ON SAINT-VENANT'S PROBLEMS FOR AN ISOTROPIC TWO-LAYERED ELLIPTIC TUBE

G. Khatiashvili

N. Muskhelishvili Institute of Computational Mathematics Georgian Academy of Sciences Akuri Str., Tbilisi, Georgia

(Received: 07.09.03; revised: 17.01.11 accepted: 21.03.11)

Abstract

In this paper the Saint-Venants problems for the homogeneous isotropic twolayered elliptic tube and for the composed isotropic elliptic tube with an anisotropic kernel are studied.

Key words and phrases: Saint-Venant's problems, torsion extension, bending, composed elliptic ring, Faber's polynomials.

AMS subject classification: 5393.

Introduction

Many works are dedicated to the Saint-Venants (S-V) problem for the cylindrical (prismatic) bodies with several cross-sections and variable elastic constants [1,2,3,7,9,11,12,13,15,16,17,19], including nonlinear cases [8].

It would be interesting to consider the (S-V) problems for the elliptic tubes. By means of this problem, a problem of crack for the body with an elliptic split may be investigated.

The torsion's function for the homogeneous isotropic elliptic tube was constructed by A. G. Greenhill [14] (this article is quoted from the book [14], p. 335). The solution to the problem of bending of an elliptic tube by the shear force is obtained by A. Love [14]. The torsion problem for elliptic beams and tube is considered in [11,15]. The bibliography of the papers, concerning to the indicated problems are given in the books [1,3,12,14,15,17,19]. The Saint-Venant principle for the composed bodies is studied in the article [20].

It should be noted that the results for the elliptic tube, given in the above mentioned works, are difficult for the calculations of a torsion's rigidity, displacement and stress in the case of an elliptic tube.

In this article the S-V problem for the homogeneous or composed twolayered elliptic tube is solved by means of the Faber's polynomials. These problems have not been considered yet. The Faber's polynomials for the simply-connected area was introduced by G. Faber in 1903 [6]. The further generalization of the Faber's polynomials are given in the works of many researchers.

Some of these works are given in the references of [4,5]. The detailed review of the works on the Faber's polynomials is given in the monography of P. Suetin [18].

1. Basic Equations

Let us consider an elliptic tube composed of the different elastic materials (obey Hook's law) occupying the cylindrical domain $\Omega = \Omega_0 + \Omega_1 + \Omega_2$ (the domain Ω occupies an anisotropic kernel). We assume that this materials are glued at each other without cracks.

Consider the cartesian coordinates system $Ox_1x_2x_3$ at the end of the cylindrical body. Each of the domains Ω_1 and Ω_2 of the two-layered elliptic tube are bounded by two planes

$$x_3 = 0, \quad x_3 = l \quad (l > 0) \tag{1.1}$$

and by the elliptic surfaces Γ_0, Γ_1 and Γ_1, Γ_2 , respectively. The cross-section of these surfaces are the ellipses γ_e , (e = 0, 1, 2), given by the equations

$$(x_1)_{\gamma_e} = a_e \cos\theta, \quad (x_2)_{\gamma_e} = b_e \sin\theta, \tag{1.2}$$

 $(0 \leq \theta \leq 2\pi, a_e > b_e, a_{e+1} > a_e; e = 0, 1, 2),$ (1.3)

where a_e and b_e are semi-axes of the ellipses γ_e .

A cross-section of the domain Ω_m enclosed between the surfaces Γ_m and Γ_{m-1} is denoted by ω_m , which is bounded by the ellipses γ_m and γ_{m-1} .

Let us consider an element of a lateral of the elliptic cylindrical body with the outwards normal $n(n_1, n_2)$

$$(n_1 + in_2)_{\gamma_e} = \Theta_e^{-1} (b_j \cos \theta + ia_e \sin \theta),$$

$$(x_2 n_1 - x_1 n_2)_{\gamma_e} = -\frac{c^2}{2\Theta_e} \sin 2\theta,$$

$$\Theta_e = \sqrt{a_e^2 \sin^2 \theta + b_e^2 \cos^2 \theta},$$
(1.4)

where $i^2 = -1$.

While considering an elliptic tube composed by two different materials, occupying the domains Ω_1 and Ω_2 bounded by the planes (1) and the elliptic surfaces Γ_0 , Γ_1 and Γ_1 , Γ_2 , respectively, it will be proposed that this

+

materials are glued to each other without a split along the surface Γ_1 (an interface). Cross-section of such composed tube will be represented as two confocal elliptic rings ω_1 and ω_2 bounded by the confocal ellipses γ_0, γ_1 and γ_1, γ_2 (see equalities (2)) glued together along an ellipse γ_1 (an interface).

In the problem of torsion there will be also considered the two-layer isotropic elliptic tube strengthened by an anisotropic elliptic shift, occupying an elliptic domain Ω_0 bounded by the planes (1) and the surface Γ_0 and glued with the indicated tubes along the surface Γ_0 . Cross-section of the domain Ω_0 will be the solid elliptic domain ω_0 bounded by the ellipse γ_0 with semi-axis a_0 and b_0 . It will be noted that an interface of adjacent domains ω_e and ω_{e+1} of the composed elliptic domains will be the ellipse γ_e . An interface of the adjacent domains ω_e and ω_{e+1} of the composed elliptic ring is the ellipse γ_e .

Some auxiliary relationships for the isotropic and anisotropic media, which we will use in the sequel are given below

a) The isotropic medium.

In this case the torsion function f_j and the bending functions $F_k^{(j)}$ (in bending of cantilever) are the solutions of the following boundary value problems [4,5,6]:

$$\Delta f_j = 0, \quad \Delta F_k^{(j)} = 0, \tag{1.5}$$

in each of the domain ω_i of the cross-section we have

$$(D_n f_j)_e = (h_j)_e, \ (D_n F_k^{(j)})_e = (H_k^{(j)})_e,$$
 (1.6)

At the points of an exterior boundaries γe of the domains ω_i we have

$$[\mu D_n f]_e - [\mu D_n f]_{e+1} = [\mu h]_e - [\mu h]_{e+1},
 [\mu D_n F_k]_e - [\mu D_n F_k]_{e+1} = [\mu H_k]_e - [\mu H_k]_{e+1},
 [f]_e = [f]_{e+1}, [F_k]_e = [F_k]_{e+1},$$
(1.7)

where the symbol $[]_m$ denotes the limiting values of the expressions in the brackets taken from the domains ω_m and ω_{m+1} , respectively. The operators Δ, D_n and the functions h, H are given by

$$\Delta = D_1^2 + D_2^2, \quad D_n = n_1 D_1 + n_2 D_2,$$

$$D_j = \frac{\partial}{\partial x_j} \cdot h = x_2 n_1 - x_1 n_2,$$

$$H_k = \frac{1}{2} [(2+\nu) x_k^2 - \nu x_{3-k}^2] n_k + \nu x_1 x_2 n_{3-k},$$
(1.8)

where $\mu = E[2(1 + \nu)]^{-1}$ is the modulus of rigidity, ν is the Poison's ratio and E is the modulus of elasticity. For the elliptic tube, cross-section of which is an elliptic ring, bounded by the confocal ellipses (with $a_j^2 - b_j^2 = c^2$, where 2c is the focal length), we will use the following formulas

$$t_1 = z + w, \quad t_2 = z - w, \quad w = \sqrt{z^2 - c^2},$$
 (1.9)

$$t_1 t_2 = c^2, \quad p_e = a_e + b_e, \quad q_e = a_e - b_e,$$
 (1.10)

$$(t_1)_{\gamma_e} = p_e \exp(i\theta), \quad (t_2)_{\gamma_e} = q_e \exp(-i\theta), \quad (1.11)$$

$$2(w)_{\gamma_e} = 2(b_e \cos\theta + ia_e \sin\theta)$$

$$= p_e \exp(i\theta) - q_e \exp(-i\theta), \qquad (1.12)$$

$$D_1 t_j = -(-1)^j w^{-1} t_j, \quad D_2 t_j = -i(-1)^j w^{-1} t_j, \quad (1.13)$$

$$\lim_{z \to \infty} z^{-1} w = 1 \quad (j = 1, 2).$$
(1.14)

b) The anisotropic medium.

In this case we will consider only the homogeneous body and the torsion's problem. As it is known from ([2,3]), the torsion's function f^* satisfies the following boundary condition:

$$\Delta^* f^* = 0, \tag{1.15}$$

in the domain ω_0 , and

$$(D_n^* f^*)_j = (h^*)_j, (1.16)$$

at the each point of the ellipse γ_0 , where

$$\Delta^* = A_{55}D_1^2 + 2A_{45}D_1D_2 + A_{44}D_2^2,$$

$$D_n^* = n_1(A_{55}D_1 + A_{45}D_2) + n_2(A_{45}D_1 + A_{44}D_2),$$

$$h^* = h_1^*n_1 + h_2^*n_2, \quad h_1^* = A_{55}x_2 - A_{45}x_1, \quad h_2^* = A_{45}x_2 - A_{44}x_1,$$

(1.17)

 $A_{jk} = A_{kj}$ are the coefficients of the stiffness in the Hook's low. Let us consider the characteristic equation of the equation (9)

$$A_{44}v^2 + 2A_{45}v + A_{55} = 0 \quad (A^2 = A_{44}A_{55} - A_{45}^2 > 0). \tag{1.18}$$

The complex root of this equation is

$$v_* = A_{44}^{-1}(iA - A_{45}) \quad (i^2 = -1).$$
 (1.19)

Let us introduce the complex variable $z_* = x_1 + v_* x_2$, by means of which, for the solid elliptic domain ω_0 , bounded by the ellipse γ_0 with the semi-axis a_0 and b_0 , will be used the expressions

$$t_1^* = (a_0 - iv_*b_0)^{-1}(z_* + w_0^*), t_2^* = (a_0 - iv_*b_0)^{-1}(z_* + w_0^*),$$

$$w_{j}^{*} = (z_{*}^{2} - a_{j}^{2} - v_{*}^{2}b_{j}^{2})^{0.5}, (w_{j}^{*})_{\gamma_{j}}$$

$$= i(a_{j}\sin\theta - v_{*}b_{j}\cos\theta), (t_{1}^{*})_{\gamma_{0}} = \exp i\theta,$$

$$(t_{2}^{*})_{\gamma_{0}} = \lambda_{0}\exp(-i\theta), \quad \lambda_{j} = \frac{a_{j} + iv_{*}b_{j}}{a_{j} - iv_{*}b_{j}}$$

$$(|\lambda_{j}| < 1; \ 0 \le \theta \le 2\pi), \quad \lim_{z_{*} \to \infty} (z_{*}^{-1}w_{j}^{*}) = 1.$$
(1.20)

Below are given the well-known formulas [2,4,5], which will be used for the isotropic as well as for the anisotropic bodies.

At first for the construction of the "ends conditions" of the cylindrical bodies in the S-V problems, let us introduce the notations for the projections on axis Ox_j (j=1,2,3) of the resultant forces by $P(P_1, P_2, P_3)$ and of the resultant moments by $M(M_1, M_2, M_3)$, obtained due to the action of the exterior forces. Therefore, components of the stresses τ_{jk} in the each cross-section ω (with the outward normal n(0, 0, +1)) of the body must satisfy the following equalities:

$$\int \int_{\omega} \tau_{j3} d\omega = P_j \ (j = 1, 2, 3); \ \int \int_{\omega} (x_2 \tau_{33} - x_3 \tau_{23}) d\omega = M_1, \quad (1.21)$$

$$\int \int_{\omega} (x_3 \tau_{13} - x_1 \tau_{33}) d\omega = M_2, \quad \int \int_{\omega} (x_1 \tau_{23} - x_2 \tau_{13}) d\omega = M_3. \quad (1.22)$$

For the homogeneous cylindrical body with the cross-section ω , bounded by the curve γ , we have

$$\int \int_{\omega} \tau_{j3} d\omega = \int_{\gamma} x_j \tau_{n3} d\gamma + \int \int_{\omega} x_j D_3 \tau_{33} d\omega \quad (j = 1, 2).$$
(1.23)

For the composed cylindrical body with the cross-section $\omega = \omega_0 + \omega_1 + \omega_2$, bounded by the external curve ω_2 and the interfaces ω_0 and ω_1 , we have

$$\int \int_{\omega} \tau_{j3} d\omega = \int_{\gamma_2} x_j \tau_{n3} d\omega + \sum_{k=0,1} \int_{\gamma_k} x_j \{ [\tau_{n3}]_k - [\tau_{n3}]_{k+1} \} d\gamma + \int \int_{\omega} x_j D_3 \tau_{33} d\omega \quad (j = 1, 2),$$
(1.24)

where

$$\tau_{nj} = \tau_{1j}n_1 + \tau_{2j}n_2 + \tau_{3j}n_3 \ (j = 1, 2, 3) \tag{1.25}$$

are the projections on the axis Ox_j of the vector of the stresses $\tau_n(\tau_{n1}, \tau_{n2}, \tau_{n3})$.

In addition, we must remark that in the problems, which we consider, it is proposed that the lateral surface of the cylindrical body is free from the acting of the exterior forces. Also for the composed beam, it is necessary to fulfill the conditions of continuity of the displacement vectors and +

stresses which cross the interfaces from the adjoint domains. Therefore, the following boundary-contact conditions are necessary:

$$\tau_{nj} = 0 \quad (j = 1, 2, 3) \tag{1.26}$$

on the exterior lateral surface and

$$[u_j]_e = [u_j]_{e+1}, \quad [\tau_{nj}]_e = [\tau_{nj}]_{e+1} \quad (j = 1, 2, 3), \tag{1.27}$$

on the interface between the domains Ω_e and Ω_{e+1} .

It is obvious that the components of the stresses on each of the domains Ω_k must satisfy the equations of equilibrium (when the body forces are absent)

$$D_1\tau_{1j} + D_2\tau_{2j} + D_3\tau_{3j} = 0 \quad (J = 1, 2, 3).$$
(1.28)

It is well-known that the potential energy W of an elastic body occupying the domain Ω bounded with the surface ω under the action of the surface force $\tau_n(\tau_{n1}, \tau_{n2}, \tau_{n3})$ and of the body force $\Psi(\Psi_1, \Psi_2, \Psi_3)$ will be given by

$$2W = \sum_{j=1}^{3} \left[\int \int \int_{\Omega} \Psi_j u_j d\Omega + \int \int_{\omega} \tau_{nj} u_j d\omega \right] > 0, \qquad (1.29)$$

where u_i are the components of the displacements.

Now let us begin solution of the problems.

2. Extension by the Longitudinal Force and the Bending Due to Couples of Forces

Let us consider the deformation of the homogeneous elliptic tube, occupying the domain Ω_1 bounded by the planes (1.1) and the elliptic surfaces (1.2), when cross-section of these surfaces

$$\Gamma_0 = 0, \quad \Gamma_1 = 0 \tag{2.1}$$

is the confocal ring ω_1 , bounded by two confocal ellipses γ_j (j = 0, 1) (see (1.3))

$$(x_1)_j = a_j \cos \theta, \quad (x_2)_j = b_j \sin \theta \quad (j = 0, 1; \ 0 \le \theta \le 2\pi)$$
 (2.2)

with the focal length 2c.

It is proposed that the lateral surfaces (1) are free of acting of exterior forces. A system of the forces applied to the "upper" and "base" $x_3 = l$ of the body statically is equivalent to the one force ϕ_3 producing the extension

acting parallel to the axis Ox_3 , and to two couples of forces producing the flexures of the body in the planes Ox_2x_3 and Ox_1x_3 by the moments M_1 and M_2 , respectively.

The corresponding components of the stresses and the displacements for this problem in the domain Ω_1 will be given as [1,4,5,6]

$$\tau_{j1} = \tau_{j2} = \tau_{j3} = 0, \ \tau_{33} = E_m \sum_{e=1}^{3} C_e x^{(e)});$$
(2.3)

$$u_j = -\sum_{e=1}^{3} C_e g_j^{(e)} - \frac{1}{2} C_j x_3^2, \quad u_3 = x_3 \sum_{e=1}^{3} C_e x^{(e)}, \quad (2.4)$$

$$(j = 1, 2; x^{(1)} = x_1, x^{(2)} = x_2, x^{(3)} = 1),$$
 (2.5)

where m = 1, the constants C_j will be determined and the functions $g_e^{(j)}$ are given by the equalities

$$2g_j^{(j)} = (-1)^j \nu (x_2^2 - x_1^2), \quad g_j^{(3)} = \nu x_j, \quad (2.6)$$

$$g_1^{(2)} = g_2^{(1)} = \nu x_1 x_2 \quad (j = 1, 2).$$
 (2.7)

It is obvious that after substituting the expressions (3) in the conditions (1.15), the first two and sixth equations of these conditions will be satisfied identically and, from the other equations for the determination of the coefficients C_j , the following algebraic equations are obtained

$$C_1 J_{1j}^{(1)} + C_2 J_{2j}^{(1)} + C_3 J_{3j}^{(1)} = N_j \quad (j = 1, 2, 3),$$
 (2.8)

where

$$J_{jk}^{(m)} = \int \int_{\omega} E_m x^{(j)} x^{(k)} d\omega \quad (m = 1, 2; \ j, k = 1, 2, 3);$$
(2.9)

$$N_1 = -M_2, \quad N_2 = M_1, \quad N_3 = P_3.$$
 (2.10)

As the origin and axis Ox_1 and Ox_2 of the system $Ox_1x_2x_3$ coincide with the center and the semi-axis of the elliptic domains respectively, from (6) follows

$$C_j = N_j [J_{jj}^{(1)}]_{-1} \quad (j = 1, 2, 3; \quad J_{13} = J_{23} = J_{12} = 0),$$
 (2.11)

where

$$4J_{11}^{(1)} = \pi E_1(a_1^3 b_1 - a_0^3 b_0), \qquad (2.12)$$

$$4J_{22}^{(1)} = \pi E_1(a_1b_1^3 - a_0b_0^3), \ J_{33}^{(1)} = \pi E_1(a_1b_1 - a_0b_0).$$
(2.13)

Now we consider the elliptic tube composed by two isotropic elastic materials, occupying the domains Ω_1 and Ω_2 , respectively. It will be proposed that the different materials has identical Poisson's ratio ($\nu_1 = \nu_2$) and the different elastic modulus ($E_1 \neq E_2$).

The domain $\Omega_1 + \Omega_2$ of such composed body will be bounded by the planes (1.1) and by the elliptic surfaces Γ_0 , Γ_1 and Γ_2 , given by the equalities (1.2) and (1.3), where Γ_0 is the interior boundary, Γ_2 is the exterior boundary and Γ_1 is an interface, i.e., the border of the different materials. At the points of the surfaces Γ_j the boundary-contact conditions (1.20) and (1.21) must be satisfied. As it is seen from (4), taking constants C_j with the same values in each domain, the components of the displacements will be continuous at the crossing of the interface Γ_1 from Ω_1 to Ω_2 .

In this case solution of the problems in each of the domains Ω_j will be represented in the form (3)–(4), in which, for each of the domain Ω_1 and Ω_2 , modulus of elasticity E reaches the values E_1 and E_2 , respectively. It is obvious that all boundary-contact conditions are fulfilled and from (1.16), where $P_1 = P_2 = M_3 = 0$, for the coefficients C_j of the composed tube we get

$$C_j = J_{jj}^{-1} N_j \ (j = 1, 2, 3), \ J_{jj} = J_{jj}^{(1)} + J_{jj}^{(2)},$$
 (2.14)

where N_j and $J_{jj}^{(m)}$ are determined by the equalities (6) and J_{jj} , for this composed elliptic tube, will be given as

$$4J_{11} = \pi [E_1(a_1^3b_1 - a_0^3b_0) + E_2(a_2^3b_2 - a_1^3b_1)],$$

$$4J_{22} = \pi [E_1(a_1b_1^3 - a_0b_0^3) + E_2(a_2b_2^3 - a_1b_1^3)],$$

$$J_{33} = \pi [E_1(a_1b_1 - a_0b_0) + E_2(a_2b_2 - a_1b_1)].$$
(2.15)

3. A Torsion of a Two-Layer Isotropic Elliptic Tube with an Anisotropic Kernel

Let us consider the two-layer tube, bounded by the planes (1.1) and the elliptic surfaces. The three-dimensional domains occupied by jointly glued layers will be denoted by Ω_1 and Ω_2 respectively. A normal cross-section of this tube will be the domain composed by two isotropic layers (with the different physical characteristics), occupying the elliptic rings ω_1 and ω_2 , bounded with the confocal ellipses γ_0, γ_1 and γ_1, γ_2 , respectively, given by the equalities (1.3).

It is obvious that the rings ω_1 and ω_2 will be glued along the ellipse γ_1 (interface), $a_j^2 - b_j^2 = c^2$, where a_j, b_j are semi-axis of the ellipses γ_j (see (1.3)) and 2c is a focal length of this ellipses. Let us suppose that the composed isotropic elliptic tube is strengthened by the solid elliptic shaft,

made from an anisotropic material. At an in each point there passes by a plane of an elastic symmetry perpendicular to the axis Ox_3 . It is assumed that an elliptic shaft, occupying a simple connected domain Ω_0 , is bounded by the planes (1.1) and the surface Γ_1 , along which a shaft is glued with the composed elliptic tube. The cross-section of the domain Ω_0 , denoted by ω_0 , will be glued with the composed two-layered isotropic planar elliptic ring along the ellipse γ_0 .

Thus, there will be considered a beam, composed by two isotropic and one anisotropic materials, occupying the composed domain $\Omega = \Omega_0 + \Omega_1 + \Omega_2$, cross-section of which will be the composed planar elliptic domain $\omega = \omega_0 + \omega_1 + \omega_2$.

We now consider the torsion's problem for the indicated composed elliptic bar, when the exterior forces, acting at its ends, statistically are equivalent to the couple of forces twisting the bar by the moment M_3 . The components of the displacements and the stresses in each of the domains Ω_j (j = 0, 1, 2) will be given by [3,4,5]

$$(u_1)_j = -Gx_2x_3, \ (u_2)_j = Gx_1x_3, \ (u_3)_j = Gf_j(x_1, x_2).$$
 (3.1)

The corresponding components of the stresses in the isotropic domains Ω_i (j = 1, 2) and in the anisotropic domain Ω_0 are of the form

$$(\tau_{13})_j = G\mu_j(D_1f_j - x_2), \ (\tau_{23})_j = G\mu_j(D_2f_j + x_1) \ (j = 1, 2),$$
 (3.2)

$$u_j(D_1(\tau_{13}^*)_0 = G[A_{55}(D_1f_0^* - x_2) + A_{45}(D_2f_0^* + x_1)], \quad (3.3)$$

$$(\tau_{23}^*)_0 = G[A_{45}(D_1f_0^* - x_2) + A_{44}(D_2f_0^* + x_2).$$
(3.4)

All the other components of the stresses τ_{ik} are equal to zero.

Substituting the expressions (1)–(3) in equations (1.20) and (1.21), where (1.20) must be fulfilled on γ_2 and (1.21) must be fulfilled on γ_0 and γ_1 (see (1.3)), for the functions f_1, f_2 and f_0^* , we obtain the boundary-value problems (1.9)–(1.11).

We seek the functions f_J and f_0^* , satisfying conditions $1^0 - 3^0$, in the form

$$f_j \equiv \Re \Phi_j(z) = \Re \left[\frac{ic^2}{2} (m_1^{(j)} t_1^2 + m_2^{(j)} t_2^2) \right] (j = 1, 2)$$
(3.5)

$$f_0^* \equiv \Re \Phi_*(z_*) = c^2 \Re[m_0(t_1^{*2} + t_2^{*2})], \qquad (3.6)$$

where 2c is a focal length, variables t_j and t_j^* are given by the equalities (1.9) and (1.15) and complex coefficients m_0 and $m_k^{(j)}$ will be determined.

Taking into account equalities (1.8) and (1.12) and expressions (4), we obtain [1,2,5]

$$(D_n f_k)_{\gamma_j} = \{ \Re[(n_1 + in_2)\Phi'_k(z)] \}_{\gamma_j} \ (j = 0, 1, 2; \ k = 1, 2), \ (3.7)$$

$$(D_n^* f_0^*)_{\gamma_0} = A\{ \Re[i(n_2 - v_* n_1) \Phi'_*(z_*)]\}_{\gamma_0}.$$
(3.8)

These values are obtained by using the expression (1.4) and the equalities

$$\begin{array}{rcl} A_{55}+v_*A_{45}&=&-iAv_*, \ A_{45}+v_*A_{44}=iA,\\ &\frac{d}{dz}\Phi(z)&=&\Phi'(z), \ \ \frac{d}{dz_*}\Phi_*(z_*)=\Phi'_*(z_*). \end{array}$$

It is easy to show that the functions h and h^* from (1.7) on the ellipses γ_j take the following values:

$$4(h)_{j} = ic^{2}\Theta_{j}^{-1}[\exp(2i\theta) - \exp(-2i\theta)] \ (j = 1, 2),$$

$$4(h^{*})_{0} = i\Theta_{0}^{-1}[(A_{44}a_{0}^{2} - A_{55}b_{0}^{2})\exp(2i\theta) - (A_{44}a_{0}^{2} - A_{55}b_{0}^{2} + 2A_{45}a_{0}b_{0})\exp(-2i\theta)] \qquad (3.9)$$

$$(0 \leq \theta \leq 2\pi).$$

Taking into account the expressions (1.4)-(1.15), (1.20), (1.21), (6), (7) and substituting the expressions (5) into the boundary-contact conditions (1.6), (1.7), (1.11), (1.12) and (4), after some elementary calculation, we obtain the following equations for the coefficients $m_0, m_1^{(j)}$ and $m_2^{(j)}$ from (5):

$$2(m_1^{(2)}p_2^2 - \overline{m}_2^{(2)}q_2^2) = i, \ (m_1^{(1)} - m_1^{(2)})p_1^2 + (\overline{m}_1^{(1)} - \overline{m}_2^{(2)})q_1^2 = 0,$$

$$2[(\beta_1 m_1^{(1)} - \beta_2 m_1^{(2)})p_1^2 - (\beta_1 \overline{m}_2^{(1)} - \beta_2 \overline{m}_2^{(2)})q_1^2 = i(\beta_1 - \beta_2),$$

$$m_0 + \overline{\lambda^2} \overline{m_0} - \overline{m_1^{(1)}}p_0^2 - -\overline{m}_2^{(1)}q_0^2 = 0,$$

$$2c^2[\beta_0(m_0 - \overline{\lambda^2} \overline{m}_0) - \beta_1(m_1^{(1)p_0^2} - \overline{m}_2^{(1)}q_0^2)]$$

$$= i(A_{44}a_0^2 - A_{55}b_0^2) - 2A_{45}a_0b_0 - ic^2\beta_1,$$

(3.10)

where

$$\beta_0 \equiv A = \sqrt{A_{44}A_{55} - A_{45}^2}, \quad \beta_1 \equiv \mu_1, \quad \beta_2 \equiv \mu_2. \tag{3.11}$$

The barred expression \overline{M} denotes the complex conjugate value of M.

After the simple transformation, the equations (8) reduce to the following three equations:

$$2\beta_1 p_1^2 p_2^2 m_1^{(1)} + (\beta_2 Q_{21} - \beta_1 P_{21} \overline{m}_2^{(2)}) = T_1^*, \quad (3.12)$$

$$p_2^2 q_1^2(m_0 + \overline{\lambda^2} \overline{m}_0) + p_2^2 Q_{10} m_1^{(1)} - q_0^2 P_{21} \overline{m}_2^{(2)} = T_2^*, \quad (3.13)$$

$$\beta_0 p_2^2 q_1^2 (m_0 - \overline{\lambda^2} \overline{m}_0) + \beta_1 p_2^2 Q_{01} m_1^{(1)} + \beta_2 q_0^2 Q_{12} \overline{m}_2^{(2)} = T_3, \quad (3.14)$$

G. Khatiashvili

where

$$P_{jk} = p_j^2 q_k^2 + p_k^2 q_j^2, \quad Q_{jk} = p_j^2 q_k^2 - p_k^2 q_j^2. \tag{3.15}$$

$$2iT_1^* = (\beta_2 - \beta_1)p_2^2 - p_1^2, \quad 2iT_2^* = -p_1^2 q_0^2, \tag{3.16}$$

$$2iT_3 = (\beta_2 - \beta_1)p_2^2 q_0^2 - \beta_2 p_1^2 q_0^2 +$$
(3.17)

$$+p_2^2 q_1^2 c^{-2} (A_{55} b_0^2 - A_{44} a_0^2 + 2A_{45} a_0 b_0 + \mu_1).$$
(3.18)

From (10) we obtain the following equations with respect to m_0 and $m_2^{(2)}$:

$$2\beta_1 p_1^2 q_1^2 p_2^2 (m_0 + \overline{\lambda^2} \overline{m_0}) - B_1 \overline{m}_2^{(2)} = T_1, \qquad (3.19)$$

$$2\beta_0 p_1^2 q_1^2 p_2^2 (m_0 - \overline{\lambda^2} \overline{m}_0) + B_2 \overline{m}_2^{(2)} = T_2, \qquad (3.20)$$

where

$$B_1 = \beta_2 Q_{21} Q_{20} + \beta_1 P_{12} P_{10} > 0, \qquad (3.21)$$

$$B_2 = \beta_2 Q_{21} P_{10} + \beta_1 P_{21} Q_{10} > 0, \qquad (3.22)$$

$$T_1 = 2\beta_1 p_1^2 T_2^* - Q_{20} T_1^*, (3.23)$$

$$T_2 = 2p_1^2 T_3 - Q_{10} T_1^*. aga{3.24}$$

For the solution of the system (12) let us introduce the denotations

$$R_1 = (\beta_1 B_2 - \beta_0 B_1)(\beta_1 B_2 + \beta_0 B_1)^{-1}, \qquad (3.25)$$

$$R_2 = (B_2T_1 + B - 1T_2)[2p_1^2p_2^2q_1^2(\beta_1B_2 + \beta_0B - 1)]^{-1}.$$
 (3.26)

It is obvious that

$$|\beta_1 B_2 + \beta_0 B_1| > 0, \quad 0 < |R_1| < 1.$$
(3.27)

From the equation (12) we obtain

$$m_0 = \Delta_*^{-1} (R_2 - \overline{\lambda} R_1 R_2), \qquad (3.28)$$

where

$$|\lambda| < 1, \quad \Delta_* = 1 - |\lambda|^4 |R_1|^2 > 0.$$
 (3.29)

Thus, from the equations (12), (10) and (8), all the coefficients $m_2^{(2)}$, $m_1^{(1)}$, $m_2^{(1)}$ and $m_1^{(2)}$ will be determined directly. In this case, in the conditions (1.16), $P_1 = P_2 = P_3 = M_1 = M_2 = 0$ and

In this case, in the conditions (1.16), $P_1 = P_2 = P_3 = M_1 = M_2 = 0$ and $M_3 \neq 0$ is the given number. It is easy to show that, by using the formulas (1.17) and (1.18), the first five equations will be satisfied identically and for

the fulfillment of the sixth equation, from (1.16) the constant G in (1)–(2) must be taken as

$$G = M_3(G^*)^{-1}, \quad G^* = G_1^* + G_2^*, \tag{3.30}$$

$$G_1^* = \sum_{j=1,2} \int \int_{\omega_j} \mu_j (x_1^2 + x_2^2 + x_1 D_2 f_j - x_2 D_1 f_j) d\omega_j > 0; \quad (3.31)$$

$$G_2^* = \int \int_{\omega_0} [A_{44}(D_2 f_0 + x_1)^2 + A_{55}(D_1 f_0 - x_2)^2 \qquad (3.32)$$

$$+2A_{45}(D_2f_0+x_1)(D_1f_0-x_1)]d\omega_0 > 0$$
(3.33)

$$(A_{44}A_{55} - A_{45}^2 > 0). (3.34)$$

Having the expressions of the coefficients m_0 and $m_k^{(j)}$ and substituting their values in the formulas (5), we can calculate the expressions of the functions f_j and f_0^* and the expressions (18) in the explicit form.

To solve the bending problem, the solutions of the torsion's problem for the homogeneous and composed elliptic tubes will be considered.

At first we consider the case when the anisotropic kernel is absent, i.e., the problem of the torsion of a two -layered isotropic elliptic tube will be considered. The torsion functions f_j in the domains Ω_j (j = 1, 2) will be represented by the expressions (5) and for the coefficients $m_k^{(j)}$ we have the following equations:

$$2(m_1^{(1)}p_0^2 + m_2^{(1)}q_0^2) = 1, \ 2(m_1^{(2)}p_2^2 + m_2^{(2)}q_2^2) = 1,$$

$$m_1^{(1)}p_1^2 - m_2^{(1)}q_1^2 - m_1^{(2)}p_1^2 + m_2^{(2)}q_1^2 = 0, \qquad (3.35)$$

$$2\mu_1(m_1^{(1)}p_1^2 + m_2^{(1)}q_1^2) - 2\mu_2(m_1^{(2)}p_1^2 - m_2^{(2)}q_1^2) = \mu_1 - \mu_2.$$

It is easy to show that the solution of these equations will be given in the form [2]

$$m_1^{(1)} = (2q_2^2 B_*)^{-1} \{ \mu_2 [p_2^2 (q_2^2 - q_0^2) (q_2^4 - q_1^4) + a_0^2 (q_1^2 - q_0^2) (q_2^4 + q_0^4)] + \mu_1 p_1^2 (q_1^4 - q_0^4) (q_0^2 - q_0^2) \}$$
(3.36)
+ $a_0^2 (q_1^2 - q_0^2) (q_1^4 + q_0^4)] + \mu_1 p_1^2 (q_1^4 - q_0^4) (q_0^2 - q_0^2) \}$ (3.37)

$$+q_0^2(p_1^2 - p_2^2)(q_1^4 + q_2^4)] + \mu_1 p_1^2(q_1^4 - q_0^4)(q_2^2 - q_0^2) \} \quad (3.37)$$

$$- (2q^2 R)^{-1} [\mu_1(p_1^2 - p_2^2)(q_1^4 - q_1^4)(q_2^2 - q_2^2)] \quad (3.38)$$

$$m_1^{(2)} = (2q_0^2 B_*)^{-1} [\mu_1(p_1^2 - p_0^2)(q_1^4 - q_0^4)(q_2^2 - q_0^2)$$
(3.38)

$$-\mu_2 p_1^2 (q_0^4 + q_1^4) (q_2^2 - q_1^2)], \qquad (3.39)$$

where

$$B_* = p_0^2 p_2^2 [\mu_1 (q_1^4 - q_0^4) + \mu_2 (q_2^4 - q_1^4)] + q_0^2 q_2^2 [\mu_1 (p_0^4 - p_1^4) + \mu_2 (p_1^4 - p_2^4)] < 0.$$
(3.40)

From (19) we obtain

$$m_2^{(1)} = (2q_0^2)^{-1} - m_1^{(1)} p_0^2 q_0^{-2}, \quad m_2^{(2)} = (2q_2^2) - 1 - m_1^{(2)} p_2^2 q_2^{-2}.$$
 (3.41)

Let us consider the homogeneous elliptic tube, occupying the domain Ω_1 , bounded by the planes (1.1) and the confocal elliptic cylindrical surfaces Γ_0 and Γ_1 , cross-section of which will be the elliptic ring ω_1 bounded by two confocal ellipses γ_0 and γ_1 , given by the equalities (1.3).

The solution of the torsion's problem for such tube in the domain Ω_1 is given in the form (1)–(2) for j = 1, where the torsion's function f_1 is represented by the formula (5), and the function $f_1(z)$ must satisfy the boundary conditions (6) for j = 0 and j = 1 on the ellipses γ_0 and γ_1 . From these conditions, for the coefficients $m_j^{(1)} \equiv m_j$, we obtain the equations [2]

$$2(m_1 p_j^2 + m_2 q_j^2) = 1 \quad (j = 0, 1), \tag{3.42}$$

(3.22) implies

$$2m_1 = m^{-1}(q_1^2 - q_0^2 0, \ 2m_2 = m^{-1}(p_0^2 - p_1^2), \ m = p_0^2 q_1^2 - p_1^2 q_0^2 \neq 0.$$
(3.43)

Substituting the values of these coefficients in the expression of the function $f_1(z)$, given by the formula (5), we obtain

$$f_1 = \Re[ig(t_1^2 + ht_2^2)] = -g\Im(t_1^2 + ht_2^2), \qquad (3.44)$$

$$4g = c^{2}[(a_{0} + b_{0})^{2} + (a_{1} + b_{1})^{2}]^{-1}, \quad h = (a_{1} + b_{1})^{2}(a_{0} - b_{0})^{-2}(3.45)$$

Let us represent this function by means of the cartesian coordinates x_j . According to (1.9), we have

$$t_1^2 = 2z^2 - c^2 + [z^2(z^2 - c^2)]^{0.5}, \quad t_2^2 = 2z^2 - c^2 - 2[z^2(z^2 - c^2)]^{0.5},$$

At first it should be calculated the expression

$$\Im(w_1 + iw_2)^{0.5} = \Im[z^2(z^2 - c^2)]^{0.5}, \qquad (3.46)$$

where

$$w_1 = (x_1^2 - x_2^2)(x_1^2 - x_2^2 - c^2) - 4x_1^2 x_2^2, \qquad (3.47)$$

$$w_2 = 2x_1^2 x - 2^2 [2(x_1^2 - x_2^2) - c^2].$$
(3.48)

Now we will represent (26) in the trigonometric form $z^2(z^2 - c^2) = \rho \exp(i\phi)$ by means of the expression $\sin(2^{-1} \operatorname{arctg} u) = u[u^2 + (1 + \sqrt{(1+u^2)})^2]^{0.5}$. After the elementary calculations we obtain

$$\Im[z^2(z^2-c^2)]^{0.5} = 2^{-1}\sqrt{2} \sqrt{(\rho-w_1)}, \ \rho = (w_1^2+w_2^2)^{0.5}$$

and the function f_1 will be written in the form

$$f_1 = -4g(1+h)x_1x_2 - 2^{-1}\sqrt{2}g(1-2h)\sqrt{(\rho-w_1)}.$$
 (3.49)

From the equalities (18), for the homogeneous isotropic elliptic tube, follows

$$GB_1 = M_3, (3.50)$$

$$B_1 = \int \int_{\omega_1} [(D_2 f_0 + x_1)^2 + (D_1 f_0 - x_2)^2] d\omega = B_1^* + B_1^{**} > 0, (3.51)$$

$$B_1^{**} = \int \int_{\omega_1} (x_1^2 + x_2^2) d\omega, \qquad (3.52)$$

$$B_1^* = \int \int_{\omega_1} (x_1 D_2 f_1 - x_2 D_1 f_1) d\omega, \qquad (3.53)$$

where B_1 is a torsional rigidity.

Thus, the solution for the shift with the split along the line segment of the focuses (-c, +c) is obtained. This allow us to calculate the intensity of the stresses in the effective form for the crack's problem.

4. Bending of a Cantilever Under a Transverse Force

Let it be assumed that the external forces applied to the end of the homogeneous elliptic tube, if z = l, are equivalent to two bending forces P_1 and P_2 , parallel to the axis Ox_1 and Ox_2 , respectively, and applied at the point (x_1^0, x_2^0, l) , where (x_1^0, x_2^0) is an arbitrary point of the planar domain ω_1 . It is obvious that these forces with respect to the indicated axes create the moments $M_1 = P_2 l$ and $M_2 = -P_1 l$, respectively. Therefore, for the equilibrium of the part of the cylinder enclosed between the planes $x_3 = x_3^0$ and $x_3 = l$, where x_3^0 is an arbitrary number from the interval $0 \le x_3^0 < l$, it will be sufficient to require that the components of the stresses τ_{ek} in each cross-section $x_3 = x_3^0$ of the body satisfy the conditions (1.15), where we mean

$$P_3 = M_3 = 0, P_1 \neq 0, P_2 \neq 0, M_1 = P_2 l, M_2 = -P_1 l.$$
 (*)

Analogously to §2, we assume that the origin and the axis Ox_1 and Ox_2 of the system of the coordinates $Ox_1x_2x_3$ coincide with the center and the principal axis of the inertia of the domain ω_0 - of an "under" base $(x_3 = 0)$ of the tube.

The solution to this problem, components of the displacements u_e and the stresses τ_{mk} , are given in the books [4,5,6]. We will represent the

indicated values in the elementary modified form [1]:

$$(u_e)_j = \left\{ (l - x_3)(C_1 g_e^{(l)}) + C_2 g_e^{(2)} + \frac{l}{2} C_e x_3^2 - \frac{1}{6} C_e x_3^3 \right\}$$
(4.1)

$$+G(-1)^{e}x_{3-e}x_{3}\Big\}_{e}$$
(4.2)
(e = 1,2),

$$(u_3)_j = \left\{ -\left[x_3 \left(l - \frac{1}{2} x_3 \right) (C_l x_1 + C_2 x_2) - C_1 F_1 - C_2 F_2 \right] \right\}$$
(4.3)

$$+\frac{1}{3}(C_1x_1^3 + C_2x_2^3) - Gf_1\Big]\Big\}_j,\tag{4.4}$$

$$(\tau_{e3})_j = \left\{ \mu [D_e(C_1F_1 + C_2F_2 + Gf_1) \right.$$

$$(4.5)$$

$$-C_e x_e^2 - C_l g_e^{(1)} - C_2 g_e^{(2)} + G(-1)^e x_{3-e}]\Big\}_j, \tag{4.6}$$

$$(\tau_{33})_j = \{(x_3 - l)(C_l x_1 + C_2 x_2)\}_j \quad (e = 1, 2), \tag{4.7}$$

where $g_e^{(k)}$ are given by the equalities (2.4) and the constants C_e , G will be determined. Here the components u_e and τ_{ek} are supplied by the index j, indicating the number of the domain Ω_j .

In the case of the homogeneous body the index j will be omitted. Also, it will be noted that, in the expressions (1), the terms with the multiplier lare the components of the displacements and the stresses multiplying by lin the problem of the bending by the couple forces given by equalities (2.3).

Substituting the components of the stresses (1) in the equations of the equilibrium (1.22) and in the boundary conditions (1.20), we obtain that the torsion function f and the bending functions F_1 and F_2 should satisfy the equations (1.5) in the elliptic ring ω_1 and the boundary conditions (1.6) on the exterior boundaries γ_0 and γ_1 , in which the functions h and H are given by the equalities (1.8).

The torsion's function f was determined in the previous paragraph and the functions of bending $F_k^{(j)}$ in the domain ω_j may be represented by

$$F_k^{(j)} = \Re \Phi_k^{(j)}(z) \equiv \Re \sum_{r=1,3} \left[(m_r^{(k)})_j t_1^r + (m_r^{*(k)})_j t_2^r \right] \quad (k = 1, 2), \tag{4.8}$$

where the variables t_j are given by the equalities (1.4) and the real coefficients $m_r^{(k)}j$ and $m_r^{*(k)}$ will be determined.

As for the torsion's function f (see 3.6), let us represent the conditions for the operator $D_n F_k$ on the ellipse γ_e in the form

$$[D_n F_k^{(j)}]_e \equiv \{ \Re[(n_1 + in_2) \Phi_k^{\prime (j)}(z)] \}_e = (H_k^{(j)})_{\gamma_e} \quad (k = 1, 2),$$
(4.9)

where $H^{(k)}$ is given by the equality (1.8) and by (see (1.3))

$$(n_1 + in_2)_{\gamma_e} = \Theta_e^{-1}(b_e \cos \theta + a_e \sin \theta).$$

From the expressions (1.4), (1.8), (1.9), (4) we get

$$(D_n F_k^{(j)})_{\gamma_e} = \Theta_e^{-1} \Re \sum_{r=1,3} r[p_e^r(m_r^{(k)})_j \exp(ir\theta)$$
(4.10)

$$-q_e^r(m_r^{*(k)})_j \exp(-ir\theta)]$$

$$(4.11)$$

$$(0 < \theta < 2\pi).$$

$$[H_k^{(j)}]_{\gamma_e} = \Theta_e^{-1} \sum_{r=1,3} [A_{re}^{(k)} \exp(ir\theta)$$
(4.12)

$$+(A_{-re}^{(k)})_{j}\exp(-ir\theta)]$$
(4.13)
(e = 0,1),

where Θ_e , p_e and q_e are given by the equalities (1.4) and (1.9). In accordance with (1.8), the coefficients $A_k^{(j)}$ may be represented in the form

$$16A_{1e}^{(1)} = 16A_{-1e}^{(1)} = 2\nu b_e c^2 + 3a_e^2 b_e (2+\nu), \qquad (4.14)$$

$$8A_{3e}^{(1)} = 8A_{-3e}^{(1)} = \left(1 + \frac{1}{2}\nu\right)a_e^2b_e - \nu b_ec^2; \qquad (4.15)$$

$$16A_{1e}^{(2)} = 16A_{-1e}^{(2)} = 2i\nu a_j c^2 - 3ia_j b_j^2 (2+\nu), \qquad (4.16)$$

$$8A_{3e}^{(2)} = -8A_{-3e}^{(2)} = i\left(1 + \frac{1}{2}\nu\right)a_eb_e^2 - i\nu a_ec^2, \qquad (4.17)$$

where $c^2 = a_e^2 - b_e^2$ and $i^2 = -1$.

As in the previous paragraph, after some elementary calculations (what in detail will be given below for a two-layered tube), for determination of the coefficients $m_r^{(k)}$ and $m_r^{*(k)}$ in the expressions of the functions F_k (for the homogeneous tube), given by the equalities (2), the following algebraic equations are obtained:

$$m_1^{(k)} p_e - m_1^{*(k)} q_e = A_{1e}^{(k)}, (4.18)$$

$$3(m_3^{(k)}p_e^3 - m_3^{*(k)}q_e^3) = A_{3e}^{(k)} \ (e = 0, 1; k = 1, 2).$$
(4.19)

Hence we obtain

$$m_1^{(k)} = B_1^{-1} (A_{11}^{(k)} q_0 - A_{10}^{(k)} q_1), \qquad (4.20)$$

$$m_1^{*(k)} = B_1^{-1} (A_{11}^{(k)} p_0 - A_{10}^{(k)} p_1);$$
(4.21)

$$3m_3^{(\kappa)} = B_3^{-1} (A_{31}^{(\kappa)} q_0^3 - A_{30}^{(\kappa)} q_1^3), \qquad (4.22)$$

$$3m_3^{*(k)} = B_3^{-1}(A_{31}^{(k)}p_0^3 - A_{30}^{(k)}p_1^3) \quad (k = 1, 2), \tag{4.23}$$

where

$$B_1 = p_1 q_0 - p_0 q_1 > 0, \quad B_3 = p_1^3 q_0^3 - p_0^3 q_1^3 > 0, \quad p_1 > p_0, q_0 > q_1.$$
(4.24)

Now let us consider the elliptic tube composed by two isotropic materials, occupying two domains Ω_1 and Ω_2 , glued along the interface Γ_1 bounded by the planes (1.1) and the interior and exterior elliptic surfaces Γ_0 and Γ_2 . The constants of elasticity in each of the elliptic ring Ω_e (e = 1, 2) will be supplied with the index e. We assume that the different elastic materials have the same Poisson's ratio $\nu_1 = \nu_2$ and the different modulus of the elasticity $E_1 \neq E_2$.

As in the problem for the homogeneous tube, it is proposed that the resultant bending force $P(P_1, P_2, 0)$, of the exterior forces acting at the end $x_3 = l$ of the composed elliptic tube, is applied at the point (x_1^0, x_2^0, l) of this end.

The solution of this problem, components of the displacements and the stresses in each of domains Ω_e we seek in the form (1). Substituting these expressions in the equations (1.20)–(1.22) and taking into account that the Poisson's ratio in the domains Ω_1 and Ω_2 has the same values $\nu_1 = \nu_2$), for the functions $(f)_e \equiv f_e$ and $(F_k)_e \equiv F_k^{(e)}$ we obtain the boundary value problem (1.5)–(1.7). We assume $\nu_1 = \nu_2 \equiv \nu$ and, therefore, according to (1.8) and (2.4), on the interface γ_1 we have

$$[g_k^{(j)}]_1 = [g_k^{(j)}]_2, \quad [H_k^{(j)}]_1 = [H_k^{(j)}]_2 \quad (j,k=1,2).$$

Therefore, the boundary conditions (1.6)–(1.7) for the harmonic functions F_k we obtain in the form

$$[D_n F_k^{(2)}]_2 = [H_k^{(2)}]_2$$

on γ_2 ,

$$[D_n F_k^{(1)}]_0 = [H_k^{(1)}]_0$$

on γ_0

$$[\mu_1 D_n F_k^{(1)}]_1 - [\mu_2 D_n F_k^{(2)}]_2 = (\mu_1 - \mu_2) [g_1(k)n_1 + g_2^{(k)}n_2], \quad (4.25)$$

$$[F_k^{(1)}]_1 - [F_k^{(2)}]_2 = 0 \qquad (4.26)$$

on γ_1 .

We recall that the torsion's functions f_j in the domains Ω_j for the two-layered elliptic tube was determined in §3 by the equalities (3.5) and (3.19)–(3.22). The functions $F_k^{(j)}$ in each of domains Ω_j will be represented in the form (2), where the variables t_1 and t_2 are given in §1 and the coefficients $(m_e^{(k)})_j$, $(m_e^{*(k)})_j$ will be determined.

Taking into account the expressions (3)–(4) and the conditions (9), we obtain

$$\Re \sum_{r=1,3} r[p_e^r(m_r^{(k)})_j \exp(ir\theta) - q_e^r(m_r^{*(k)})_j \exp(-ir\theta)] \quad (4.27)$$

$$= \sum_{r=1,3} [A_{re}^{(k)} \exp(ir\theta) + A_{-re}^{(k)} \exp(-ir\theta)]$$
(4.28)

$$(e = 0, 1; k, j = 1, 2)$$

$$(4.29)$$

$$(2.29)$$

$$\Re \sum_{r=1,3} r\{p_1^r[\mu_1(m_r^{(k)})_1 - \mu_2(m_r^{(k)})_2]\exp(ir\theta)$$
(4.30)

$$-q_1^r[\mu_1(m_r^{*(k)})_1 - \mu_2(m_r^{*(k)})_2]\exp(-ir\theta)\}$$
(4.31)

$$= (\mu_1 - \mu_2) \sum_{r=1,3} [A_{re}^{(k)} \exp(ir\theta) + A_{re}^{(k)} \exp(-ir\theta)], \qquad (4.32)$$

$$\Re \sum_{r=1,3} \{ p_1^r [(m_r^{(k)})_1 - (m_r^{(k)})_2] \exp(ir\theta)$$
(4.33)

$$-q_1^r[(m_r^{*(k)})_1 - (m_r^{*(k)})_2] \exp(-ir\theta)\}$$

= 0 (4.34)

Comparing both sides of these equations, the members with the same powers of exp, for the coefficients we obtain the following algebraic equations

$$r[p_0^r(m_r^{(k)})_1 - q_0^r(m_r^{*(k)})_1] = 2A_{r0}^{(k)}, \quad r[p_2^r(m_r^{(k)})_2 - q_2^r(m_r^{*(k)})_2] = 2A_{r2}^{(k)},$$

$$rp_1^r[\mu_1(m_r^{(k)})_1 - \mu_2(m_r^{(k)})_2] - rq_1^r[\mu_1(m_r^{*(k)})_1 - \mu_2(m_r^{*(k)})_2] = 2A_{r1}^{(k)},$$

$$p_1^r[(m_r^{(k)})_1 - (m_r^{(k)})_2] + q_1^r[(m_r^{*(k)})_1 - (m_r^{*(k)})_2] = 0, \quad (4.35)$$

$$(k = 1, 2; r = 1, 3),$$

where p_e , q_e and $A_{re}^{(k)}$ are given by the equalities (1.8) and (5), respectively. These expressions depend on the index r = 1, 2. Hence we obtain 8 algebraic equations with respect to 8 coefficients $(m_r^{(k)})_j$ and $(m_r^{*(k)})_j$.

From the first four equations we have

$$(m_r^{*(k)})_j = q_s^{-r} [p_s^r (m_r^{(k)})_j - 2r^{-1} A_{js}^{(k)}]$$

$$(j = 1, 2; \quad s = 2j - 2; \quad r = 1, 3).$$

$$(4.36)$$

Excluding from the first equation of the system (11) the coefficients $(m_r^{*(k)})_j$, by means of the expressions (12), we obtain

$$\mu_1 Q_{r0}^{(1)}(m_r^{(k)})_1 - \mu_2 Q_{r2}^{(1)}(m_r^{(k)})_2 = B_r^{(k)},$$

$$Q_{r0}^{(2)}(m_r^{(k)})_1 - Q_{r2}^{(2)}(m_r^{(k)})_2 = C_r^{(k)} \quad (r = 1, 3), \qquad (4.37)$$

where

$$Q_{re}^{(j)} = p_1^r + (-1)^j q_1^r p_e^r q_e^{-r}, (4.38)$$

$$B_{r}^{(k)} = 2r^{-1}(A_{r1}^{(k)} - \mu_{1}q_{1}^{r}q_{0}^{-r}A_{r0}^{(k)} + \mu_{2}q_{1}^{r}q_{2}^{-r}A_{r2}^{(k)}), \qquad (4.39)$$

$$C_r^{(k)} = 2r^{-1}(q_0^{-r}A_{r0}^{(n)} - q_2^{-r}A_{r2}^{(n)})$$
(4.40)

$$(e = 0, 2; j = 1, 2; r = 1, 3).$$
(4.41)

Taking into account $a_e^2 - b_e^2 = c^2$, where c = const is a focal length, and $a_j > a_{j-1}, b_j > b_j - 1$ (j = 1, 2), we conclude $q_{j-1} > q_j, p_j > p_{j-1}$ (j = 1, 2), where (see (1.8)) $p_j = a_j + b_j, q_j = a_j - b_j$ (j = 0, 1, 2).

Thus, according to (14), we obtain

$$Q_{r0}^{(2)} > 0, \quad Q_{r2}^{(2)} > 0, \quad Q_{r0}^{(1)} = p_0^r (p_1^r p_0^{-r} - q_1^r q_0^{-r}) > 0,$$

$$Q_{r2}^{(1)} = p_2^r (p_1^r p_2^{-r} - q_1^r q_2^{-r}) < 0 \quad (r = 1, 3).$$
(4.42)

From the equations (13) we obtain

$$(m_r^{(k)})_1 = \nabla_r^{-1} (B_r^{(k)} Q_{r2}^{(2)} - \mu_2 C_r^{(k)} Q_{r2}^{(1)}), \qquad (4.43)$$

$$(m_r^{(k)})_2 = \nabla_r^{-1} (B_r^{(k)} Q_{r0}^{(2)} - \mu_1 C_r^{(k)} Q_{r0}^{(1)})$$
(4.44)

$$(r = 1, 3; k = 1, 2), (4.45)$$

where

$$\nabla_r = \mu_1 Q_{r0}^{(1)} Q_{r2}^{(2)} - \mu_2 Q_{r0}^{(2)} Q_{r2}^{(1)} \quad (r = 1, 3).$$
(4.46)

According to (16), $\nabla_r > 0$ and after substituting the values (16) in the right-hand side of the expressions (12), we obtain the values of the coefficients $(m_r^{*(k)})_j$ directly. Therefore, the bending functions $F_k^{(j)}$ are determined completely.

Now we must consider the equilibrium of the part of the tube as the rigid body, included between the upper end $x_3 = l$ and the plane $x_3 = x_3^0$ ($0 \le x_3^0 < l$). We must take into account that the normal of the plane of the upper end is $n_u(0, 0, +1)$ and on the opposite lower end is $n_l(0, 0, -1)$.

At first we must verify whether the components (1) produce the bending's forces P_1 and P_2 at the end of the tube. Substituting the components τ_{jk} , given by the equalities (1), into the first three equations of (1.15), using the formulas (1.16) and the boundary conditions (9), we have

$$\int \int_{\omega} \tau_{e3} d\omega = \sum_{j=1,2} \int \int_{\omega_j} x_e D_3 \tau_{33} d\omega_j = P_e \quad (e = 1, 2), \quad (4.47)$$

$$\int \int_{\omega} \tau_{33} d\omega = 0. \tag{4.48}$$

According to (2.6) and (1), the third equality is satisfied identically and the first two equations will be satisfied if the constants C_1 and C_2 from (1) will be chosen in the following form:

$$C_1 = P_1 (J_{11}^{(1)} + J_{11}^{(2)})^{-1}, \quad C_2 = P_2 (J_{22}^{(1)} + J_{22}^{(2)})^{-1}, \quad (4.49)$$

where $J_{jj}^{(m)}$ are determined by the equalities (2.6)–(2.10).

Now we consider the sixth equation from (1.15), which is related to the equilibrium of the indicated part of the tube under the acting of the torsion's forces. On the upper end $(x_3 = l)$, there are acting two forces P_1 and P_2 applied at the point (x_1^0, x_2^0, l) and parallel to the axis Ox_1 and Ox_2 , respectively. Therefore, these forces create with respect of the axis Ox_3 the torsion moment $M_{\tau}^p = x_1^0 P_2 - x_2^0 P_1$ and the stresses τ_{13} and τ_{23} , acting on the lower end $x_3^0 = l - x_3(0 \le x_3 < l)$ with the norm n(0,0,-1), creating the torsion's moment $M_{\tau}^s = \int \int_{\omega} (x_2\tau_{13} - x_1\tau_{23})d\omega$. Thus, for the equilibrium of the indicated part by acting of the torsion's factors, it must be satisfied the equation

$$\int \int_{\omega} (x_1 \tau_{23} - x_2 \tau_{13}) d\omega + x_1^0 P_2 - x_2^0 P_1 = 0.$$
 (**).

Substituting in this expression the values of the components τ_{j3} from (1), we obtain that the constants G must be determined by the equalities

$$G = M_{\tau}G_{1},$$

$$M_{\tau} = -\sum_{j=1,2} \int \int_{\omega_{j}} \sum_{l=1,2} (-1)^{l} x_{3-l} [P_{l} + C_{l}D_{l}F_{l}^{(j)} \qquad (4.50)$$

$$-C_{l}x_{l}^{2} - C_{1}(g_{l}^{(1)})_{j} - C_{2}(g_{l}^{(2)})_{j}]d\omega_{j},$$

where $g_l^{(m)}$ and G_1^* are given by the equalities (2.4) and (3.18), respectively. The bending functions are represented by the equalities (2) and (12)–(17).

Thus, the problem of the bending of the composed two-layered isotropic elliptic tube is solved completely.

References

- Arutiunjan N. Kh., Abramjn B. L. A torsion of elastic bodies. Publishing house of physics. - Math. literature, Moscow, 1963, (in Russian).
- Bassali W. A., Oboid S. A. On the torsion of elastic cylindrical bars. ZAMM, Band V. 61, No. 12, pp. 639-650.
- 3. Bors C. I. Teoria elasticitatii corpuliror anisotrope. Bucuresti, 1970.
- 4. Djerbashian M. M. An Expansion by system of rational functions with a fix of poles. Proc. of acad. of sci. of Armen., V. 2, No. 1, pp.3-51, 1967,(in Russian).

- Erokhin V. D. The best linear approximation of the functions an analitical continuity from a given of a continuum in a given domain. O. Success. of math. sci., V. 23, No. 1, pp. 91-132, 1968, (in Russian).
- Faber G. Uber polynomische entwicklungen. Mathem. Ann. V. 57, pp. 389-408, 1903.
- Gardomateas G. A. Torsion of a filament wound anisotropic elliptic cylinder with variable module of elasticity. Inter. jour. of elast., V. 6, pp. 459-470, 1989.
- 8. Green A. E., Adkins I. E. Large elastic deformations and non-linear continuum mechanics. Oxford, Gralendon press, 1960.
- Iesan D. Saint-Venant's problems for inhomogeneous and anisotropic elastic bodies. Jour. of elasticity, V. 6, No. 3, pp. 277-294, 1976.
- Khatiashvili G. M. a) Homogeneous and Composed Elastic Cylinders. Tbilisi, "Mecniereba", 180 p., 1991.(in Russian); b) On the torsion of anelliptic tubes. Proceedings of Javakhishvili Tbilisi State University, Applied Math. and Comput. Science, V. 330, No. 19, pp. 43-46, 1998.
- Kutateladze G. A. On the torsion of piece-wise homogeneous beams. Reports of the Acad. of Sci. of USSR, V. 118, pp. 1295-1298, 1971, (in Russian).
- 12. Lekhnitskii S. G. *Theory of Elasticity of an Anisotropic Body*. Mir Publishers^{*}, Moskow, (translated from the revised 1977 Russian edittion), 1981.
- 13. Lewis T. Wheeler. Stress bounds for the torsion of tubes of uniform whole thickness. Jour. of elasticity, V. 4, pp. 281-292, 1974.
- 14. Love A. E. H. *Mathematical theory of elasticity*. 4-th ed. Cambridge, University Press, New York, 1927.
- 15. Muskhelishvili N. I. Some Basic Problems of the Mathematical Theory of elasticity. Ervrn P. Noordhofh, NV Groningen, Netherlands, 1963.
- 16. Saint-Venant B. a) Memore sur la torsion des prismes, avec des considerations sur leur flection, etc. Memories presents par diversavants a l'Academie des sciences, t.14, 1856., b) Memore sur la flection des prismes, etc. Jour. de mathem atiques pures et applq., public j. Liouville, 2 ser., V. 1, 1856.
- Sneddon I. N., Berry D. S. *The classical theory of elasticity*. Spliger-verlag, Berlin, Gottingen, Heidelberg, 1958.

- 18. Suetin P. K. Faber's polynomials exspressions . Moskow, Publishing house "Science", p. 336, 1984, (In Russian).
- 19. Timoshenko S. P., Goodier I. N. *Theory of Elasticity (3-d ed.)*. Inter. Stud. Ed., McGrow Hill Company. New York.
- Yutaka Arimistu, Kazumi Nishioka, Toyomistu Sendo A study of Saint-Venant's principle for composite materials by means of internal stress fields.
 J. apll. mech. (Transactions of ASME), V. 62, pp. 53–58.