that
(5.1) are satisfied, the solution of the fourth boundary value problem





B(∂x, ω) = 0, in Ω,
PU = f on Σ,
ϑ = f4 on Σ

(5.4)

where ω = iτ , <e τ > σε, σε is given by (3.15) and P is the thermoelastic
stress (2.7), can be represented by a mixed potential (2.13) with density
ϕ ∈ [W 1,p(Σ)]3 × Lp(Σ).
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Proof. Let us seek a solution U = (u, ϑ) of (5.4) by means of a mixed
potential (2.13) Z. According to the definition of Z = (z, Z4) = (Z1, Z2, Z3, Z4),
we have for the components Zk(x), k = 1, 2, 3, 4

Zk(x) =
4∑

i,j=1

∫

Σ
P̃jiΦki(x− y, ω)ϕj(y) dσy.

Taking into account the definition of the operator P̃ (2.10) and the symme-
try property of Φki = Φik, when i, k = 1, 2, 3, we can write for k = 1, 2, 3, 4:

Zk(x) =
∫

Σ

3∑

i,j=1

P̃jiΦki(x− y, ω)ϕj(y) dσy +

+
∫

Σ

3∑

i=1

P̃4iΦki(x− y, ω)ϕ4(y) dσy +

+
∫

Σ

3∑

j=1

P̃j4Φk4(x− y, ω)ϕj(y) dσy +

+
∫

Σ
P̃44Φk4(x− y, ω)ϕ4(y) dσy =

=
∫

Σ

3∑

i,j

TjiΦik(x− y, ω)ϕj(y) dσy −

− iωη
∫

Σ

3∑

j=1

νjΦk4(x− y, ω)ϕj(y) dσy −

−
∫

Φk4(x− y, ω)ϕ4(y) dσy.

This expression is transformed as follows:

Zk(x) =
∫

Σ

3∑

i,j=1

TjiΦik(x− y)ϕj(y) dσy +

+
∫

Σ

3∑

i,j

Tji[Φik(x− y, ω)− Φik(x− y)]ϕj(y) dσy −

− iωη
∫

Σ
[

3∑

j=1

νjϕj(y) +
1
iωη

ϕ4(y)]Φk4(x− y, ω) dσy,

k = 1, 2, 3, 4. (5.5)

The first term of the right hand side for k = 1, 2, 3 is nothing else but the
component wk(x) of the (elastic) double layer potential (5.3). The second
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term, that we denote by Ek(x), is a compact operator as it follows from the
theorem 2.1. In the last term, which we denote by Lk(x), for k = 1, 2, 3, we
have that Φk4(x − y, ω) = O(1) ([11], p. 530). The last component Z4 is
equal to the fourth component V4 of the simple layer potential (2.11) plus
compact components.

Imposing the boundary conditions: PU = f , ϑ = f4 and taking into
account the definition of

PZ = Tz − γνZ4

we have from (5.5)
{
Twk + TEk + TLk − γνZ4 = fk k = 1, 2, 3
Z4 = f4.

Thus we obtain a Fredholm equation in view of theorem 5.1 and the previous
remarks on Ek, Lk and Z4.

Finally, we study the so-called second boundary value problem (5.6) of
thermoelastic pseudo-oscillation’s equations showing the following theorem.

Theorem 5.3 Given (f, f4) ∈ [Lp(Σ)]4,1 < p < ∞, such that (5.1) and∫
Σ f4 dσ = 0 are satisfied, the solution of the second boundary value problem





B(∂x, ω) = 0, in Ω,
PU = f on Σ,
∂ϑ

∂ν
= g on Σ.

(5.6)

where ω = iτ , <e τ > σε, σε is given by (3.15) and P is the thermoelas-
tic stress (2.7), can be represented by a double layer potential (2.12) with
density in the space [W 1,p(Σ)]4.

Proof. We want to represent a solution of this problem (5.6) by means
of a double layer potential (2.12) W . Taking into account the definition of
the operator R̃ (2.9) and the symmetry property of Φki = Φik, i, k = 1, 2, 3
we can write for k = 1, 2, 3, 4:

Wk(x) =
∫

Σ

3∑

i,j=1

R̃jiΦki(x− y, ω)ϕj(y) dσy +

+
∫

Σ

3∑

i=1

R̃4iΦki(x− y, ω)ϕ4(y) dσy +
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+
∫

Σ

3∑

j=1

R̃j4Φk4(x− y, ω)ϕj(y) dσy +

+
∫

Σ
R̃44Φk4(x− y, ω)ϕ4(y) dσy =

=
∫

Σ

3∑

i,j

TjiΦik(x− y, ω)ϕj(y) dσy −

− iωη
∫

Σ

3∑

j=1

νjΦk4(x− y, ω)ϕj(y) dσy +

+
∫

∂

∂ν

[
Φk4(x− y, ω)

]
ϕ4(y) dσy.

This expression is transformed as follows:

Wk(x) =
∫

Σ

3∑

i,j=1

TjiΦik(x− y)ϕj(y) dσy +

+
∫

Σ

3∑

i,j

Tji[Φik(x− y, ω)− Φik(x− y)]ϕj(y) dσy −

− iωη
∫

Σ

3∑

j=1

νjϕj(y)
[
Φk4(x− y, ω)− Φk4(x− y)

]
dσy −

− iωη
∫

Σ

3∑

j=1

νjϕj(y)Φk4(x− y) dσy +

+
∫

Σ

∂

∂ν

[
Φk4(x− y, ω)− Φk4(x− y)

]
ϕ4(y) dσy +

+
∫

Σ

∂

∂ν

[
Φk4(x− y)

]
ϕ4(y) dσy,

k = 1, 2, 3, 4.

Imposing the boundary condition PW = f ,
∂w4

∂ν
= f4 we obtain a

system of Fredholm equations in view of theorems 2.1, 2.2, 5.1, 4.2.

6 Representation theorems

In this section, we combine the classical representation theorems [11] with
the results obtained in this paper. This leads to show that the solutions of
each of the four basic boundary value problems (3.1), (4.1), (5.4), (5.6) can
be represented by any of the thermoelasto-potentials (2.11), (2.12), (2.13),
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(2.14). The space where the data are given has to be chosen according to
the used representation.

Theorem 6.1 The solution U of the first boundary value problem (3.1)
can be represented by:

1. a simple layer potential (2.11) with density in [Lp(Σ)]4 provided that
the data (f, g) is assumed to be in the space [W 1,p(Σ)]4, 1 < p <∞;

2. a double layer potential (2.12) with density in [Lp(Σ)]4 provided that
the data (f, g) is assumed to be in the space [Lp(Σ)]4, 1 < p <∞;

3. a mixed potential (2.14) with density in [Lp(Σ)]4 provided that the
data (f, g) is assumed to be in the space [W 1,p(Σ)]3×Lp(Σ), 1 < p <
∞;

4. a mixed potential (2.13) with density in [Lp(Σ)]4 provided that the
data (f, g) is assumed to be in the space W 1,p(Σ)× [Lp(Σ)]3, 1 < p <
∞.

Proof. The first statement is proved in § 3. The second one is consid-
ered in [11]. If (f, g) ∈ [W 1,p(Σ)]3 × Lp(Σ) we can represent a solution of
(3.1) in the form of mixed potential (2.14):





Yk(x) =
4∑

i,j=1

∫

Σ
Φkj(x− y, ω)ϕj(y) dσy, k = 1, 2, 3,

Y4(x) =
4∑

j=1

∫

Σ

∂

∂νy
Φ4j(x− y, ω)ϕj(y) dσy.

For k = 1, 2, 3 we proceed as in theorem 4.3 and for the last component we
apply the classical method [11]. Finally, if (f, g) ∈ W 1,p(Σ) × [Lp(Σ)]3 we
can represent a solution of (3.1) in the form of mixed potential (2.13):

Zk(x) =
4∑

i,j=1

∫

Σ
P̃jiΦki(x− y, ω)ϕj(y) dσy.

In fact, we apply the classical method [11] to the first three components of
Zk, and the method used in theorem 5.2 to the last component of Z4.

The following results corresponding to the boundary value problems
(5.6), (4.1) and (5.4) can be proved arguing as in theorem 6.1.

Theorem 6.2 The solution U of the second boundary value problem (5.6)
can be represented by:
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1. a simple layer potential (2.11) with density in [Lp(Σ)]4 if the data
(f, g) is assumed to be in the space [Lp(Σ)]4, 1 < p <∞;

2. a double layer potential (2.12) with density in [W 1,p(Σ)]4 if the data
(f, g) is assumed to be in the space [Lp(Σ)]4, 1 < p <∞;

3. a mixed potential (2.14) with density in [W 1,p(Σ)]3×Lp(Σ) if the data
(f, g) is assumed to be in the space [Lp(Σ)]4, 1 < p <∞;

4. a mixed potential (2.13) with density in W 1,p(Σ)×[Lp(Σ)]3 if the data
(f, g) is assumed to be in the space [Lp(Σ)]4, 1 < p <∞.

Theorem 6.3 The solution U of the third boundary value problem (4.1)
can be represented by:

1. a simple layer potential (2.11) with density in [Lp(Σ)]4 if the data
(f, g) is assumed to be in the space [W 1,p(Σ)]3 × Lp(Σ), 1 < p <∞;

2. a double layer potential (2.12) with density in [Lp(Σ)]3 ×W 1,p(Σ) if
the data (f, g) is assumed to be in the space [Lp(Σ)]4, 1 < p <∞;

3. a mixed potential (2.14) with density in [Lp(Σ)]3×W 1,p(Σ) if the data
(f, g) is assumed to be in the space [W 1,p(Σ)]3 × Lp(Σ), 1 < p <∞;

4. a mixed potential (2.13) with density in [Lp(Σ)]4 if the data (f, g) is
assumed to be in the space [Lp(Σ)]4, 1 < p <∞.

Theorem 6.4 The solution U of the fourth boundary value problem (5.4)
can be represented by:

1. a simple layer potential (2.11) with density in [Lp(Σ)]4 if the data
(f, g) is assumed to be in the space [Lp(Σ)]3 ×W 1,p(Σ), 1 < p <∞;

2. a double layer potential (2.12) with density in [W 1,p(Σ)]3 × Lp(Σ) if
the data (f, g) is assumed to be in the space [Lp(Σ)]4, 1 < p <∞;

3. a mixed potential (2.14) with density in [Lp(Σ)]4 if the data (f, g) is
assumed to be in the space [L1,p(Σ)]4, 1 < p <∞;

4. a mixed potential (2.13) with density in [W 1,p(Σ)]3×Lp(Σ) if the data
(f, g) is assumed to be in the space [Lp(Σ)]3 ×W 1,p(Σ), 1 < p <∞.
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