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Abstract

In this paper the Saint-Venants problems for the homogeneous isotropic two-

layered elliptic tube and for the composed isotropic elliptic tube with an anisotropic

kernel are studied.
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Introduction

Many works are dedicated to the Saint-Venants (S-V) problem for the cylin-
drical (prismatic) bodies with several cross-sections and variable elastic
constants [1,2,3,7,9,11,12,13,15,16,17,19], including nonlinear cases [8].

It would be interesting to consider the (S-V) problems for the elliptic
tubes. By means of this problem, a problem of crack for the body with an
elliptic split may be investigated.

The torsion’s function for the homogeneous isotropic elliptic tube was
constructed by A. G. Greenhill [14] (this article is quoted from the book
[14], p. 335). The solution to the problem of bending of an elliptic
tube by the shear force is obtained by A. Love [14]. The torsion prob-
lem for elliptic beams and tube is considered in [11,15]. The bibliography
of the papers, concerning to the indicated problems are given in the books
[1,3,12,14,15,17,19]. The Saint-Venant principle for the composed bodies is
studied in the article [20].

It should be noted that the results for the elliptic tube, given in the
above mentioned works, are difficult for the calculations of a torsion’s rigid-
ity, displacement and stress in the case of an elliptic tube.

In this article the S-V problem for the homogeneous or composed two-
layered elliptic tube is solved by means of the Faber’s polynomials.
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These problems have not been considered yet. The Faber’s polynomials
for the simply-connected area was introduced by G. Faber in 1903 [6]. The
further generalization of the Faber’s polynomials are given in the works of
many researchers.

Some of these works are given in the references of [4,5]. The detailed
review of the works on the Faber’s polynomials is given in the monography
of P. Suetin [18].

1. Basic Equations

Let us consider an elliptic tube composed of the different elastic materials
(obey Hook’s law) occupying the cylindrical domain Ω = Ω0 +Ω1 +Ω2 (the
domain Ω occupies an anisotropic kernel). We assume that this materials
are glued at each other without cracks.

Consider the cartesian coordinates system Ox1x2x3 at the end of the
cylindrical body. Each of the domains Ω1 and Ω2 of the two-layered elliptic
tube are bounded by two planes

x3 = 0, x3 = l (l > 0) (1.1)

and by the elliptic surfaces Γ0, Γ1 and Γ1,Γ2, respectively. The cross-section
of these surfaces are the ellipses γe, (e = 0, 1, 2), given by the equations

(x1)γe = ae cos θ, (x2)γe = be sin θ, (1.2)
(0 ≤ θ ≤ 2π, ae > be, ae+1 > ae; e = 0, 1, 2), (1.3)

where ae and be are semi-axes of the ellipses γe.
A cross-section of the domain Ωm enclosed between the surfaces Γm and

Γm−1 is denoted by ωm, which is bounded by the ellipses γm and γm−1.
Let us consider an element of a lateral of the elliptic cylindrical body

with the outwards normal n(n1, n2)

(n1 + in2)γe = Θ−1
e (bj cos θ + iae sin θ),

(x2n1 − x1n2)γe = − c2

2Θe
sin 2θ, (1.4)

Θe =
√

a2
e sin2 θ + b2

e cos2 θ,

where i2 = −1.
While considering an elliptic tube composed by two different materials,

occupying the domains Ω1 and Ω2 bounded by the planes (1) and the
elliptic surfaces Γ0, Γ1 and Γ1, Γ2, respectively, it will be proposed that this
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materials are glued to each other without a split along the surface Γ1 (an
interface). Cross-section of such composed tube will be represented as two
confocal elliptic rings ω1 and ω2 bounded by the confocal ellipses γ0, γ1 and
γ1, γ2 (see equalities (2)) glued together along an ellipse γ1 (an interface).

In the problem of torsion there will be also considered the two-layer
isotropic elliptic tube strengthened by an anisotropic elliptic shift, occupy-
ing an elliptic domain Ω0 bounded by the planes (1) and the surface Γ0

and glued with the indicated tubes along the surface Γ0. Cross-section of
the domain Ω0 will be the solid elliptic domain ω0 bounded by the ellipse
γ0 with semi-axis a0 and b0. It will be noted that an interface of adjacent
domains ωe and ωe+1 of the composed elliptic domains will be the ellipse
γe. An interface of the adjacent domains ωe and ωe+1 of the composed
elliptic ring is the ellipse γe.

Some auxiliary relationships for the isotropic and anisotropic media,
which we will use in the sequel are given below

a) The isotropic medium.
In this case the torsion function fj and the bending functions F

(j)
k (in

bending of cantilever) are the solutions of the following boundary value
problems [4,5,6]:

∆fj = 0, ∆F
(j)
k = 0, (1.5)

in each of the domain ωj of the cross-section we have

(Dnfj)e = (hj)e, (DnF
(j)
k )e = (H(j)

k )e, (1.6)

At the points of an exterior boundaries γe of the domains ωj we have

[µDnf ]e − [µDnf ]e+1 = [µh]e − [µh]e+1,

[µDnFk]e − [µDnFk]e+1 = [µHk]e − [µHk]e+1, (1.7)
[f ]e = [f ]e+1, [Fk]e = [Fk]e+1,

where the symbol [ ]m denotes the limiting values of the expressions in the
brackets taken from the domains ωm and ωm+1, respectively. The operators
∆, Dn and the functions h,H are given by

∆ = D2
1 + D2

2, Dn = n1D1 + n2D2,

Dj =
∂

∂xj
. h = x2n1 − x1n2, (1.8)

Hk =
1
2
[(2 + ν)x2

k − νx2
3−k]nk + νx1x2n3−k,

where µ = E[2(1 + ν)]−1 is the modulus of rigidity, ν is the Poison’s ratio
and E is the modulus of elasticity.
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For the elliptic tube, cross-section of which is an elliptic ring, bounded
by the confocal ellipses (with a2

j − b2
j = c2, where 2c is the focal length), we

will use the following formulas

t1 = z + w, t2 = z − w, w =
√

z2 − c2, (1.9)
t1t2 = c2, pe = ae + be, qe = ae − be, (1.10)

(t1)γe = pe exp(iθ), (t2)γe = qe exp(−iθ), (1.11)
2(w)γe = 2(be cos θ + iae sin θ)

= pe exp(iθ)− qe exp(−iθ), (1.12)
D1tj = −(−1)jw−1tj , D2tj = −i(−1)jw−1tj , (1.13)

lim
z→∞ z−1w = 1 (j = 1, 2). (1.14)

b) The anisotropic medium.
In this case we will consider only the homogeneous body and the tor-

sion’s problem.As it is known from ([2,3]), the torsion’s function f∗ satisfies
the following boundary condition:

∆∗f∗ = 0, (1.15)

in the domain ω0, and
(D∗

nf∗)j = (h∗)j , (1.16)

at the each point of the ellipse γ0, where

∆∗ = A55D
2
1 + 2A45D1D2 + A44D

2
2,

D∗
n = n1(A55D1 + A45D2) + n2(A45D1 + A44D2), (1.17)

h∗ = h∗1n1 + h∗2n2, h∗1 = A55x2 −A45x1, h∗2 = A45x2 −A44x1,

Ajk = Akj are the coefficients of the stiffness in the Hook’s low.
Let us consider the characteristic equation of the equation (9)

A44v
2 + 2A45v + A55 = 0 (A2 = A44A55 −A2

45 > 0). (1.18)

The complex root of this equation is

v∗ = A−1
44 (iA−A45) (i2 = −1). (1.19)

Let us introduce the complex variable z∗ = x1 + v∗x2, by means of which,
for the solid elliptic domain ω0, bounded by the ellipse γ0 with the semi-axis
a0 and b0, will be used the expressions

t∗1 = (a0 − iv∗b0)−1(z∗ + w∗0),
t∗2 = (a0 − iv∗b0)−1(z∗ + w∗0),
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w∗j = (z2
∗ − a2

j − v2
∗b

2
j )

0.5, (w∗j )γj

= i(aj sin θ − v∗bj cos θ), (t∗1)γ0 =exp iθ,

(t∗2)γ0 = λ0exp(−iθ), λj =
aj + iv∗bj

aj − iv∗bj

(|λj | < 1; 0 ≤ θ ≤ 2π), lim
z∗→∞

(z−1
∗ w∗j ) = 1. (1.20)

Below are given the well-known formulas [2,4,5], which will be used for
the isotropic as well as for the anisotropic bodies.

At first for the construction of the “ends conditions” of the cylindrical
bodies in the S-V problems, let us introduce the notations for the projec-
tions on axis Oxj (j=1,2,3) of the resultant forces by P (P1, P2, P3) and of
the resultant moments by M(M1,M2, M3), obtained due to the action of
the exterior forces. Therefore, components of the stresses τjk in the each
cross-section ω (with the outward normal n(0, 0, +1)) of the body must
satisfy the following equalities:

∫ ∫

ω
τj3dω = Pj (j = 1, 2, 3);

∫ ∫

ω
(x2τ33 − x3τ23)dω = M1, (1.21)

∫ ∫

ω
(x3τ13 − x1τ33)dω = M2,

∫ ∫

ω
(x1τ23 − x2τ13)dω = M3. (1.22)

For the homogeneous cylindrical body with the cross-section ω, bounded
by the curve γ, we have

∫ ∫

ω
τj3dω =

∫

γ
xjτn3dγ +

∫ ∫

ω
xjD3τ33dω (j = 1, 2). (1.23)

For the composed cylindrical body with the cross-section ω = ω0 +ω1 +
ω2, bounded by the external curve ω2 and the interfaces ω0 and ω1, we have

∫ ∫

ω
τj3dω =

∫

γ2

xjτn3dω +
∑

k=0,1

∫

γk

xj{[τn3]k − [τn3]k+1}dγ +

+
∫ ∫

ω
xjD3τ33dω (j = 1, 2), (1.24)

where
τnj = τ1jn1 + τ2jn2 + τ3jn3 (j = 1, 2, 3) (1.25)

are the projections on the axis Oxj of the vector of the stresses τn(τn1, τn2, τn3).
In addition, we must remark that in the problems, which we consider,

it is proposed that the lateral surface of the cylindrical body is free from
the acting of the exterior forces. Also for the composed beam, it is neces-
sary to fulfill the conditions of continuity of the displacement vectors and
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stresses which cross the interfaces from the adjoint domains. Therefore, the
following boundary-contact conditions are necessary:

τnj = 0 (j = 1, 2, 3) (1.26)

on the exterior lateral surface and

[uj ]e = [uj ]e+1], [τnj ]e = [τnj ]e+1 (j = 1, 2, 3), (1.27)

on the interface between the domains Ωe and Ωe+1.
It is obvious that the components of the stresses on each of the domains

Ωk must satisfy the equations of equilibrium (when the body forces are
absent)

D1τ1j + D2τ2j + D3τ3j = 0 (J = 1, 2, 3). (1.28)

It is well-known that the potential energy W of an elastic body occu-
pying the domain Ω bounded with the surface ω under the action of the
surface force τn(τn1, τn2, τn3) and of the body force Ψ(Ψ1, Ψ2, Ψ3) will be
given by

2W =
3∑

j=1

[ ∫ ∫ ∫

Ω
ΨjujdΩ +

∫ ∫

ω
τnjujdω

]
> 0, (1.29)

where uj are the components of the displacements.
Now let us begin solution of the problems.

2. Extension by the Longitudinal Force and the
Bending Due to Couples of Forces

Let us consider the deformation of the homogeneous elliptic tube, occupying
the domain Ω1 bounded by the planes (1.1) and the elliptic surfaces (1.2),
when cross-section of these surfaces

Γ0 = 0, Γ1 = 0 (2.1)

is the confocal ring ω1, bounded by two confocal ellipses γj (j = 0, 1) (see
(1.3))

(x1)j = aj cos θ, (x2)j = bj sin θ (j = 0, 1; 0 ≤ θ ≤ 2π) (2.2)

with the focal length 2c.
It is proposed that the lateral surfaces (1) are free of acting of exterior

forces. A system of the forces applied to the “upper” and “base” x3 = l of
the body statically is equivalent to the one force φ3 producing the extension
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acting parallel to the axis Ox3, and to two couples of forces producing the
flexures of the body in the planes Ox2x3 and Ox1x3 by the moments M1

and M2, respectively.
The corresponding components of the stresses and the displacements

for this problem in the domain Ω1 will be given as [1,4,5,6]

τj1 = τj2 = τj3 = 0, τ33 = Em

3∑

e=1

Cex
(e)); (2.3)

uj = −
3∑

e=1

Ceg
(e)
j − 1

2
Cjx

2
3, u3 = x3

3∑

e=1

Cex
(e), (2.4)

(j = 1, 2; x(1) = x1, x(2) = x2, x(3) = 1), (2.5)

where m = 1, the constants Cj will be determined and the functions g
(j)
e

are given by the equalities

2g
(j)
j = (−1)jν(x2

2 − x2
1), g

(3)
j = νxj , (2.6)

g
(2)
1 = g

(1)
2 = νx1x2 (j = 1, 2). (2.7)

It is obvious that after substituting the expressions (3) in the condi-
tions (1.15), the first two and sixth equations of these conditions will be
satisfied identically and, from the other equations for the determination of
the coefficients Cj , the following algebraic equations are obtained

C1J
(1)
1j + C2J

(1)
2j + C3J

(1)
3j = Nj (j = 1, 2, 3), (2.8)

where

J
(m)
jk =

∫ ∫

ω
Emx(j)x(k)dω (m = 1, 2; j, k = 1, 2, 3); (2.9)

N1 = −M2, N2 = M1, N3 = P3. (2.10)

As the origin and axis Ox1 and Ox2 of the system Ox1x2x3 coincide with
the center and the semi-axis of the elliptic domains respectively, from (6)
follows

Cj = Nj [J
(1)
jj ]−1 (j = 1, 2, 3; J13 = J23 = J12 = 0), (2.11)

where

4J
(1)
11 = πE1(a3

1b1 − a3
0b0), (2.12)

4J
(1)
22 = πE1(a1b

3
1 − a0b

3
0), J

(1)
33 = πE1(a1b1 − a0b0). (2.13)
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Now we consider the elliptic tube composed by two isotropic elastic ma-
terials, occupying the domains Ω1 and Ω2, respectively. It will be proposed
that the different materials has identical Poisson’s ratio (ν1 = ν2) and the
different elastic modulus (E1 6= E2).

The domain Ω1 + Ω2 of such composed body will be bounded by the
planes (1.1) and by the elliptic surfaces Γ0, Γ1 and Γ2, given by the equal-
ities (1.2) and (1.3), where Γ0 is the interior boundary, Γ2 is the exterior
boundary and Γ1 is an interface, i.e., the border of the different materials.
At the points of the surfaces Γj the boundary-contact conditions (1.20) and
(1.21) must be satisfied. As it is seen from (4), taking constants Cj with
the same values in each domain, the components of the displacements will
be continuous at the crossing of the interface Γ1 from Ω1 to Ω2.

In this case solution of the problems in each of the domains Ωj will be
represented in the form (3)–(4), in which, for each of the domain Ω1 and
Ω2, modulus of elasticity E reaches the values E1 and E2, respectively. It is
obvious that all boundary-contact conditions are fulfilled and from (1.16),
where P1 = P2 = M3 = 0, for the coefficients Cj of the composed tube we
get

Cj = J−1
jj Nj (j = 1, 2, 3), Jjj = J

(1)
jj + J

(2)
jj , (2.14)

where Nj and J
(m)
jj are determined by the equalities (6) and Jjj , for this

composed elliptic tube, will be given as

4J11 = π[E1(a3
1b1 − a3

0b0) + E2(a3
2b2 − a3

1b1)],
4J22 = π[E1(a1b

3
1 − a0b

3
0) + E2(a2b

3
2 − a1b

3
1)], (2.15)

J33 = π[E1(a1b1 − a0b0) + E2(a2b2 − a1b1)].

3. A Torsion of a Two-Layer Isotropic Elliptic
Tube with an Anisotropic Kernel

Let us consider the two-layer tube, bounded by the planes (1.1) and the
elliptic surfaces.The three-dimensional domains occupied by jointly glued
layers will be denoted by Ω1 and Ω2 respectively. A normal cross-section
of this tube will be the domain composed by two isotropic layers (with the
different physical characteristics), occupying the elliptic rings ω1 and ω2,
bounded with the confocal ellipses γ0, γ1 and γ1, γ2, respectively, given by
the equalities (1.3).

It is obvious that the rings ω1and ω2 will be glued along the ellipse
γ1 (interface) , a2

j − b2
j = c2, where aj , bj are semi-axis of the ellipses γj

(see (1.3)) and 2c is a focal length of this ellipses. Let us suppose that the
composed isotropic elliptic tube is strengthened by the solid elliptic shaft,
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made from an anisotropic material. At an in each point there passes by a
plane of an elastic symmetry perpendicular to the axis Ox3. It is assumed
that an elliptic shaft, occupying a simple connected domain Ω0, is bounded
by the planes (1.1) and the surface Γ1, along which a shaft is glued with
the composed elliptic tube. The cross-section of the domain Ω0, denoted
by ω0, will be glued with the composed two-layered isotropic planar elliptic
ring along the ellipse γ0.

Thus, there will be considered a beam, composed by two isotropic and
one anisotropic materials, occupying the composed domain Ω = Ω0 + Ω1 +
Ω2, cross-section of which will be the composed planar elliptic domain ω =
ω0 + ω1 + ω2.

We now consider the torsion’s problem for the indicated composed el-
liptic bar, when the exterior forces, acting at its ends, statistically are
equivalent to the couple of forces twisting the bar by the moment M3. The
components of the displacements and the stresses in each of the domains
Ωj (j = 0, 1, 2) will be given by [3,4,5]

(u1)j = −Gx2x3, (u2)j = Gx1x3, (u3)j = Gfj(x1, x2). (3.1)

The corresponding components of the stresses in the isotropic domains
Ωj (j = 1, 2) and in the anisotropic domain Ω0 are of the form

(τ13)j = Gµj(D1fj − x2), (τ23)j = Gµj(D2fj + x1) (j = 1, 2), (3.2)

uj(D1(τ∗13)0 = G[A55(D1f
∗
0 − x2) + A45(D2f

∗
0 + x1)], (3.3)

(τ∗23)0 = G[A45(D1f
∗
0 − x2) + A44(D2f

∗
0 + x2). (3.4)

All the other components of the stresses τjk are equal to zero.
Substituting the expressions (1)–(3) in equations (1.20) and (1.21),

where (1.20) must be fulfilled on γ2 and (1.21) must be fulfilled on γ0 and
γ1 (see (1.3)), for the functions f1, f2 and f∗0 , we obtain the boundary-value
problems (1.9)–(1.11).

We seek the functions fJ and f∗0 , satisfying conditions 10 − 30, in the
form

fj ≡ <Φj(z) = <
[ ic2

2
(m(j)

1 t21 + m
(j)
2 t22)

]
(j = 1, 2) (3.5)

f∗0 ≡ <Φ∗(z∗) = c2<[m0(t∗21 + t∗22 )], (3.6)

where 2c is a focal length, variables tj and t∗j are given by the equalities

(1.9) and (1.15) and complex coefficients m0 and m
(j)
k will be determined.
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Taking into account equalities (1.8) and (1.12) and expressions (4), we
obtain [1,2,5]

(Dnfk)γj = {<[(n1 + in2)Φ′k(z)]}γj
(j = 0, 1, 2; k = 1, 2), (3.7)

(D∗
nf∗0 )γ0 = A{<[i(n2 − v∗n1)Φ′∗(z∗)]}γ0

. (3.8)

These values are obtained by using the expression (1.4) and the equalities

A55 + v∗A45 = −iAv∗, A45 + v∗A44 = iA,

d

dz
Φ(z) = Φ′(z),

d

dz∗
Φ∗(z∗) = Φ′∗(z∗).

It is easy to show that the functions h and h∗ from (1.7) on the ellipses
γj take the following values:

4(h)j = ic2Θ−1
j [exp(2iθ)− exp(−2iθ)] (j = 1, 2),

4(h∗)0 = iΘ−1
0 [(A44a

2
0 −A55b

2
0) exp(2iθ)

−(A44a
2
0 −A55b

2
0 + 2A45a0b0) exp(−2iθ)] (3.9)

(0 ≤ θ ≤ 2π).

Taking into account the expressions (1.4)-(1.15), (1.20), (1.21), (6), (7)
and substituting the expressions (5) into the boundary-contact conditions
(1.6), (1.7), (1.11), (1.12) and (4), after some elementary calculation, we
obtain the following equations for the coefficients m0,m

(j)
1 and m

(j)
2 from

(5):

2(m(2)
1 p2

2 −m
(2)
2 q2

2) = i, (m(1)
1 −m

(2)
1 )p2

1 + (m(1)
1 −m

(2)
2 )q2

1 = 0,

2[(β1m
(1)
1 − β2m

(2)
1 )p2

1 − (β1m
(1)
2 − β2m

(2)
2 )q2

1 = i(β1 − β2),

m0 + λ2m0 −m
(1)
1 p2

0 −−m
(1)
2 q2

0 = 0, (3.10)

2c2[β0(m0 − λ2m0)− β1(m
(1)p2

0
1 −m

(1)
2 q2

0)]
= i(A44a

2
0 −A55b

2
0)− 2A45a0b0 − ic2β1,

where
β0 ≡ A =

√
A44A55 −A2

45, β1 ≡ µ1, β2 ≡ µ2. (3.11)

The barred expression M denotes the complex conjugate value of M .
After the simple transformation, the equations (8) reduce to the follow-

ing three equations:

2β1p
2
1p

2
2m

(1)
1 + (β2Q21 − β1P21m

(2)
2 ) = T ∗1 , (3.12)

p2
2q

2
1(m0 + λ2m0) + p2

2Q10m
(1)
1 − q2

0P21m
(2)
2 = T ∗2 , (3.13)

β0p
2
2q

2
1(m0 − λ2m0) + β1p

2
2Q01m

(1)
1 + β2q

2
0Q12m

(2)
2 = T3, (3.14)
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where

Pjk = p2
jq

2
k + p2

kq
2
j , Qjk = p2

jq
2
k − p2

kq
2
j . (3.15)

2iT ∗1 = (β2 − β1)p2
2 − p2

1, 2iT ∗2 = −p2
1q

2
0, (3.16)

2iT3 = (β2 − β1)p2
2q

2
0 − β2p

2
1q

2
0 + (3.17)

+p2
2q

2
1c
−2(A55b

2
0 −A44a

2
0 + 2A45a0b0 + µ1). (3.18)

From (10) we obtain the following equations with respect to m0 and
m

(2)
2 :

2β1p
2
1q

2
1p

2
2(m0 + λ2m0)−B1m

(2)
2 = T1, (3.19)

2β0p
2
1q

2
1p

2
2(m0 − λ2m0) + B2m

(2)
2 = T2, (3.20)

where

B1 = β2Q21Q20 + β1P12P10 > 0, (3.21)
B2 = β2Q21P10 + β1P21Q10 > 0, (3.22)
T1 = 2β1p

2
1T

∗
2 −Q20T

∗
1 , (3.23)

T2 = 2p2
1T3 −Q10T

∗
1 . (3.24)

For the solution of the system (12) let us introduce the denotations

R1 = (β1B2 − β0B1)(β1B2 + β0B1)−1, (3.25)
R2 = (B2T1 + B − 1T2)[2p2

1p
2
2q

2
1(β1B2 + β0B − 1)]−1. (3.26)

It is obvious that

|β1B2 + β0B1| > 0, 0 < |R1| < 1. (3.27)

From the equation (12) we obtain

m0 = ∆−1
∗ (R2 − λR1R2), (3.28)

where
|λ| < 1, ∆∗ = 1− |λ|4|R1|2 > 0. (3.29)

Thus, from the equations (12), (10) and (8), all the coefficients m
(2)
2 , m

(1)
1 ,

m
(1)
2 and m

(2)
1 will be determined directly.

In this case, in the conditions (1.16), P1 = P2 = P3 = M1 = M2 = 0 and
M3 6= 0 is the given number. It is easy to show that, by using the formulas
(1.17) and (1.18), the first five equations will be satisfied identically and for
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the fulfillment of the sixth equation, from (1.16) the constant G in (1)–(2)
must be taken as

G = M3(G∗)−1, G∗ = G∗
1 + G∗

2, (3.30)

G∗
1 =

∑

j=1,2

∫ ∫

ωj

µj(x2
1 + x2

2 + x1D2fj − x2D1fj)dωj > 0; (3.31)

G∗
2 =

∫ ∫

ω0

[A44(D2f0 + x1)2 + A55(D1f0 − x2)2 (3.32)

+2A45(D2f0 + x1)(D1f0 − x1)]dω0 > 0 (3.33)

(A44A55 −A2
45 > 0). (3.34)

Having the expressions of the coefficients m0 and m
(j)
k and substituting

their values in the formulas (5), we can calculate the expressions of the
functions fj and f∗0 and the expressions (18) in the explicit form.

To solve the bending problem, the solutions of the torsion’s problem for
the homogeneous and composed elliptic tubes will be considered.

At first we consider the case when the anisotropic kernel is absent, i.e.,
the problem of the torsion of a two -layered isotropic elliptic tube will be
considered. The torsion functions fj in the domains Ωj (j = 1, 2) will be
represented by the expressions (5) and for the coefficients m

(j)
k we have the

following equations:

2(m(1)
1 p2

0 + m
(1)
2 q2

0) = 1, 2(m(2)
1 p2

2 + m
(2)
2 q2

2) = 1,

m
(1)
1 p2

1 −m
(1)
2 q2

1 −m
(2)
1 p2

1 + m
(2)
2 q2

1 = 0, (3.35)

2µ1(m
(1)
1 p2

1 + m
(1)
2 q2

1)− 2µ2(m
(2)
1 p2

1 −m
(2)
2 q2

1) = µ1 − µ2.

It is easy to show that the solution of these equations will be given in the
form [2]

m
(1)
1 = (2q2

2B∗)
−1{µ2[p2

2(q
2
2 − q2

0)(q
4
2 − q4

1) (3.36)
+q2

0(p
2
1 − p2

2)(q
4
1 + q4

2)] + µ1p
2
1(q

4
1 − q4

0)(q
2
2 − q2

0) } (3.37)

m
(2)
1 = (2q2

0B∗)
−1[µ1(p2

1 − p2
0)(q

4
1 − q4

0)(q
2
2 − q2

0) (3.38)
−µ2p

2
1(q

4
0 + q4

1)(q
2
2 − q2

1)], (3.39)

where

B∗ = p2
0p

2
2[µ1(q4

1 − q4
0) + µ2(q4

2 − q4
1)] + q2

0q
2
2[µ1(p4

0 − p4
1) +

+µ2(p4
1 − p4

2)] < 0. (3.40)
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From (19) we obtain

m
(1)
2 = (2q2

0)
−1 −m

(1)
1 p2

0q
−2
0 , m

(2)
2 = (2q2

2)−1−m
(2)
1 p2

2q
−2
2 . (3.41)

Let us consider the homogeneous elliptic tube, occupying the domain
Ω1, bounded by the planes (1.1) and the confocal elliptic cylindrical surfaces
Γ0 and Γ1, cross-section of which will be the elliptic ring ω1 bounded by
two confocal ellipses γ0 and γ1, given by the equalities (1.3).

The solution of the torsion’s problem for such tube in the domain Ω1

is given in the form (1)–(2) for j = 1, where the torsion’s function f1

is represented by the formula (5), and the function f1(z) must satisfy the
boundary conditions (6) for j = 0 and j = 1 on the ellipses γ0 and γ1. From
these conditions, for the coefficients m

(1)
j ≡ mj , we obtain the equations [2]

2(m1p
2
j + m2q

2
j ) = 1 (j = 0, 1), (3.42)

(3.22) implies

2m1 = m−1(q2
1 − q2

00, 2m2 = m−1(p2
0 − p2

1), m = p2
0q

2
1 − p2

1q
2
0 6= 0. (3.43)

Substituting the values of these coefficients in the expression of the
function f1(z), given by the formula (5), we obtain

f1 = <[ig(t21 + ht22)] = −g=(t21 + ht22), (3.44)
4g = c2[(a0 + b0)2 + (a1 + b1)2]

−1, h = (a1 + b1)2(a0 − b0)−2.(3.45)

Let us represent this function by means of the cartesian coordinates xj .
According to (1.9), we have

t21 = 2z2 − c2 + [z2(z2 − c2)]0.5, t22 = 2z2 − c2 − 2[z2(z2 − c2)]0.5,

At first it should be calculated the expression

=(w1 + iw2)0.5 = =[z2(z2 − c2)]0.5, (3.46)

where

w1 = (x2
1 − x2

2)(x
2
1 − x2

2 − c2)− 4x2
1x

2
2, (3.47)

w2 = 2x2
1x− 22[2(x2

1 − x2
2)− c2]. (3.48)

Now we will represent (26) in the trigonometric form z2(z2 − c2) =
ρ exp(iφ) by means of the expression sin(2−1arctg u) = u[u2+(1+

√
(1 + u2))2]0.5.

After the elementary calculations we obtain

=[z2(z2 − c2)]0.5 = 2−1
√

2
√

(ρ− w1), ρ = (w2
1 + w2

2)
0.5
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and the function f1 will be written in the form

f1 = −4g(1 + h)x1x2 − 2−1
√

2g(1− 2h)
√

(ρ− w1). (3.49)

From the equalities (18), for the homogeneous isotropic elliptic tube, follows

GB1 = M3, (3.50)

B1 =
∫ ∫

ω1

[(D2f0 + x1)2+(D1f0 − x2)2]dω=B∗
1 +B∗∗

1 >0,(3.51)

B∗∗
1 =

∫ ∫

ω1

(x2
1 + x2

2)dω, (3.52)

B∗
1 =

∫ ∫

ω1

(x1D2f1 − x2D1f1)dω, (3.53)

where B1 is a torsional rigidity.
Thus, the solution for the shift with the split along the line segment of

the focuses (−c,+c) is obtained. This allow us to calculate the intensity of
the stresses in the effective form for the crack’s problem.

4. Bending of a Cantilever Under a Transverse
Force

Let it be assumed that the external forces applied to the end of the ho-
mogeneous elliptic tube, if z = l, are equivalent to two bending forces P1

and P2, parallel to the axis Ox1 and Ox2, respectively, and applied at the
point (x0

1, x
0
2, l), where (x0

1, x
0
2) is an arbitrary point of the planar domain

ω1. It is obvious that these forces with respect to the indicated axes create
the moments M1 = P2l and M2 = −P1l, respectively. Therefore, for the
equilibrium of the part of the cylinder enclosed between the planes x3 = x0

3

and x3 = l, where x0
3 is an arbitrary number from the interval 0 ≤ x0

3 < l,
it will be sufficient to require that the components of the stresses τek in
each cross-section x3 = x0

3 of the body satisfy the conditions (1.15), where
we mean

P3 = M3 = 0, P1 6= 0, P2 6= 0, M1 = P2l, M2 = −P1l. (∗)

Analogously to §2, we assume that the origin and the axis Ox1 and Ox2

of the system of the coordinates Ox1x2x3 coincide with the center and the
principal axis of the inertia of the domain ω0 - of an “under” base (x3 = 0)
of the tube.

The solution to this problem, components of the displacements ue and
the stresses τmk, are given in the books [4,5,6]. We will represent the
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indicated values in the elementary modified form [1]:

(ue)j =
{
(l − x3)(C1g

(l)
e ) + C2g

(2)
e +

l

2
Cex

2
3 −

1
6
Cex

3
3 (4.1)

+G(−1)ex3−ex3

}
e

(4.2)

(e = 1, 2),

(u3)j =
{
−

[
x3

(
l − 1

2
x3

)
(Clx1 + C2x2)− C1F1 − C2F2 (4.3)

+
1
3
(C1x

3
1 + C2x

3
2)−Gf1

]}
j
, (4.4)

(τe3)j =
{
µ[De(C1F1 + C2F2 + Gf1) (4.5)

−Cex
2
e − Clg

(1)
e − C2g

(2)
e + G(−1)ex3−e]

}
j
, (4.6)

(τ33)j = {(x3 − l)(Clx1 + C2x2)}j (e = 1, 2), (4.7)

where g
(k)
e are given by the equalities (2.4) and the constants Ce, G will be

determined. Here the components ue and τek are supplied by the index j,
indicating the number of the domain Ωj .

In the case of the homogeneous body the index j will be omitted. Also,
it will be noted that, in the expressions (1), the terms with the multiplier l
are the components of the displacements and the stresses multiplying by l
in the problem of the bending by the couple forces given by equalities (2.3).

Substituting the components of the stresses (1) in the equations of the
equilibrium (1.22) and in the boundary conditions (1.20), we obtain that
the torsion function f and the bending functions F1 and F2 should satisfy
the equations (1.5) in the elliptic ring ω1 and the boundary conditions (1.6)
on the exterior boundaries γ0 and γ1, in which the functions h and H are
given by the equalities (1.8).

The torsion’s function f was determined in the previous paragraph and
the functions of bending F

(j)
k in the domain ωj may be represented by

F
(j)
k = <Φ(j)

k (z)≡<
∑

r=1,3

[(m(k)
r )jt

r
1 + (m∗(k)

r )jt
r
2] (k = 1, 2), (4.8)

where the variables tj are given by the equalities (1.4) and the real coeffi-
cients m

(k)
r j and m

∗(k)
r will be determined.

As for the torsion’s function f (see 3.6), let us represent the conditions
for the operator DnFk on the ellipse γe in the form

[DnF
(j)
k ]e ≡ {<[(n1 + in2)Φ′k

(j)(z)]}e = (H(j)
k )γe (k = 1, 2), (4.9)

where H(k) is given by the equality (1.8) and by (see (1.3))

(n1 + in2)γe = Θ−1
e (be cos θ + ae sin θ).
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From the expressions (1.4), (1.8), (1.9), (4) we get

(DnF
(j)
k )γe

= Θ−1
e <

∑

r=1,3

r[pr
e(m

(k)
r )j exp(irθ) (4.10)

−qr
e(m

∗(k)
r )j exp(−irθ)] (4.11)

(0 ≤ θ ≤ 2π),

[H(j)
k ]γe

= Θ−1
e

∑

r=1,3

[A(k)
re exp(irθ) (4.12)

+(A(k)
−re)j exp(−irθ)] (4.13)

(e = 0, 1),

where Θe, pe and qe are given by the equalities (1.4) and (1.9).
In accordance with (1.8), the coefficients A

(j)
k may be represented in the

form

16A
(1)
1e = 16A(1)

−1e = 2νbec
2 + 3a2

ebe(2 + ν), (4.14)

8A
(1)
3e = 8A

(1)
−3e =

(
1 +

1
2
ν
)
a2

ebe − νbec
2; (4.15)

16A
(2)
1e = 16A(2)

−1e = 2iνajc
2 − 3iajb

2
j (2 + ν), (4.16)

8A
(2)
3e = −8A

(2)
−3e = i

(
1 +

1
2
ν
)
aeb

2
e − iνaec

2, (4.17)

where c2 = a2
e − b2

e and i2 = −1.
As in the previous paragraph, after some elementary calculations (what

in detail will be given below for a two-layered tube), for determination of
the coefficients m

(k)
r and m

∗(k)
r in the expressions of the functions Fk (for

the homogeneous tube), given by the equalities (2), the following algebraic
equations are obtained:

m
(k)
1 pe −m

∗(k)
1 qe = A

(k)
1e , (4.18)

3(m(k)
3 p3

e −m
∗(k)
3 q3

e) = A
(k)
3e (e = 0, 1; k = 1, 2). (4.19)

Hence we obtain

m
(k)
1 = B−1

1 (A(k)
11 q0 −A

(k)
10 q1), (4.20)

m
∗(k)
1 = B−1

1 (A(k)
11 p0 −A

(k)
10 p1); (4.21)

3m
(k)
3 = B−1

3 (A(k)
31 q3

0 −A
(k)
30 q3

1), (4.22)

3m
∗(k)
3 = B−1

3 (A(k)
31 p3

0 −A
(k)
30 p3

1) (k = 1, 2), (4.23)

where

B1 = p1q0 − p0q1 > 0, B3 = p3
1q

3
0 − p3

0q
3
1 > 0, p1 > p0, q0 > q1. (4.24)
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Now let us consider the elliptic tube composed by two isotropic ma-
terials, occupying two domains Ω1 and Ω2, glued along the interface Γ1

bounded by the planes (1.1) and the interior and exterior elliptic surfaces
Γ0 and Γ2.The constants of elasticity in each of the elliptic ring Ωe (e = 1, 2)
will be supplied with the index e. We assume that the different elastic ma-
terials have the same Poisson’s ratio ν1 = ν2 and the different modulus of
the elasticity E1 6= E2.

As in the problem for the homogeneous tube, it is proposed that the
resultant bending force P (P1, P2, 0), of the exterior forces acting at the end
x3 = l of the composed elliptic tube, is applied at the point (x0

1, x
0
2, l) of

this end.
The solution of this problem, components of the displacements and the

stresses in each of domains Ωe we seek in the form (1). Substituting these
expressions in the equations (1.20)–(1.22) and taking into account that the
Poisson’s ratio in the domains Ω1 and Ω2 has the same values ν1 = ν2), for
the functions (f)e ≡ fe and (Fk)e ≡ F

(e)
k we obtain the boundary value

problem (1.5)–(1.7). We assume ν1 = ν2≡ν and, therefore, according to
(1.8) and (2.4), on the interface γ1 we have

[g(j)
k ]1 = [g(j)

k ]2, [H(j)
k ]1 = [H(j)

k ]2 (j, k = 1, 2).

Therefore, the boundary conditions (1.6)–(1.7) for the harmonic functions
Fk we obtain in the form

[DnF
(2)
k ]2 = [H(2)

k ]2

on γ2,

[DnF
(1)
k ]0 = [H(1)

k ]0
on γ0

[µ1DnF
(1)
k ]1 − [µ2DnF

(2)
k ]2 = (µ1 − µ2)[g1(k)n1 + g

(k)
2 n2], (4.25)

[F (1)
k ]1 − [F (2)

k ]2 = 0 (4.26)

on γ1.
We recall that the torsion’s functions fj in the domains Ωj for the

two-layered elliptic tube was determined in §3 by the equalities (3.5) and
(3.19)–(3.22). The functions F

(j)
k in each of domains Ωj will be represented

in the form (2), where the variables t1 and t2 are given in §1 and the
coefficients (m(k)

e )j , (m∗(k)
e )j will be determined.

Taking into account the expressions (3)–(4) and the conditions (9), we
obtain

<
∑

r=1,3

r[pr
e(m

(k)
r )j exp(irθ)− qr

e(m
∗(k)
r )j exp(−irθ)] (4.27)
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=
∑

r=1,3

[A(k)
re exp(irθ) + A

(k)
−re exp(−irθ)] (4.28)

(e = 0, 1; k, j = 1, 2) (4.29)
<

∑

r=1,3

r{pr
1[µ1(m(k)

r )1 − µ2(m(k)
r )2] exp(irθ) (4.30)

−qr
1[µ1(m∗(k)

r )1 − µ2(m∗(k)
r )2] exp(−irθ)} (4.31)

= (µ1 − µ2)
∑

r=1,3

[A(k)
re exp(irθ) + A(k)

re exp(−irθ)], (4.32)

<
∑

r=1,3

{ pr
1[(m

(k)
r )1 − (m(k)

r )2] exp(irθ) (4.33)

−qr
1[(m

∗(k)
r )1 − (m∗(k)

r )2] exp(−irθ)}
= 0 (4.34)

Comparing both sides of these equations, the members with the same
powers of exp, for the coefficients we obtain the following algebraic equa-
tions

r[pr
0(m

(k)
r )1 − qr

0(m
∗(k)
r )1] = 2A(k)

r0 , r[pr
2(m

(k)
r )2 − qr

2(m
∗(k)
r )2] = 2A

(k)
r2 ,

rpr
1[µ1(m(k)

r )1 − µ2(m(k)
r )2]− rqr

1[µ1(m∗(k)
r )1 − µ2(m∗(k)

r )2] = 2A(k)
r1 ,

pr
1[(m

(k)
r )1 − (m(k)

r )2] + qr
1[(m

∗(k)
r )1 − (m∗(k)

r )2] = 0, (4.35)

(k = 1, 2; r = 1, 3),

where pe, qe and A
(k)
re are given by the equalities (1.8) and (5), respec-

tively. These expressions depend on the index r = 1, 2. Hence we obtain 8
algebraic equations with respect to 8 coefficients (m(k)

r )j and (m∗(k)
r )j .

From the first four equations we have

(m∗(k)
r )j = q−r

s [pr
s(m

(k)
r )j − 2r−1A

(k)
js ] (4.36)

(j = 1, 2; s = 2j − 2; r = 1, 3).

Excluding from the first equation of the system (11) the coefficients
(m∗(k)

r )j , by means of the expressions (12), we obtain

µ1Q
(1)
r0 (m(k)

r )1 − µ2Q
(1)
r2 (m(k)

r )2 = B(k)
r ,

Q
(2)
r0 (m(k)

r )1 −Q
(2)
r2 (m(k)

r )2 = C(k)
r (r = 1, 3), (4.37)

where

Q(j)
re = pr

1 + (−1)jqr
1p

r
eq
−r
e , (4.38)

B(k)
r = 2r−1(A(k)

r1 − µ1q
r
1q
−r
0 A

(k)
r0 + µ2q

r
1q
−r
2 A

(k)
r2 ), (4.39)

C(k)
r = 2r−1(q−r

0 A
(k)
r0 − q−r

2 A
(k)
r2 ) (4.40)

(e = 0, 2; j = 1, 2; r = 1, 3). (4.41)
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Taking into account a2
e− b2

e = c2, where c = const is a focal length, and
aj > aj−1, bj > bj − 1 (j = 1, 2), we conclude qj−1 > qj , pj > pj−1 (j =
1, 2), where (see (1.8)) pj = aj + bj , qj = aj − bj (j = 0, 1, 2).

Thus, according to (14), we obtain

Q
(2)
r0 > 0, Q

(2)
r2 > 0, Q

(1)
r0 = pr

0(p
r
1p
−r
0 − qr

1q
−r
0 ) > 0,

Q
(1)
r2 = pr

2(p
r
1p
−r
2 − qr

1q
−r
2 ) < 0 (r = 1, 3). (4.42)

From the equations (13) we obtain

(m(k)
r )1 = ∇−1

r (B(k)
r Q

(2)
r2 − µ2C

(k)
r Q

(1)
r2 ), (4.43)

(m(k)
r )2 = ∇−1

r (B(k)
r Q

(2)
r0 − µ1C

(k)
r Q

1)
r0) (4.44)

(r = 1, 3; k = 1, 2), (4.45)

where
∇r = µ1Q

(1)
r0 Q

(2)
r2 − µ2Q

(2)
r0 Q

(1)
r2 (r = 1, 3). (4.46)

According to (16), ∇r > 0 and after substituting the values (16) in
the right-hand side of the expressions (12), we obtain the values of the
coefficients (m∗(k)

r )j directly. Therefore, the bending functions F
(j)
k are

determined completely.
Now we must consider the equilibrium of the part of the tube as the

rigid body, included between the upper end x3 = l and the plane x3 =
x0

3 (0 ≤ x0
3 < l). We must take into account that the normal of the plane of

the upper end is nu(0, 0, +1) and on the opposite lower end is nl(0, 0,−1).
At first we must verify whether the components (1) produce the bend-

ing’s forces P1 and P2 at the end of the tube. Substituting the components
τjk, given by the equalities (1), into the first three equations of (1.15), using
the formulas (1.16) and the boundary conditions (9), we have

∫ ∫

ω
τe3dω =

∑

j=1,2

∫ ∫

ωj

xeD3τ33dωj = Pe (e = 1, 2), (4.47)

∫ ∫

ω
τ33dω = 0. (4.48)

According to (2.6) and (1), the third equality is satisfied identically and
the first two equations will be satisfied if the constants C1 and C2 from (1)
will be chosen in the following form:

C1 = P1(J
(1)
11 + J

(2)
11 )

−1
, C2 = P2(J

(1)
22 + J

(2)
22 )

−1
, (4.49)

where J
(m)
jj are determined by the equalities (2.6)–(2.10).
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Now we consider the sixth equation from (1.15), which is related to
the equilibrium of the indicated part of the tube under the acting of the
torsion’s forces. On the upper end (x3 = l), there are acting two forces
P1 and P2 applied at the point (x0

1, x
0
2, l) and parallel to the axis Ox1 and

Ox2, respectively. Therefore, these forces create with respect of the axis
Ox3 the torsion moment Mp

τ = x0
1P2 − x0

2P1 and the stresses τ13 and τ23,
acting on the lower end x0

3 = l − x3(0 ≤ x3 < l) with the norm n(0,0,-1),
creating the torsion’s moment M s

τ =
∫ ∫

ω (x2τ13 − x1τ23)dω. Thus, for the
equilibrium of the indicated part by acting of the torsion’s factors, it must
be satisfied the equation

∫ ∫

ω
(x1τ23 − x2τ13)dω + x0

1P2 − x0
2P1 = 0. (∗∗).

Substituting in this expression the values of the components τj3 from
(1), we obtain that the constants G must be determined by the equalities

G = MτG1,

Mτ = −
∑

j=1,2

∫ ∫

ωj

∑

l=1,2

(−1)lx3−l[Pl + ClDlF
(j)
l (4.50)

−Clx
2
l − C1(g

(1)
l )j − C2(g

(2)
l )j ]dωj ,

where g
(m)
l and G∗

1 are given by the equalities (2.4) and (3.18), respectively.
The bending functions are represented by the equalities (2) and (12)–(17).

Thus, the problem of the bending of the composed two-layered isotropic
elliptic tube is solved completely.
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