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Abstract

In the present work symmetrized sequential-parallel decomposition difference scheme

of the third degree precision for the solution of Cauchy abstract problem is offered.

Third degree precision is reached by introducing α = 1
2 ± i 1

2
√

3
complex parameter.

For the error of the considered scheme the explicit a priori estimation is obtained.
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Introduction

The study of the approximated schemes of the solution of evolution prob-
lems leads to the conclusion that to each approximated scheme corresponds
a certain operator (the solution operator of a discrete problem), which ap-
proximates the solution operator (semigroup) of a continuous problem. The
inverse statement is also true: constructing approximation of a continuous
semigroup, thereby we build an approximated scheme of the solution of
an evolution problem. For example, if we apply the Rotte’s method for
the solution of an evolution problem, the solution operator of the obtained
semidiscrete problem will be a discrete semigroup. Thus we arrive at the
problem of approximation of a continuous semigroup by means of discrete
semigroups (see T. Kato [35], Ch. IX).

If a decomposition method is applied, the corresponding solution op-
erator generates the Trotter formula, (see Trotter H. [53]) or the Chernoff
formula, (see Chernoff P. R. [8], [9]) or a formula, which is the combination
of these formulas. Therefore, the error estimate of a decomposition method
is equivalent to the problem of approximation of a continuous semigroup
using Trotter and Chernoff type formulas. The works of T. Ichinose and
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S. Takanobu [31], T. Ichinose and H. Tamura [32], J. Rogava [45] (see also
[46] Ch. II) are dedicated to the error estimate of the Chernoff and Trotter
type formulas.

There exist decomposition schemes of two types: differential and differ-
ence. Trotter type formulas correspond to differential schemes, and Cher-
noff type formulas - to difference schemes.

We call Trotter type formulas the formulas, which give an approxima-
tion of a semigroup by the combination of semigroups generated by the
addends of its generating operator.

We call Chernoff type formulas the formulas, which can be obtained
from Trotter type formulas if we replace the semigroups by the correspond-
ing resolvents.

The decomposition scheme, associated with the Trotter formula, allows
us to split the Cauchy problem for an evolution equation with the operator
A = A1 +A2 into two problems corresponding to the operators A1 and A2.
These problems are solved sequentially on each time interval of the length
t/n.

The decomposition scheme, associated with the Chernoff formula, is
known as the method of fractional steps (see N. N. Ianenko [29]).

The first works devoted to the construction and investigation of decom-
position schemes for nonstationary problems were published in the fifties
and sixties of the 20-th century. (see V. B. Andreev [2], G. A. Baker [3],
G. A. Baker, T. A. Oliphant [4], G. Birkhoff, R. S. Varga [6], G. Birkhoff,
R. S. Varga, D. Young [7], J. Douglas [14], J. Douglas, H. Rachford [15], E.
G. Diakonov [11],[12], M. Dryja [16], G. Fairweather, A. R. Gourlay, A. R.
Mitchell [17], I. V. Fryazinov [18]), D. G. Gordeziani [23], A. R. Gourlay,
A. R. Mitchell [27], N. N. Ianenko [28], [29], N. N. Ianenko, G. V. Demidov
[30], A. N. Konovalov [36], G. I. Marchuk [39], G. I. Marchuk, N. N. Ianenko
[41], G. I. Marchuk, U. M. Sultangazin [42], D. Peaceman, H. Rachford [43],
V. P. Ilin [33], A. A. Samarskii [47]-[49], R. Temam [52]). The works of
these authors were the basis of the further investigations of decomposition
schemes.

From the point of view of computation, decomposition schemes can be
divided into two groups: schemes of sequential account (for example see G.
I. Marchuk [40]) and schemes of parallel account (D. G. Gordeziani, H. V.
Meladze [25], [26], D. G. Gordeziani, A. A. Samarskii [24], A. M. Kuzyk, V.
L. Makarov [38]). In [46] (see Ch. II) are obtained the explicit estimates for
decomposition schemes of parallel account, which were considered in [25].
At present, there exist many papers dedicated to decomposition method
(see [29], [40], [50] and their references).

In the above-stated works the considered schemes has the first or sec-
ond order precision. As far as we know, high order precision decomposition
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formulas in the case of two addends (A = A1 + A2) for the first time were
obtained by B. O. Dia and M. Schatzman (see [13]). Let us note that the
formulas constructed in this paper are not automatically stable. Decom-
position formulas are called automatically stable if the sum of the absolute
values of split coefficients is equal to one. Q. Sheng proved (see [51]) that on
the real number field there does not exist an automatically stable decom-
position of the semigroup exp (−tA) with the precision order higher than
two. In the works [19]-[21], by introducing a complex parameter, there are
constructed the third order decomposition differential schemes, the corre-
sponding formulas of which represent automatically stable decomposition
formulas.

In the present work there are constructed the third order decomposition
difference schemes. These schemes can be obtained on the basis of the
decomposition formulas constructed in [21], if we replace semigroups by
the corresponding resolvent polynomials of high order precision. For the
considered schemes there are obtained explicit a priori estimates. Under
explicit estimates we imply such a priori estimates for the error of solution,
where the constants in the right-hand side do not depend on the solution
of an initial continuous problem, i.e. are absolute constants.

1. Statement of the problem and main result

Let us consider the Cauchy abstract problem in the Banach space X :

du(t)
dt

+ Au(t) = f(t), t > 0, u(0) = ϕ, (1.1)

where A is a closed linear operator with the definition domain D [A],
which is everywhere dense in X, ϕ is a given element from X, f(t) ∈
C1 ([0;∞) ;X).

Let the operator (−A) generate the strongly continuous semigroup
{exp(−tA)}t≥0, then the solution of the problem (1.1) is given by the fol-
lowing formula ([34], [37]):

u(t) = U(t, A)ϕ +

t∫

0

U(t− s,A)f(s)ds, (1.2)

where U(t, A) = exp (−tA) is a strongly continuous semigroup.
Let A = A1 + A2, where Aj (j = 1, 2) are compactly defined, closed,

linear operators in X.
As it is well-known, the essence of decomposition method consists in

splitting the semigroup U (t, A) by means of the semigroups U (t, Aj) (j = 1, 2).
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In [21] (see also [22],[23]) there is constructed the following decomposition
formula with the local precision of fourth order:

V (τ) =
1
2

[U (τ, αA1) U (τ, A2) U (τ, αA1) + U (τ, αA2) U (τ,A1) U (τ, αA2)] ,

(1.3)
where α = 1

2 ± i 1
2
√

3

(
i =

√−1
)
.

In the above-mentioned work it is shown that:

U (τ, A)− V (τ) = Op

(
τ4

)
,

where Op

(
τ4

)
is the operator, norm of which is of the fourth order with re-

spect to τ (more precisely, in the case of the unbounded operator
∥∥Op

(
τ4

)
ϕ
∥∥ =

O
(
τ4

)
for any ϕ from the definition domain of Op

(
τ4

)
). At the same time,

in [22], we constructed the semigroup approximations with the local preci-
sion of the fourth order using the following resolvent polynomials:

W (τ,A) = aI + b (I + λτA)−1 + c (I + λτA)−2 , (1.4)

W (τ,A) =
(

I − 1
3
τA

)
(I + λτA)−1 (

I + λτA
)−1

,

where in the first formula λ = 1
2 + 1

2
√

3
, a = 1− 2

λ + 1
2λ2 , b = 3

λ − 1
λ2 , c =

1
2λ2 − 1

λ , and in the second λ = 1
3 ± i 1

3
√

2

(
i =

√−1
)
.

The approximations defined by formulas (1.4) in the scalar case repre-
sent the Pade approximations for exponential functions (see [5]).

Using simple transformation, we can show that the operator W (τ,A)
defined by formula (1.4) coincides with the transition operator of the Cala-
han scheme (see [54]). The stability of the Calahan scheme for an abstract
parabolic equation is investigated in [1].

On the basis of formulas (1.3) and (1.4) we can construct the follow-
ing decomposition formula (Analogously we can construct a decomposition
formula for another resolvent polynomial):

V (τ) =
1
2

[W (τ, αA1) W (τ, A2)W (τ, αA1)

+W (τ, αA2)W (τ, A1) W (τ, αA2)] . (1.5)

Below we shall show that this formula has the precision of the fourth
order:

U(τ, A)− V (τ) = Op

(
τ4

)
.

In the present work, on the basis of formula (1.5), a decomposition
scheme with the third order precision will be constructed for the solution
of problem (1.1).
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Let us introduce the following net domain:

ωτ = {tk = kτ, k = 0, 1, 2, ..., τ > 0}.
According to formula (1.2), we have:

u(tk) = U(τ,A)u (tk−1) +

tk∫

tk−1

U(tk − s,A)f(s)ds.

Let us rewritten this formula in the following form:

u (tk) = U(τ, A)u (tk−1)

+
τ

4

(
3U

(
τ,

1
3
A

)
f

(
tk−1/3

)
+ U (τ,A) f (tk−1)

)
+ Rk,4 (τ) ,

u (t0) = ϕ (k = 1, 2, ...) , (1.6)

where Rk,4 (τ) is the residual member of the quadrature formula

Rk,4 (τ) =

tk∫

tk−1

U(tk − s,A)f(s)ds

−τ

4

(
3U

(
τ,

1
3
A

)
f

(
tk−1/3

)
+ U (τ,A) f (tk−1)

)
· (1.7)

For the sufficiently smooth function f the following estimate is true (see.
Lemma 2.3):

‖Rk,4 (τ)‖ = O
(
τ4

)
.

On the basis of formula (1.6) let us construct the following scheme:

uk = V (τ)uk−1

+
τ

4

(
3VKN

(
1
3
τ

)
f

(
tk−1/3

)
+ VKN (τ) f (tk−1)

)
, (1.8)

u0 = ϕ (k = 1, 2, ...) ,

where

V (τ) =
1
2

[W (τ, αA1) W (τ, A2)W (τ, αA1)

+W (τ, αA2) W (τ, A1) W (τ, αA2)] ,

VKN (τ) = KN

(
τ,

1
2
A1

)
KN (τ, A2) KN

(
τ,

1
2
A1

)
,

KN(τ, A) =
(

I − 1
2
τA

)(
I +

1
2
τA

)−1

.
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and α = 1
2±i 1

2
√

3
, λ = 1

2± 1
2
√

3
, a = 1− 2

λ + 1
2λ2 , b = 3

λ− 1
λ2 , c = 1

2λ2 − 1
λ .

Let us note that the operator KN(τ, A) is the transition operator of the
Krank-Nickolson scheme.

Let us perform the computation of the scheme (1.8) by the following
algorithm:

uk = uk,0 +
τ

4
(3uk,1 + uk,2) ,

where uk,0 is calculated by the scheme:

vk−2/3 = W (τ, αA1) uk−1, wk−2/3 = W (τ, αA2) uk−1,

vk−1/3 = W (τ, A2) vk−2/3, wk−1/3 = W (τ, A1) wk−2/3,

vk = W (τ, αA1) vk−1/3, wk = W (τ, αA2) wk−1/3,

uk,0 =
1
2
[vk + wk], u0 = ϕ, (1.9)

and uk,s (s = 1, 2) - by the scheme:

uk−2/3,s = KN

(
τ,

1
2
γsA1

)
f (tk − γsτ) ,

uk−1/3,s = KN (τ, γsA2) uk−2/3,s,

uk,s = KN

(
τ,

1
2
γsA1

)
uk−1/3,s,

with γ1 = 1
3 and γ2 = 1.

We need the natural powers of the operator A = A1+A2 (As, s = 2, 3, 4) .
Usually they are defined as follows:

A2 =
(
A2

1 + A2
2

)
+ (A1A2 + A2A1) ,

A3 =
(
A3

1 + A3
2

)
+

(
A2

1A2 + ... + A2
2A1

)
+ (A1A2A1 + A2A1A2) ,

A4 =
(
A4

1 + A4
2

)
+

(
A3

1A2 + ... + A3
2A1

)

+
(
A2

1A2A1 + ... + A2
2A1A2

)
+ (A1A2A1A2 + A2A1A2A1) .

Obviously, the definition domain D (As) of the operator As is the inter-
section of the domains of its addends.

Let us introduce the following denotations:

‖ϕ‖A = ‖A1ϕ‖+ ‖A2ϕ‖ , ϕ ∈ D [A] ,

‖ϕ‖A2 =
2∑

i,j=1

‖AiAjϕ‖ , ϕ ∈ D
[
A2

]
,

where ‖·‖ is a norm in X, ‖ϕ‖As (s = 3, 4) are defined similarly.
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The following theorem takes place:
Theorem 1.1 Let the following conditions be satisfied:
(a) There exists such τ0 > 0 that for any 0 < τ ≤ τ0 there exist operators

(I + γλiτAj)
−1 , j = 1, 2, γ = 1, α, α and they are bounded. Besides, the

following inequalities are true:

‖W (τ, γAj)‖ ≤ eωτ , ω = const > 0;

(b) The operator (−A) generates the strongly continuous semigroup
U (t, A) = exp (−tA), for which the following inequality is true:

‖U(t, A)‖ ≤ Meωt, M, ω = const > 0;

(c) U (s,A) ϕ ∈ D
[
A4

]
for any s ≥ 0;

(d) f(t) ∈ C3([0,∞);X); f (t) ∈ D
[
A3

]
, f ′(t) ∈ D

[
A2

]
, f ′′(t) ∈

D [A] and U (s,A) f (t) ∈ D
[
A4

]
for any fixed t and s (t, s ≥ 0) .

Then the following estimate holds:

‖u(tk)− uk‖ ≤ ceω0tktkτ
3

(
sup

s∈[0,tk]
‖U(s,A)ϕ‖A4

+tk sup
s,t∈[0,tk]

‖U(s,A)f (t)‖A4 +

sup
t∈[0,tk]

‖f(t)‖A3 + sup
t∈[0,tk]

∥∥f ′(t)
∥∥

A2

+ sup
t∈[0,tk]

∥∥f ′′(t)
∥∥

A
+ sup

t∈[0,tk]

∥∥f ′′′(t)
∥∥
)

, (1.10)

where c and ω0 are positive constants.

2. Auxiliary lemmas

Let us prove the auxiliary lemmas on which the proof of the Theorem 1.1
is based.

Lemma 2.1 If the condition (a) of the Theorem 1.1 is satisfied, then
for the operator W (t, A) the following decomposition is true:

W (t, A) =
k−1∑

i=0

(−1)i t
i

i!
Ai + RW,k(t, A), k = 1, 2, 3, 4, (2.1)
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where, for the residual member, the following estimate holds:

‖RW,k(t, A)ϕ‖ ≤ c0e
ω0ttk

∥∥∥Akϕ
∥∥∥ , ϕ ∈ D

[
Ak

]
, c0, ω0 = const > 0.

(2.2)

Proof. We obviously have:

(I + γA)−1 = I − I + (I + γA)−1 = I − (I + γA)−1 (I + γA− I)
= I − γA (I + A)−1 .

From this for any natural k we can get the following expansion:

(I + γA)−1 =
k−1∑

i=0

(−1)i γiAi + γkAk (I + γA)−1 . (2.3)

Let us decompose the resolvent polynomial W (τ, A) according to the
formula (2.3) up to the first order, we obtain:

W (τ, A) = aI + b (I + λτA)−1 + c (I + λτA)−2

= (a + b + c) I + RW,1(τ, A), (2.4)

where

RW,1(τ, A) = − (b + c) λτA (I + λτA)−1 − cλτA (I + λτA)−2 .

Since (I + λτA)−1 is bounded according to the condition (a) of the
Theorem 1.1, therefore:

‖RW,1(τ, A)ϕ‖ ≤ c0e
ω0ττ ‖Aϕ‖ , ϕ ∈ D [A] . (2.5)

Substituting the values of the parameters a, b and c in (2.4), we obtain:

W (τ, A) = I + RW1,1(τ, A). (2.6)

Let us decompose the resolvent polynomial W (τ,A) according to the
formula (2.3) up to the second order:

W (τ, A) = (a + b + c) I − (b + 2c)λτA + RW,2(τ,A), (2.7)

where

RW,2(τ, A) = (b + 2c) λ2τ2A2 (I + λτA)−1 + λ2τ2 (I + λτA)−2 A2.

According to the condition (a) of the Theorem 1.1 we have:

‖RW,2(τ, A)ϕ‖ ≤ c0e
ω0ττ2

∥∥A2ϕ
∥∥ , ϕ ∈ D

[
A2

]
. (2.8)
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If we substitute the values of the parameters a, b and c in (2.7), we
obtain:

W (τ, A) = I − τA + RW,2(τ, A). (2.9)

Let us decompose the resolvent polynomial W (τ, A) according to the for-
mula (2.3) up to the third order:

W (τ,A) = (a + b + c) I − (b + 2c) λτA + (b + 3c) λ2τ2A2

+RW,3(τ, A), (2.10)

where

RW,3(τ,A) = − (b + 3c) λ3τ3 (I + λτA)−1 A3 − cλ3τ3 (I + λτA)−2 A3,

According to the condition (a) of the Theorem 1.1 we have:

‖RW,3(τ, A)ϕ‖ ≤ c0e
ω0ττ3

∥∥A3ϕ
∥∥ , ϕ ∈ D

[
A3

]
. (2.11)

If we substitute the values of the parameters a, b and c in (2.10), we
obtain:

W (τ, A) = I − τA +
1
2
τ2A2 + RW,3(τ, A). (2.12)

Finally let us decompose the resolvent polynomial W (τ, A) according
to the formula (2.3) up to the fourth order:

W (τ,A) = (a + b + c) I − (b + 2c) λτA + (b + 3c) λ2τ2A2

−(b + 4c)λ3τ3A3 + RW,4(τ,A), (2.13)

where

RW,4(τ,A) = (b + 4c) λ4τ4 (I + λτA)−1 A4 + cλ4τ4 (I + λτA)−2 A4.

According to the condition (a) of the Theorem 1.1 we have:

‖RW,4(τ, A)ϕ‖ ≤ c0e
ω0ττ4

∥∥A4ϕ
∥∥ , ϕ ∈ D

[
A4

]
. (2.14)

If we substitute the values of the parameters a, b and c in (2.13), we
obtain:

W (τ, A) = I − τA +
1
2
τ2A2 − 1

6
τ3A3 + RW,4(τ, A). (2.15)

Uniting formulas (2.6),(2.9),(2.12) and (2.15) we obtain formula (2.1),
and uniting inequalities (2.5), (2.8), (2.11) and (2.14) we obtain estimate
(2.2) ¥
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Lemma 2.2 If the conditions (a), (b) and (c) of the Theorem 1.1 are
satisfied, then the following estimate holds:

∥∥∥
[
Uk (τ, A)− V k (τ)

]
ϕ
∥∥∥ ≤ ceω0tktkτ

3 sup
s∈[0,tk]

‖U(s,A)ϕ‖A4 , (2.16)

where c and ω0 are positive constants.
Proof. The following formula is true (see Kato. T. [35], p. 603):

A

t∫

r

U (s,A) ds = U (r,A)− U (t, A) , 0 ≤ r ≤ t. (2.17)

Hence we get the following expansion:

U(t, A) =
k−1∑

i=0

(−1)i t
i

i!
Ai + Rk(t, A), (2.18)

where

Rk(t, A) = (−A)k

t∫

0

s1∫

0

...

sk−1∫

0

U(s,A)dsdsk−1...ds1. (2.19)

Let us decompose all the resolvent polynomials in the operator V (τ)
according to the formula (2.1) from right to left, so that each residual
member be of the fourth order. We shall have:

V (τ) = I − τA +
1
2
τ2A2 − 1

6
τ3A3 + RV,4 (τ) , (2.20)

where
RV,4 (τ) =

1
2

[R1,2 (τ) + R2,1 (τ)] ,

and

Ri,j (τ) = RW,4(τ, αAi)− τRW,3(τ, αAi)Aj +
1
2
τ2RW,2(τ, αAi)A2

j

−1
6
τ3RW,1(τ, αAi)A3

j + W (τ, αAi)RW,4(τ,Aj)

−ατRW,3(τ, αAi)Ai

+ατ2RW,2(τ, αAi)AjAi − 1
2
ατ3RW,1(τ, αAi)A2

jAi

−ατW (τ, αAi)RW,3(τ, Aj)Ai

+
1
2
α2τ2RW,2(τ, αAi)A2

i −
1
2
α2τ3RW,1(τ, αAi)AjA

2
i

+
1
2
α2τ2W (τ, αAi)RW,2(τ, Aj)A2

i −
1
6
α3τ3RW,1(t, αAi)A3

i
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−1
6
α3τ3W (τ, αAi)RW,1(τ, Aj)A3

i

+W (τ, αAi)W (τ, Aj)RW,4(τ, αAi),
i, j = 1, 2.

Hence according to the condition (a) of the Theorem 1.1 we have the
following estimate:

‖RV,4 (τ) ϕ‖ ≤ ceω0ττ4 ‖ϕ‖A4 , ϕ ∈ D
[
A4

]
. (2.21)

From the (2.18) (k = 4) and (2.20) it follows:

U (τ, A)− V (τ) = R4 (τ, A)−RV,4 (τ) .

From here according to inequalities (2.19) and (2.21) we obtain the
following estimate:

‖[U (τ, A)− V (τ)]ϕ‖ ≤ ceω0ττ4 ‖ϕ‖A4 , ϕ ∈ D
[
A4

]
. (2.22)

The following representation is obvious:

[Uk(τ, A)− V k(τ)]ϕ =
k∑

i=1

V k−i(τ)[U(τ, A)− V (τ)]U i−1(τ,A)ϕ.

Hence, according to the conditions (a), (b), (c) of the Theorem 1.1 and
inequality (2.22), we have the sought estimate ¥

Lemma 2.3 Let the following conditions be satisfied:
(a) The operator A satisfies the conditions of the Theorem 1.1;
(b) f(t) ∈ C3([0,∞);X), and f(t) ∈ D

[
A3

]
for every fixed t, f (k)(t) ∈

D
[
A3−k

]
, k = 1, 2.

Then the following estimate holds
∥∥∥∥∥∥

τ∫

0

U(τ − s,A)f (s) ds− τ

4

[
U (τ, A) f (0) + 3U

(
1
3
τ, A

)
f

(
2
3
τ

)]∥∥∥∥∥∥
≤

≤ ceω0ττ4

[∥∥∥∥A3f

(
2
3
τ

)∥∥∥∥ + sup
ξ∈[o,τ ]

∥∥A2f ′ (ξ)
∥∥

+ sup
ξ∈[o,τ ]

∥∥Af ′′ (ξ)
∥∥ + sup

ξ∈[o,τ ]

∥∥f ′′′ (ξ)
∥∥
]

, (2.23)

where c and ω0 are positive constants.
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Proof. Using the simple transformation, we will obtain the following
representation:

τ∫

0

U(τ − s,A)f (s) ds− τ

4

[
U (τ,A) f (0) + 3U

(
1
3
τ, A

)
f

(
2
3
τ

)]

= r (τ)− U (τ, A) z (τ)−R (τ, A) f

(
2
3
τ

)
. (2.24)

where

z (τ) =
1
4

τ∫

0

f (0) ds +
3
4

τ∫

0

f

(
2
3
τ

)
ds−

τ∫

0

f (s) ds,

R (τ, A) =
3
4

τ∫

0

U

(
1
3
τ, A

)
ds +

1
4

τ∫

0

U (τ,A) ds−
τ∫

0

U(τ − s,A)ds

and

r (τ) =

τ∫

0

[U(τ − s,A)− U (τ,A)]
[
f (s)− f

(
2
3
τ

)]
ds.

According to formula (2.17) for r (τ) we can obtain the following rep-
resentation:

r (τ) = A

τ∫

0




s∫

0

A

ξ∫

0

U(τ − η,A)dηdξ

s∫

2
3
τ

f ′ (ξ) dξ


 ds

−A

τ∫

0




s∫

0

U (τ, A) dξ

s∫

2
3
τ

ξ∫

0

f ′′ (η) dηdξ


 ds.

Hence we obtain the following estimate:

‖r (τ)‖ ≤ ceωττ4

[
sup

ξ∈[o,τ ]

∥∥A2f ′ (ξ)
∥∥ + sup

ξ∈[o,τ ]

∥∥Af ′′ (ξ)
∥∥
]

. (2.25)

For the function (−z (τ)) the following representation is valid:

−z (τ) =
1
4

τ∫

0

s∫

0

ξ∫

0

η∫

0

f ′′′(ζ)dζdηdξds +
3
4

τ∫

0

s∫

2
3
τ

ξ∫

0

η∫

0

f ′′′(ζ)dζdηdξds.
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Hence we obtain the following estimate:

‖U (τ,A) z (τ)‖ ≤ ceωττ4 sup
s∈[o,τ ]

∥∥f ′′′(s)
∥∥ . (2.26)

And finally let us transform the integral R (τ,A) according to formula
(2.17):

−R (τ, A) = −3
4
A3

τ∫

0

s∫

2
3
τ

ξ∫

0

η∫

0

U(τ − ζ,A)dζdηdξds

−1
4
A3

τ∫

0

s∫

0

ξ∫

0

η∫

0

U(τ − ζ,A)dζdηdξds.

Hence we obtain the following estimate:
∥∥∥∥R (τ,A) f

(
2
3
τ

)∥∥∥∥ ≤ ceωττ4

∥∥∥∥A3f

(
2
3
τ

)∥∥∥∥ . (2.27)

From equality (2.24) according to inequalities (2.25), (2.26) and (2.27)
we obtain the sought estimate.

According to the Lemma 2.3 for Rk,4 (τ) (see formula (1.7)), the follow-
ing estimate holds:

‖Rk,4 (τ)‖ ≤ ceω0ττ4

[∥∥∥∥A3f

(
2
3
τ

)∥∥∥∥ + sup
ξ∈[tk−1,tk]

∥∥A2f ′ (ξ)
∥∥

+ sup
ξ∈[tk−1,tk]

∥∥Af ′′ (ξ)
∥∥ + sup

ξ∈[tk−1,tk]

∥∥f ′′′ (ξ)
∥∥
]

. (2.28)

3. Proof of the Theorem 1.1

Let us return to the proof of the Theorem 1.1.
Proof. Let us write formula (1.5) in the following form:

u(tk) = Uk(τ,A)ϕ +
k∑

i=1

Uk−i(τ,A)
(
F

(1)
i + Rk,4 (τ)

)
, (3.1)

where

F
(1)
i =

τ

4

(
3U

(
1
3
τ, A

)
f

(
ti−1/3

)
+ U (τ, A) f (ti−1)

)
. (3.2)
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Analogously let us present uk as follows:

uk = V k(τ)ϕ +
k∑

i=1

V k−i(τ)F (2)
i , (3.3)

where

F
(2)
i =

τ

4

(
3VKN

(
1
3
τ

)
f

(
ti−1/3

)
+ VKN (τ) f (ti−1)

)
. (3.4)

From equalities (3.1) and (3.3) it follows:

u(tk)− uk =
[
Uk(τ, A)− V k(τ)

]
ϕ

+
k∑

i=0

[
Uk−i(τ, A)F (1)

i − V k−i(τ)F (2)
i

]

+
k∑

i=0

Uk−i(τ,A)Rk,4 (τ) =
[
Uk(τ, A)− V k(τ)

]
ϕ

+
k∑

i=1

[(
Uk−i(τ, A)− V k−i(τ)

)
F

(1)
i

+V k−i(τ)
(
F

(1)
i − F

(2)
i

)]

+
k∑

i=0

Uk−i(τ,A)Rk,4 (τ) . (3.5)

From formulas (3.2) and (3.4) we have:

F
(1)
i − F

(2)
i =

τ

4

(
3

(
U

(
1
3
τ, A

)
− VKN

(
1
3
τ

))
f

(
ti−1/3

)
+

+
(

U (τ, A)− VKN

(
1
3
τ

))
f (ti−1)

)
. (3.6)

The following inequality can be easily obtained:

‖[U (τ, A)−KN (τ)]ϕ‖ ≤ ceω0ττ3 ‖ϕ‖A3 , ϕ ∈ D
[
A3

]
.

Hence analogously to estimate (2.22) we obtain:

‖[U (τ, A)− VKN (τ)]ϕ‖ ≤ ceω0ττ3 ‖ϕ‖A3 , ϕ ∈ D
[
A3

]
.

According to this inequality, from equality (3.6) we obtain the following
estimate: ∥∥∥F

(1)
k − F

(2)
k

∥∥∥ ≤ ceω0ττ4 sup
t∈[tk−1,tk]

‖f(t)‖A3 . (3.7)

51



AMIM Vol.9 No.1, 2004 Z.Gegechkori, J.Rogava, M.Tsiklauri +

According to the Lemma 2.1 we have:
∥∥∥∥∥

k∑

i=1

(
Uk−i(τ, A)− V k−i(τ)

)
F

(1)
i

∥∥∥∥∥ ≤ ceω0tkt2kτ
3 sup

s,t∈[0,tk]
‖U(s,A)f (t)‖A4 .

(3.8)
From equality (3.5) according to inequalities (3.7), (3.8), (2.16), (2.28)

and the condition (b) of the Theorem 1.1 we obtain:

‖u(tk)− uk‖ ≤ ceω0tktkτ
3

(
sup

s∈[0,tk]
‖U(s,A)ϕ‖A4

+tk sup
s,t∈[0,tk]

‖U(s,A)f (t)‖A4 + sup
t∈[0,tk]

‖f(t)‖A3

)

+ sup
t∈[0,tk]

∥∥f ′(t)
∥∥

A2 + sup
t∈[0,tk]

∥∥f ′′(t)
∥∥

A
+ sup

t∈[0,tk]

∥∥f ′′′(t)
∥∥

¥
Remark 3.1. The operator V k (τ) is the solution operator of the above-

considered decomposed problem. It is obvious that, according to the condi-
tion of the Theorem 1.1

(‖W (t, γAj)‖ ≤ eωt
)
, the norm of the operator

V k (τ) is less than or equal to eω0tk . From this follows the stability of the
above-stated decomposition scheme on each finite time interval.

Remark 3.2. In the case of the Hilbert space, when A1, A2 and A1 +
A2 are self-adjoint non negative operators, in estimate (1.10) ω0 will be
replaced by 0. Alongside with this, for the transition operator of the splitted
problem, the estimate

∥∥V k (τ)
∥∥ ≤ 1 will be true.

Remark 3.3. In the case of the Hilbert space, when A1, A2 and A1+A2

are self-adjoint, positive definite operators, in estimate (1.10) ω0 will be
replaced by −α0, α0 > 0. Alongside with this, for the transition operator of
the splitted problem, the estimate

∥∥V k (τ)
∥∥ ≤ e−α1tk , α1 > 0 will be true.

Remark 3.4. According to the classical theorem of Hille-Philips-Iosida
(see [44]), if the operator (−A) generates a strongly continuous semigroup,
then the inequality in the condition (b) of the Theorem 1.1 is automatically
satisfied. The proof of this inequality is based on the uniform boundedness
principle, according to which the constants M and ω exist, but generally can
not be explicitly constructed (according to the method of the proof). That
is why we demand satisfying of the inequality in the condition (b) of the
Theorem 1.1.

4. Stability of the splitted problem

In this paragraph we state the sufficient conditions, from which follows the
inequality:
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∥∥∥V k (τ)
∥∥∥ ≤ c, c = const > 0 (k = 1, 2, ...) .

Fullfilment of the inequality means the stability of splitted problem.
Let us examine first the stability of non split problem. Below we will

prove the theorems, concerning the stability of non split problems with
the transition operators given by formulas (1.4). These theorems obviously
have an independent value, and the proof of the stability of split problem
is based on them.

Theorem 4.1 Assume that A is a linear, closed, densely defined opera-
tor in the Banach space X. Assume the sector S = {z : |arg z| < ϕ0, z 6= 0,
0 < ϕ0 < π

2

}
completely includes the spectrum of the operator A and for any

z /∈ S (z 6= 0) the following inequality holds:

‖zI −A‖ ≤ c

|z| , c = const > 0. (4.1)

Then, for any τ > 0 and natural k, the following estimate is valid:
∥∥∥W k (τ,A)

∥∥∥ ≤ c, c = const > 0,

where

W (τ, A) =
(

I − 1
3
τA

)
(I + λτA)−1 (

I + λτA
)−1

, λ =
1
3
± i

1
3
√

2
.

The proof of the Theorem 1.1 is based on the following lemma.
Lemma 4.1 Assume that the operator A satisfies conditions of the

Theorem 1.1.
Then for any τ > 0 and natural k the following inequality is valid:

∥∥∥(I + τA)−k
∥∥∥ ≤ c, c = const > 0.

Proof. Let us compare the operator (I + τA)−k to the operator (I + (tk/2)A)−2

(tk = kτ). With this purpose we present their difference by means of the
Danford-Taylor integral (see [51] Ch. VII):

(I + τA)−k −
(

I +
tk
2

A

)−2

=
1

2πi

∫

Γ

(
(1 + τz)−k −

(
1 +

tk
2

z

)−2
)

× (zI −A)−1 dz, (4.2)
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where Γ is a bound of the sector
{|arg z| ≤ ϕ, ϕ0 ≤ ϕ < π

2

}
. Let us esti-

mate the absolute value of the integrand scalar function. With this purpose
we use the following representation:

(1 + τz)−k −
(

1 +
tk
2

z

)−2

=

tk∫

0

d

ds

[(
1 +

tk − s

2
z

)−2 (
1 +

s

k
z
)−k

]
ds

= z2

tk∫

0

(
s

k
− tk − s

2

)
×

(
1 +

tk − s

2
z

)−3

(4.3)

×
(
1 +

s

k
z
)−k−1

ds. (4.4)

Obviously we have:
∣∣∣1 +

s

k
z
∣∣∣
k+1

=
∣∣∣1 +

s

k
ρ (cosϕ + i sinϕ)

∣∣∣
k+1

=
(

1 + 2
s

k
µρ +

s2

k2
ρ2

) k+1
2

,

µ = cosϕ, ϕ = arg (z) , |z| = ρ.

From here follows the inequality:
∣∣∣1 +

s

k
z
∣∣∣
k+1

≥
(
1 +

s

k
µρ

)k+1
≥ 1 +

k + 1
k

sµρ

+
k + 1
2k

s2µ2ρ2 +
k2 − 1
6k2

s3µ3ρ3

≥ 1 + sµρ +
1
2
s2µ2ρ2 +

1
8
s3µ3ρ3 (k ≥ 2) .

With account of this inequality we have:
∣∣∣∣1 +

tk − s

2
z

∣∣∣∣
3 ∣∣∣1 +

s

k
z
∣∣∣
k+1

≥
(

1 + (tk − s) µρ +
1
2

(tk − s)2 µ2ρ2 +
1
8

(tk − s)3 µ3ρ3

)

×
(

1 + sµρ +
1
2
s2µ2ρ2 +

1
8
s3µ3ρ3

)

≥ 1 + tkµρ +
1
2

(
s2 + (tk − s)2

)
µ2ρ2

+
1
8

(
s3 + (tk − s)3

)
µ3ρ3

≥ 1 + tkµρ +
1
4
t2kµ

2ρ2 +
1
32

t3kµ
3ρ3 (4.5)

≥ (1 + µ0tkρ)3 , µ0 =
1

3
√

2
µ.
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From (4.3), with account of (4.4), it follows:
∣∣∣∣∣(I + τz)−k −

(
I +

tk
2

z

)−2
∣∣∣∣∣ ≤ ρ2

(1 + µ0tkρ)3

tk∫

0

(
s

k
+

tk − s

2

)
ds

≤ (tkρ)2

(1 + µ0tkρ)3
(4.6)

From (4.2), with account of (4.5) and (4.1), it follows:
∥∥∥∥∥(I + τA)−k −

(
I +

tk
2

A

)−2
∥∥∥∥∥ ≤ ct2k

∞∫

0

ρ

(1 + µ0tkρ)3
dρ = c. (4.7)

Due to inequality (4.1) we have:
∥∥∥∥∥
(

I +
tk
2

A

)−2
∥∥∥∥∥ ≤ c. (4.8)

From (4.6) and (4.7), according to the triangle inequality, the sought
estimate follows ¥

Proof of the Theorem 4.1.
Let us compare the operator W k (τ,A) to the corresponding powers of

the operator W0 (τ,A) = (I + τA)−1. Obviously the representation is valid:

W k
0 (τ, A)−W k (τ, A) = (W0 (τ,A)−W (τ, A))

k−1∑

i=0

W i
0 (τ, A) W k−i−1 (τ, A) ,

(4.9)
In order to estimate the norm of the operator in the right hand-side

of this equality let us estimate the absolute values of the scalar functions
W (τ, z) , W0 (τ, z) , and W0 (τ, z)−W (τ, z) (z ∈ Γ). We obtain:

W (τ, z) =
P1 (τz)
P2 (τz)

,

where

P1 (z) = 1− 1
3
z,

P2 (z) = 1 +
2
3
z +

1
6
z2.

Let us calculate the squares of the modules of the polynomials P1 (τz) and
P2 (τz):

|P1 (τz)|2 =
∣∣∣∣1−

1
3
τρ (cosϕ + i sinϕ)

∣∣∣∣
2

= 1− 2
3
τµρ +

1
9
τ2ρ2,(4.10)
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|P2 (τz)|2 =
∣∣∣∣1 +

2
3
τρ (cosϕ + i sinϕ)

+
1
6
τ2ρ2 (cos (2ϕ) + i sin (2ϕ))

∣∣∣∣
2

= 1 +
4
3
τµρ +

(
1
9

+
2
3
µ2

)
τ2ρ2

+
2
9
τ3µρ3 +

1
36

τ4ρ4, (4.11)

where µ = cosϕ, ϕ = arg (z) , |z| = ρ.

From (4.9) and (4.10) it follows:

(1 + τµ1ρ)2 |P1 (τz)|2 ≤ |P2 (τz)|2 , µ1 =
1
3
µ.

From here we obtain:

|W (τ, z)| = |P1 (τz)|
|P2 (τz)| ≤

1
1 + µ1τρ

. (4.12)

Let us estimate the absolute value of the function W0 (τ, z)−W (τ, z).
We obviously have:

|W0 (τ, z)−W (τ, z)| =
1
4τ2ρ2

(1 + 2τµρ + τ2ρ2)
1
2 |P2 (τz)|

.

From here, taking into account the inequality |P2 (τz)| ≥ (1 + τµ1ρ)2 , it
follows:

|W0 (τ, z)−W (τ, z)| ≤ τ2ρ2

(1 + µ1τρ)3
. (4.13)

For the absolute value of W0 (τ, z) , the following estimate holds:

|W0 (τ, z)| =
1

|1 + τρ (cosϕ + i sinϕ)|
=

1

(1 + 2τµρ + τ2ρ2)
1
2

≤ 1
1 + µτρ

. (4.14)

Let us present the operator-function W k
0 (τ, A)−W k (τ, A) by means of

the Danford-Taylor integral:

W k
0 (τ, A)−W k (τ, A) =

1
2πi

∫

Γ

(
W k

0 (τ, z)−W k (τ, z)
)

(zI −A)−1 dz,
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where Γ is the bound of the sector
{|arg z| ≤ ϕ, ϕ0 ≤ ϕ < π

2

}
. From here,

according to (4.8), we obtain:

W k
0 (τ, A)−W k (τ, A) =

1
2πi

∫

Γ

((W0 (τ, z)−W (τ, z))

×
k−1∑

i=0

W i
0 (τ, z) W k−i−1 (τ, z)

)
(zI −A)−1 dz,

From here, with account of inequalities (4.1),(4.11),(4.12) and (4.13), we
obtain the following estimate:

∥∥∥W k
0 (τ, A)−W k (τ, A)

∥∥∥ ≤ c

∞∫

0

(
τ2ρ2

(1 + τµ1ρ)3

×
k−1∑

i=0

1
(1 + τµρ)i

1

(1 + τµ1ρ)k−i−1

)
1
ρ
dρ

≤ ckτ

∞∫

0

τρdρ

(1 + τµ1ρ)k+1

= ck

∞∫

0

xdρ

(1 + x)k+1
= c.

From this inequality and the estimate of Lemma 4.1, according to the
triangle inequality, follows the sought estimate ¥

Theorem 4.2 Assume that the operator A satisfies conditions of the
Theorem 1.1.

Then, for any τ > 0 and natural k, the following estimate holds:
∥∥∥W k (τ,A)

∥∥∥ ≤ c, c = const > 0, (4.15)

where

W (τ, A) = aI + b (I + λτA)−1 + c (I + λτA)−2 ,

λ =
1
2

+
1

2
√

3
,

a = 1− 2
λ

+
1

2λ2
,

b =
3
λ
− 1

λ2
,

c =
1

2λ2
− 1

λ
.
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Proof. Estimate (4.14) was proven by Alibekov and Sobolevskii (see
[1]), for the case when the operator A, instead of condition (4.1), satisfies
the following condition:

‖zI −A‖ ≤ c

1 + |z| , c = const > 0. (4.16)

The above-mentioned authors present the operator W k (τ, A) as the sum
of the following three addends:

W k (τ, A) =
(
(a + b + c) + (2a + b) λτA + aλ2τ2A2

)

× (I + λτA)−2 W k−1 (τ,A)
=

(
1 + (2a + b) λτA + aλ2τ2A2

)
(I + λτA)−2 W k−1 (τ,A)

= J1,k (τ,A) + J2,k (τ, A) + J3,k (τ, A) , (4.17)

where

J1,k (τ,A) = (I + λτA)−2 W k−1 (τ, A) ,

J2,k (τ,A) = 2a0λτA (I + λτA)−2 W k−1 (τ, A) , a0 = 2a + b,

J3,k (τ,A) = aλ2τ2A2 (I + λτA)−2 W k−1 (τ, A) .

It should be noted that the estimates (for any τ > 0 and natural k):

‖Jl,k (τ,A)‖ ≤ c, l = 2, 3, c = const > 0 (4.18)

are valid in the case when the operator A satisfies condition (4.1). The
above-mentioned authors need rather heavier condition (4.15) to obtain for
the operator J1,k (τ,A) an estimate, analogous to estimate (4.17), since in
this case they use fraction powers of the operator A. Below we give the
estimate of the operator J1,k (τ, A) in the case of condition (4.1).

Let us estimate the norm of the operator J1,k (τ, A). At first we estimate
the module of the scalar function W (τ, z). Obviously we have:

W (τ, z) =
P3 (τz)
P4 (τz)

,

where

P3 (z) = 1 + a0λz + aλ2z2,

P4 (z) = (1 + λz)2 .
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Let us calculate the modules of the polynomials P3 (τz) and P4 (τz):

|P3 (τz)|2 = |1 + a0λτρ (cosϕ + i sinϕ)

+ aλ2τ2ρ2 (cos (2ϕ) + i sin (2ϕ))
∣∣2

= 1 + 2a0µλτρ + 2
(
1 + 2aµ2

)
λ2τ2ρ2 (4.19)

+2aa0µλ3τ3ρ3 + a2λ4τ4ρ4,

|P4 (τz)| = |1 + λτρ (cos ϕ + i sinϕ)|2
= 1 + 2µλτρ + λ2τ2ρ2. (4.20)

From (4.18) and (4.19) it follows:

|P3 (τz)|2 ≤ |P4 (τz)|2 .

From here follows the estimate:

|W (τ, z)| ≤ 1. (4.21)

In order to estimate the norm of the operator J1,k (τ, A) , we compare
it to the following operator:

W1 (τ, A) =
(
(I + a0λτA) (I + τA)−2

)k−1
(I + λτA)−2 ,

Let us present the difference between the operators J1,k (τ, A) and W1 (τ,A)
in the form:

J1,k (τ,A)−W1 (τ, A) = (I + λτA)−2

×
(

W k−1 (τ,A)−
(
(I + a0λτA) (I + λτA)−2

)k−1
)

= (I + λτA)−2
(
W (τ, A)− (I + a0λτA) (I + λτA)−2

)

×
k−2∑

i=0

(
(I + a0λτA) (I + λτA)−2

)i
W k−i−2 (τ, A)

=
1

2πi

∫

Γ

1
(1 + λτz)2

×
(

1 + a0λτz + aλ2τ2z2

(1 + λτz)2
− 1 + a0λτz

(1 + λτz)2

)

×
k−2∑

i=0

(
1 + a0λτz

(1 + λτz)2

)i

W k−i−2 (τ, z) (zI −A)−1 dz

=
1

2πi

k−2∑

i=0

∫

Γ

aλ2τ2z

(1 + λτz)4

(
1 + a0λτz

(1 + λτz)2

)i

×W k−i−2 (τ, z) z (zI −A)−1 dz. (4.22)
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By simple calculations we obtain:
∣∣∣∣
1 + a0λτz

(1 + λτz)2

∣∣∣∣ =
|1 + a0λτρ (cosϕ + i sinϕ)|
|1 + λτρ (cosϕ + i sinϕ)|2

≤ 1

(1 + 2λτµρ + λ2τ2ρ2)
1
2

≤ 1
1 + λτµρ

. (4.23)

From (4.21), with account of inequalities (4.1), (4.20) and (4.22), we
obtain:

‖J1,k (τ, A)−W1 (τ, A)‖ ≤ c
k−2∑

i=0

∞∫

0

τ2ρ

(1 + λτµρ)i+4
dρ

= c

k−2∑

i=0

∞∫

0

x

(1 + x)i+4
dx

= c
k−2∑

i=0

∞∫

0

(
1

(1 + x)i+3
− 1

(1 + x)i+4

)
dx

= c

k−2∑

i=0

(
1

i + 2
− 1

i + 3

)

=
(

1
2
− 1

k + 1

)
c ≤ c· (4.24)

In order to obtain the final estimate, we need to estimate the norm of
the operator W1 (τ, A). According to the Lemma 4.1 and the inequality
a0 = 2a + b < 1, we have:

‖W1 (τ, A)‖ ≤
∥∥∥∥
(
(I + a0λτA) (I + λτA)−2

)k
(I + λτA)−2

∥∥∥∥

≤
∥∥∥∥
(
(I + a0λτA) (I + λτA)−1

)k
∥∥∥∥

∥∥∥(I + λτA)−(k+2)
∥∥∥

≤ c

∥∥∥∥
(
a0I + (1− a0) (I + λτA)−1

)k
∥∥∥∥

≤ c

k∑

i=0

(
i
k

)
ai

0 (1− a0)
k−i

∥∥∥(I + λτA)−(k−i)
∥∥∥

≤ c
k∑

i=0

(
i
k

)
ai

0 (1− a0)
k−i = c.

From here and (4.23), due to the triangle inequality, it follows:

‖J1,k (τ,A)‖ ≤ c, c = const > 0. (4.25)
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From (4.16), with account of inequalities (4.17) and (4.24), we obtain
the sought estimate ¥

Theorem 4.3 Assume that the linear, closed, densely defined operators
A1 and A2 in the Banach space X satisfy the following conditions:

(a) The sector S =
{
z : |arg z| < ϕ0, z 6= 0, 0 < ϕ0 < π

3

}
completely

includes spectrums of the operators A1 and A2 and for any z /∈ S (z 6= 0)
the inequality holds:∥∥∥(zI −Aj)

−1
∥∥∥ ≤ c

|z| , c = const > 0, j = 1, 2;

(b) There exists such point z0 /∈ S that the resolvents of the operators
A1 and A2 are commutative at the point z0.

Then, for any τ > 0, for the transition operators corresponding to the
decomposition schemes defined by formulas (1.4), the following estimate is
valid: ∥∥∥V k (τ)

∥∥∥ ≤ c, c = const > 0 (k = 1, 2, ...) ,

where

V (τ) =
1
2

(V1 (τ) + V2 (τ)) ,

V1 (τ) = W (τ, αA1)W (τ, A2) W (τ, αA1) ,

V2 (τ) = W (τ, αA2)W (τ, A1) W (τ, αA2) .

Proof. It follows from the condition (b) of the theorem that the resol-
vents of the operators A1 and A2 are commutative at any points z1, z2 /∈
S, respectively. From here it follows that the operators W (τ, A1) and
W (τ, A2) are commutative. Therefore the equalities are valid:

V k
1 (τ) = W k (τ, αA1) W k (τ, A2) W k (τ, αA1) , (4.26)

V k
2 (τ) = W k (τ, αA2) W k (τ, A1) W k (τ, αA2) . (4.27)

It is obvious that if the operators A1 and A2 satisfy conditions of the
Theorem 4.3, then the operators γA1 and γA2 (γ = 1, α, α) will satisfy
conditions of the Theorem 4.1. Therefore, from formulas (4.25) and (4.26),
due to the Theorem 4.1 (Theorem 4.2), follow the estimates:∥∥∥V k

l (τ)
∥∥∥ ≤ c, l = 1, 2, c = const > 0. (4.28)

From the commutativity of the operators W (τ,A1) and W (τ, A2) fol-
lows the commutativity of the operators V1 (τ) and V2 (τ), hence the rep-
resentation is valid:

V k (τ) =
(

1
2

(V1 (τ) + V2 (τ))
)k

=
1
2k

k∑

j=0

(
k
j

)
V k−j

1 (τ) V j
2 (τ) .
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From here, according to inequalities (4.27), follows the estimate:

∥∥∥V k (τ)
∥∥∥ ≤ 1

2k

k∑

j=0

(
k
j

)∥∥∥V k−j
1 (τ)

∥∥∥
∥∥∥V j

2 (τ)
∥∥∥ ≤ 1

2k
c

k∑

j=0

(
k
j

)
= c.

¥
Theorem 4.4 Assume that A1 and A2 are linear, normal, densely de-

fined operators in the Hilbert space H. Assume further that the sector
S =

{
z : |arg z| < ϕ0, z 6= 0, 0 < ϕ0 ≤ π

3

}
completely includes the spec-

trums of the operators A1 and A2.
Then, for any τ > 0, for the transition operators corresponding to the

decomposition schemes defined by formulas (1.4), the following estimate is
valid:

‖V (τ)‖ ≤ 1.

Proof. Since the operators A1 and A2 are normal, their corresponding
resolvents also will be normal operators (see T. Kato [35], Ch. 5, §3). From
here it follows that W (τ, γA1) and W (τ, γA2) are also normal operators.
Therefore, due to inequalities (4.11) and (4.20), the estimate is valid:

‖W (τ, γAj)‖ ≤ sup
z∈S

|W (τ, γz)| ≤ 1.

From here follows the estimate to be proven ¥
Remark 4.1. Estimate (1.10) holds when the operators A1 and A2

satisfy the conditions of the Theorem 4.3, the operator A satisfies the con-
ditions of the Theorem 4.1, and besides the conditions (c) and (d) of the
Theorem 1.1 are valid.

Remark 4.2. It is obvious that if the resolvents of the operators A1

and A2 are commutative, then for exponential splitting we have an exact
coincidence. As regards resolvent splitting, it has an essential value even
for the commutative case, as the exact coincidence does not take place and
therefore, it is important to construct a stable splitting with the high order
precision.

5. Conclusion

In the case when the operators A1, A2 are matrices, it is obvious that the
conditions of the Theorem 1.1 are automatically satisfied. The conditions
of Theorem 1.1 are also satisfied if A1, A2 and A are self-adjoint, positive
definite operators. Moreover, the conditions of the Theorem 1.1 are au-
tomatically satisfied if the operators A1, A2 and A are normal operators.
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However, in this case, certain restrictions are imposed on the spectrums
of this operators: the spectrum of the operator A have to be included in
the right half-plane and the spectrums of the operators A1 and A2 have
to be included in the sector with angle of 1200, in order the spectrums of
the operators A1 and A2 to remain in the right half-plane after turning by
±300 (this is caused by multiplication of the operators A1 and A2 on the
parameters α and α).

The third order precision is reached by introducing a complex parame-
ter. For this reason, each equation of the given decomposed system is re-
placed by a pair of real equations, unlike the lower order precision schemes.
To solve the specific problem, (for example) the matrix factorization may
be used, where the coefficients are the matrices of the second order, unlike
the lower order precision schemes, where the common factorization may be
used.

It must be noted that, unlike the high order precision decomposition
schemes considered in [13], the sum of absolute values of coefficients of
the addends of the transition operator V (τ) equals to one. Hence the
considered scheme is stable for any bounded operators A1, A2.

6. Numerical example

There are computed the following test problems:

∂u (t, x, y)
∂t

− a (x, y)
∂2u (t, x, y)

∂x2
− b (x, y)

∂2u (t, x, y)
∂y2

= f (t, x, y) ,

(x, y) ∈ [0; 1]× [0; 1] ,
t ≥ 0,

u (0, x, y) = ϕ (x, y) ,

u (t, x, 0) = u (t, x, 1) = 0,

u (t, 0, y) = u (t, 1, y) = 0.

Test 6.1

f (t, x, y) = 0;
ϕ (x, y) = sin (πx) sin (πy) ;
a (x, y) = b (x, y) = 1.

Solution of the problem is u (t, x, y) = e−2π2t sin (πx) sin (πy) .
This test is interesting by that with increase of t the solution decreases

very quickly (converges to machine zero) and for this reason it becomes
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quite difficult to catch the behavior of the solution. The proposed high
precision scheme allows to obtain good accuracy, what is confirmed by the
numerical calculations (see Tables 1-2).

Test 6.2

f (t, x, y) = e2π2t
(
π2 (2 + a (x, y) + b (x, y)) sin (mπt) + mπ cos (mπt)

)

× sin (πx) sin (πy) ;
ϕ (x, y) = 0;
a (x, y) = 2 + sin (πx) sin (πy)
b (x, y) = 2 + 0.5 sin (πx) sin (πy) .

Solution of the problem is u (t, x, y) = e2π2t sin (mπt) sin (πx) sin (πy) .
This test is interesting by that the increase of the parameter m causes

the fast alternating-sign oscillation of the solution. In addition, we can
regularize the frequency of the oscillation according to time coordinates at
the expence of m. As the algorithm provides the high accuracy with respect
to time coordinate, it is natural that we take the oscillation with respect
to t. Obviously the factor e2π2t, with the increase of t, induces the fast
increase of the oscillation amplitude. This fact along with the oscillation
makes difficult to catch the behavior of the solution and for this reason it
is necessary to use the high precision schemes. It can be well seen on Table
3. Note that in this test the operators A1 and A2 are noncommutative.

Table 1: Test 6.1: (x, y) = (0.5, 0.5) ; τ = 1/64; h = 1/100
t ũ u |u− ũ| |(u− ũ) /u|

0.125 8479.62 E-05 8480.53 E-05 9.1 E-06 0.11 E-03
0.250 719.03 E-05 719.19 E-05 1.6 E-06 0.21 E-03
0.375 609.71 E-06 609.91 E-06 2.0 E-07 0.32 E-03
0.500 517.01 E-07 517.23 E-07 2.2 E-08 0.43 E-03
0.625 438.40 E-08 438.64 E-08 2.4 E-09 0.53 E-03
0.750 371.75 E-09 371.99 E-09 2.4 E-10 0.64 E-03
0.875 315.23 E-10 315.46 E-10 2.3 E-11 0.75 E-03
1.000 267.30 E-11 267.53 E-11 2.3 E-12 0.85 E-03

64



+ The Third Order Accuracy Operator Split of ... AMIM Vol.9 No.1, 2004

Table 2: Test 6.1: (x, y) = (0.5, 0.5) ; τ = 1/100; h = 1/142
t ũ u |u− ũ| |(u− ũ) /u|

0.1 13891.28 E-05 13891.11 E-05 1.7 E-06 0.12 E-04
0.2 19296.77 E-06 19296.30 E-06 4.7 E-07 0.24 E-04
0.3 26805.69 E-07 26804.71 E-07 9.8 E-08 0.37 E-04
0.4 3723.65 E-07 3723.47 E-07 1.8 E-08 0.48 E-04
0.5 5172.63 E-08 5172.32 E-08 3.1 E-09 0.60 E-04
0.6 7185.45 E-09 7184.90 E-09 5.5 E-10 0.77 E-04
0.7 9981.51 E-10 9980.66 E-10 8.5 E-11 0.85 E-04
0.8 1386.56 E-10 1386.43 E-10 1.3 E-11 0.94 E-04
0.9 1926.11 E-11 1925.90 E-11 2.1 E-12 0.11 E-03
1.0 2675.61 E-12 2675.29 E-12 3.2 E-13 0.12 E-03

Table 3: Test 6.2: m = 101; (x, y) = (0.5, 0.5) ; τ = 1/1000; h = 1/100
t ũ u |u− ũ| |(u− ũ) /u|

0.395 -788.00 E 00 -788.18 E 00 1.8 E-01 0.23 E-03
0.396 -30.91 E 00 -31.19 E 00 2.8 E-01 0.89 E-02
0.397 759.82 E 00 759.47 E 00 3.5 E-01 0.46 E-03
0.398 1504.72 E 00 1504.33 E 00 3.9 E-01 0.26 E-03

... ... ... ... ...
0.602 8436.00 E 01 8436.47 E 01 4.7 E 00 0.56 E-04
0.603 442.96 E 02 443.07 E 02 1.1 E 01 0.26 E-03
0.604 -19.10 E 02 -18.93 E 02 1.7 E 01 0.90 E-03
0.605 -497.81 E 02 -497.60 E 02 2.1 E 01 0.43 E-02

... ... ... ... ...
0.750 -19008.69 E 02 -19008.90 E 02 2.1 E 01 0.11 E-04

Here u is an exact solution and ũ - an approximate solution. In addition
we note that at the other nodes the error does not increase.
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