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Abstract

A version of linear theory for a body composed of two isotropic homogeneous is
studied. Two-dimensional flexural and membrane equations are received. Existence
and uniqueness of weak solution of the main mixed boundary value problem is proved.
it is shown that the particular flexures of two components of the mixture are equal.

Key words and phrases: Binary mixture, plate, weak solution.
AMS subject classification: 35J55, 74A40.

The theory of mixtures of elastic materials was originated in 1960. Main
mechanical properties of new model of elastic medium with complicated in-
ternal structure were first formulated in the works of C. Truesdell and R.
Toupin [1]. Later this theory was generalized and developed in many direc-
tions. Binary and multicomponent models of different type mixtures were
created and studied by means of various mathematical methods. There are
also being intensively developed the plane theories corresponding to the
above-mentioned three-dimensional models.

In this paper, a version of linear theory for a body composed of two
isotropic materials suggested by A.E. Green ([2],[3],[4]) is studied. For
this types of plates, by means of Ciarlet-Destuynder method ([6],[7]), two-
dimensional flexural and membrane equations are obtained. Existence and
uniqueness of weak solution of main mixed boundary value problems are
proved. It is worth mentioning that, in this case, particular flexures of two
components of the mixture are equal.

We assume that an origin and orthonormal basis {e;} have been chosen
in the three-dimensional Euclidean space, which will therefore be identified
with the space R3.

Let w be a domain in the plane spanned by the vectors e,, (under domain
we mean a bounded connected set with Lipschitz boundary), and let £ > 0
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be a dimensionless parameter that may be as small as we please. For each
>0, let

O :=wx] —eg,¢], I i=wx{e}, TC :=wx{-¢},

Yo C Ow, lengthyy > 0, 71 := dw — Y.
Let (z1,22) and ¢ = (21, 22,25) = (25

%) denote the generic points in
the sets @ and €,

0
ox§’

O = 05, := (;za and 05 :=
From now on, we assume that the Latin indices take their values in
the set {1,2,3}, Greek indices take their values in the set {1,2}, and the
repeated index means summation.
We assume that, for each e > 0, the set QF is occupied by an elastic body
which contains a mixture of two isotropic, homogeneus, elastic materials.
Statical equilibrium system of equations for a two-component mixture
has the form e
85 ij +7Tf:p§ P
(1)

ne
aE

— y 13
o — sz in €F,

o = ( 5+ ASO5uy” + A505uy” ) Gy + 2uier;” + 2p5el; + 20505,

’L]’

a;,ja ( + /\Eagup + A507u ) dij + 2,u§e;j6 + 2,w§e — 2X5h§;,

(2)
is Hooke’s law, (o U *) and (o, oy "% are stress tensors, (e, € “) and (e € °) are strain
tensors; p{ and p5 are densities of components of applied body forces; 7%

are interaction forces between mixture components and

€. _ 9E._€
5 = 0 m°,

where ..
asp ‘e a 05
e __ 2P2 e 2M1 ae e __ € €.
™™ = ——=0,u aqq, P~ = p1+ pa;
P
1€ 1€ e e .
u =(u; ), u = (u; )aredisplacement vector fields; o5, AJ, A5, A, A%,

ps, 5, ps are elasticity modulus, furthermore

g __ )¢
o5 = A3 —
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dij is Kroneker delta, (hg;) is the so called rotation tensor

1 / / 1" "
B =5 (afuf — o+ O] — afuf) . (4)
For simplicity, we introduce the following notations
! € ! € uzs n e
Py =0y —0i5(F—a3), Py =0y +0;5("—a3), ()
! E e T e ne T
Pl{::]' . :(PZ]7PZ_]) 3 U;Z(uj ,u]) 5
(6)
! £ e T ! £ " e T
e + = (e .65 ), Nyyi=(hy  hy ).

For every vector function (f, f")7
(£ 1" = @;f o )" @
By means of the notations (5), (6), relations (1)-(4) take the form
—OEP; = FF in O,
Pf = N5, 0i5 + 2MF€5; + 2X5h55,
where

1
e = 5(851@ + 0ju;3),

1 1 -1
= ysen —ond). s=( 1 ).

E & g A€
A QP A Q501

1 c 3 - € €
AE = P 1% , ME = M1 H3
LT SN 1 (% 5)
e p°

1€ e OégpE Otsps
Fy = (piF; 05 F; >T7 A3 — ;gl = A+ 282’
(Aa)T — Aa7 (ME)T — ME.

Consider the following problem

(—OP; = Ff in QF,
u; =0 on v X [—¢,€],
1€ 1ne (8)
gla on Fi_UFE_, gf = (gl y 9 )T7
€ e
Pijn] -
0 on v X [_5a5]’

19
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where (nf) is the unit outer normal vector along the boundary of the set
QF.

Lemma 1. Problem (8), at least formally (1) is equivalent to the
following variational problem P(Q°) : Ff € (L?(Q))?, g5 € (L* (IS U
re))?

1€ 1€ /€ e e e

u® € V(Q°):= {vE = (v; ,vq ,03 ,01 ,Uy ,v3 )€ (HY(Q)),

vE=0 on 0 x [—5,e]},

/ {85, (1) ey (v9) + 2 (M€ () 55 (vF) — 20505 (w0 by (v) | da®
Qe

= /(Ff)vadacE + / (g5)Tv5dre  for all v¢ € V(QF).
Qe e ure
Proof. Multiplying both sides of (1') on the matrix v§ = (vgs, v;w)T
integrating them on 2°, one obtain

T _ T
- [y = [ uiar
Qe Qe

After using the Green formula and taking into account relation (2/) and
the boundary conditions, the following formula takes place

/ (A€, (u) " gy (vF) + 2 (MFe;(u)) 55 (vF) + 2455, (w)) 705 o5 } da’
Qe

= / (FEYTwida® + / () Tv5dle  for all v& e V().
Qe FiUTi

(10)

According to (4), hfj = _hji ’

so that
(h5 () 0507 = my (950 = D)
1 1€ 1€ 1"E 1E
= b (a;vi T O )
o _1h€ £ 86 /5_86 1€ 86 //8_86 1"e
= 73 (u®) (O7v; v+ 05 i V)
= —hg;(u®)hg;(ve),
(55 ()T 050; = —h5;(w)Rs; (v0).

20
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By this, from (10), one obtains relation (9).
Now, if u® is a sufficiently smooth solution of problem P(Q¢), then,
analogously as above, we obtain that u® is a solution of problem (8). §

Lemma 2. Let

We(ef;, hij) = (Aae;p)Tegq + 2(M€efj)Te§j — 2X5hi;hi;

Then the estimate

W (el hy) 2 0% ((e5)7 ey + hshiy) 6 >0, D

ig0 'Yig ']

takes place if and only if

as5p5 2 2
X <0, ui >0, A="224205 > 0, detM® >0, det <A5 + M7 ) >0,
(12)
One can find the proof in [5].
Lemma 3. Let
B(u',ve) : = / {(Aae;p(ua))Tegq(va) +2 (M5 (u)) T 5 (ud)
Qe
—2X5hE;(u®)hi;(vE) } da®
and
1
2
Ve |l10s = / [(vj-)ij- + (8fv§)Tafv§] dx® 3 . (13)

(953
Then: a) The bilinear form B¢ (u®, v®) for every ¢ is bounded, i.e. Ik > 0
such that
B (u®, v9)| < killu|lLs (v lLas; (14)

b) If condition (12) is fulfilled then the form B¢(u®,v®) is V(Q°)-elliptic
for every ¢, i.e., k5 > 0 such that

B (v",v9) > k5 [Iv¥I3 o (15)

for every v € V(Q°).
Proof. a) If one uses Cauchy-Schwar’z inequality, for each £ > 0, there
exists d® > 0 such that

B (u,v) <d° Y / (8fu;-5)2d1:5 + / <8fu;€>2d:c5
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|
[NIES

3 2 : 2
X Z /(815,11;) dz | + /(821):;5) dxz®

p,q=1 Qe Qe
< kilu®llnellve]10s-

b) Let condition (12) be fulfilled. By Korn’s inequality with boundary
conditions ([6]), for each € > 0 there exists 6 > 0, ¢ > 0 such that

55
ZIvllEe: < 58/(efj(Ve))Tefj(Va)dﬂcE < 55/ [(e5;(v)) €5 (v9)
Qe Qe

—i—hfj(vg)h%(vs)] dz® < Bf(v®,v®).

Hence, we obtain (15), where k§ = ‘g—z. ]

Theorem 1. Let condition (12) be fulfilled. Assume furthermore that
2

Ff e (L*(99))? and ¢f € (L*(I' UT2))”".
P(£¢) has one and only one solution.
This solution can also be characterized as the unique solution of the

minimization problem. Find u® such that

Then the variational problem

u® € V() and J°(u®) = inf J°(v®), where

veeVv(Qe)
1
JW) = SR )~ LA,
L (vF) = / (Ff)Tvida® + / (g5)" vidr*.
Qe reure

Proof. For each € > 0 the linear functional L : V(Q°) — R is bounded.
Thus, by Lemma 3 and Lax-Milgram lemma [6], we obtain that Theorem
1 holds true. |

Remark. Lemma 3 and Theorem 1 hold also when A\f = 0.

Our aim is to study the behavior of the displacement fields u® as ¢ — 0.
Since these fields are defined on the sets Q¢, which themselves vary with ¢,
it is natural that our first task is transformation of the problem P(2¢) into
problems posed over a set independent from e¢.

Accordingly, we let

Q=wx]-1,1, 'y :=wx {1}, T'_ :==w x {—1}.

22
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Let x = (21,79, 73) denote a generic point on the set Q and let

0
0; = pr

With each point 2 € §, we associate the point z¢ € Qf through the
bijection

7w = (z1,22,23) € Q — 2% = (2F) = (21, 22,ex3) € Q°.

Note that .
05, =04 and 05 = gag. (16)

With the displacement field u® € V(QF), we associate the scaled dis-
placement field u(e) : © — R3 defined by the scalings
ul, (%) = ®uq(e)(x) and u§(zf) = euz(e)(z) for all 2° = n°x € O°.
(17)
We likewise associate with any vector field v¢ = v; € V(Q°) the scaled
vector field v = (v;) : Q — R3 defined by the scalings:

vE (2°) = e%vq(z) and v§(2°) = evs(z) for all x° = 7°x € QF.

We make the following assumptions on the data, we require that the
constants po, A1, ..., A5, M, M2, i3 do not depended on €, i.e.

Pe =P A= A1, 0 NS = Ns, i = i, g5 = po, 4§ = ps,

furthermore we require that the applied body force density and the applied
surface force bensity be of the following form

FE(2f) = e2Fy(x) and F5(2f) = 2 F3(x) for all 2f = n°x € QF,

65(2°) = 3ga(z) and ¢5(z°) = e'gs(x) for all 2° =n°r € TS UTE.

Introduce the following denotations

Q202 Q201
A= Iy As = P < K1 M3 )
A= , M= .
A+ 062pr Ao + Oéfopl H3 o p2

Using the scaling of the displacement and assumptions on the data, we
now reformulate the variational problem P(£2¢) in the following equivalent
form.

23
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Lemma 4. The scaled displacement u(e) solves the following varia-
tional problem, called the scaled three-dimensional problem P(e, )

u(e) € V(Q)={v= (0} vh e’ 0], 0", 0}) € (H' (@),
v=0 on 0 x [~1,1]},

/ {(Aeoo(u(e) err(v) +2(Meas(u(e))) eas(v)
Q

—2X5hap((E)) o (v)dar}
*fz / {(Aeoo (u(e))) ess(v) + (Aegs(u()))  err (V)
Q

+4(Megz(u(e))) eas(v) — 4Ashaz(u(e))has(v)} dz
o [+ 23ess(uE)T ex(v)ds
Q
= L(v) (18)
for all v e V(92), where

"

1 1 f , "
eij = 5(&4@ + 0jvi), hij = 5(31'%' — 0ju; + Oju; — Oivy),

L(v) = / (F) T vgdax + / (g:) T vidl.

Q ryur—

Proof. The relations (16), (17) and (18) altogether yield

E € € T £ £ £ € € T € £ ELE € € £
(A epp(u )) eqq(v )+ 2 (M eij(u )) eij(v ) — 2)\5hij(u )hij(v )

= < A err(v) + 5 (ean(a(e)) ()

g (ean(u(E)) err + Ly (Aem(u(e) en(v)

+et {(Meag(u(e)))Tea@(v) — 2X5hap(u(e))has(v)

5 (Meas (o)) eas(v) — 52 has(u(=) has(v)

2 (Mesn((e)) e |
(B0 = <) wi, (90)Tof = (00"

24
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Furthermore

/H(xs)dxs = 6/9(W€$)d$,

Qs Q

0(z7)dr* — / O(x")dl".
re ure rLur-

Besides,

u® € V(QF) < u(e) e V(Q).
For proof it suffices to combine these relations. [ |

From Theorem 1 and Lemma 4 it follows that if the conditions
2 2
As <0, pp >0, Al—%+§u1>o, detM > 0, det<A+3M> >0
P

are fulfilled, for each € > 0, the problem P(g,(2) has a unique solution u(e).
Now we prove an auxiliary lemma which we will use below.

Lemma 5. Let

A= (@ @) g g0 b
az ag b3 b2
be a symmetric 2 x 2 matrices such that detA > 0, detB > 0, a1 >

0, b1 > 0. Then for every k > 0, det(A+ kB) > 0.
Proof.

det(A + kB) = ajas — a3 + k*(biby — b3) + k(azby + a1by — 2azbs).
As a1, a9, by, by > 0, so
asb1 + a1by > 24/ ai1asb1by > 2asbs.

Therefore
det(A+ kB) > 0.

From condition (12) and Lemma 5, it follows that

det(A +2M) > 0,

25
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as A+ %M and M are symmetric matrices.
Introduce the denotation

A = < A A3 ) = A — A(A +2M) A,
)\3 )\2

The symmetry of this matrix follows from the symmetry of matrices A and
A+2M.

Together with condition (12) we will require the fulfillment of the fol-
lowing conditions

Ay >0, det(A* + M) > 0. (19)

Theorem 2. Let conditions (12") and (19) be fulfilled. For each ¢ > 0, let
u(e) denote the solution of problem P(g,). Then:
a) As € — 0, then family (u(e)). > 0 converges weakly in the space

V(Q):={ve (HY ()% v=0 on v x [~1, 1]}
b) Let u = ling u(e). Then u satisfies and is the unique solution of the
e—

following problem Pk, (€):
u€eVigr(Q):={veV(Q); e3(v)=0, has(v) =0 in Q},

/ {(W oo ()T er7(v) + 2 (Meas(w) eas(v) = 2Xshap(whas(v) | do
Q
= L(v), for all v e Vgn(Q),
c¢) The space V(Q) is equivalently defined as

!/ I !’ 1" " " ’ 1" ’ !’

* *
VKL(Q) = {V = (Ub Vg, U3, Uy, Vg, ’03)703 = U3 =13, Vg = Mg — x380¢773?

" "

Vo = Mo — 30075, With 1y, 1, € HY(W), 75 € H*(w),

«

! "

No =N =13 =03 =0 on 70},

where 0, denotes the outer normal derivative operator along ~. In partic-
ular, there exist functions ¢!’ = (C;,Cg) € (HY(w))? and ¢ = (¢3,G) €
(H?(w))? satisfying C; = C;; = (3 = 0,¢3 = 0 on 7 such that

I U 1 1 ! 1" .
U, = (o — 30003, Uy =C, —2300(3, and us=u3=¢_ in .

Let the functions eas(Crr), hag(Crr), gi° and go € (L*(w))? be defined by
]. 1 / / " "
eaﬁ(CH) = 5(80146 + 8BC04)’ ha,B(CH) = i(aoz 8 86Ca + 86Ca - aOéCﬁ)a

26
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1 1

g = gi(-,£1), pi == /FidCB:&, Qo = /Fadﬂﬁs + 904 — 9a-
21 “1

Then vector field ¢ = (Ci, Cé, Cf, c;’, ¢3) is obtained by solving two
independent variational problems:

1. The function (; satisfies the scaled two-dimensional flexural equa-
tions:

G5 €Va(w) = {n5 € H* W), ny=0,m5=0 on 7},

2~ % % 4,\ % « ’ N
/ {3)\AC3A773 + 3M8aﬁf3aaﬁ773} dw = /(Pg + p3)n3dw

w w

—/(q; +q.)0amidw  forall 3 € Va(w),

w

where

X=X 204+ A5, Ti= 1+ s + po.

2. The vector field ¢ = (Ci, Cé, Cf, C;) satisfies the scaled two-
dimensional membrane equations

Crr € Vir(w) == {mu = (1, oo mi, my) € (H1(@))', myy = 0om 0},

/ (2N eon(Cor)) err () + A(Meas(mi) eas(ns)

—4hag(Cp)hap(npy)} dw
= /(pa)Tnadw for all ng € Vy(w),

w

Proof. (i) Introduce the following notations

K(e) = (ij(€)), h(e) := (hi;(e)),

has(€) = €a(U(E)), aa(e) = Zeaa(u(e), ranle) i= ess(ule)),

() = hap(u(e)), Tras(e) = ~has(u(e)). (20)

27
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Let us show that the norms

lu@lha = {5 (KER o + 1 G1F0) }é ,

)

1

k(e = {z (I @) 0 + |n;;-<e>rag)} ,

%,J

1
2
lh(s)lo0 = {Z |hij|(23,g}
27]

are bounded independently of £, hence there exists a subsequence, still in-

dexed by ¢ for denotational convenience, and there exists u € (H*(Q))®, & €

((LQ(Q))“l)zXB, he (LQ(Q))SAXS3 (indices S and AS denote symmetric

and antisymmetric matrices, respectively) such that

ue) = u in (HY(Q))% as e = 0,and u=0 on v x [—1,1],

K(e) = K in ((LQ(Q))2X1)ZX3 as € — 0,

h(e) ~h in (L*(Q)5

as € — 0.

Strong and weak convergences are respectively denoted by — and —.

Let v = u(e) in the variational equations of problem P(g,Q) (see
Lemma 4). They then take a pemarkably simple form if the are expressed
in above notations, viz.

/ {(Aripp(€)) T igq(€) + 2(Mrij(2)) " kij(e) — 2Xshij(€)hij(e) } dw = Lu(e)).
Q

As conditions (12') are fulfilled, there exists § > 0 such that (see Lemma
2)

[ A ) ) + 20 €)) s €) = 23Ty (Vs €)}
Q

> 5 (|s(e)R o+ R g) -

We may also assume without loss of generality that ¢ < 1, hence we infer
from Korn’s inequality with boundary conditions that

dcllu(e) | o < dle(u(e))fo < (Ik@E)ia + h(E)Gq)

28
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< / {(Akpp(€))  Kgq(€) + 2(Mrij(2)) " kij(€) — 2X5hij(€)hij(e) } da

<Ll Lo s, v la(e)l1,0-

This inequalities imply that the norms ||u(e)|1,0, [<(¢)]o.q and |h(e)|oo
are bounded independently of ¢.
(ii) The weak limit u € (H'(€))® of this subsequence (u(¢))s>o belongs

to the subspace

VKL(Q) = {V S (Hl(Q))6; eig(V) =0, hag(V) =0 in Q,
v=0 on v x[-1,1]}

of the space V(). B
Since the sequences (k(g))e>0 and (h(e)).>¢ are bounded by (i), there
exists a constant ¢ independent of € such that

leas(u(e))]o.n < g, less(u(e))lon < ce®, |hag(u(e))lon < ce
)

by definitions. Hence e;3(u(e)) — in  (L%*(Q))? and has(ue)) —
0 in L) and thus e(u(e)) — in (L*(Q))? and hasz(u(e)) —
0 in L%(Q).

But u(e) — u in (H'(R2))% implies e;3(u(e)) — 0 in (L*(22))? and
has(u(e)) — 0 in L?(2). Hence

/ "

eiz(u) = (e;3(u), 613(‘1))T = (OvO)Tv has(u) = 0.

(iii) Let w € L?(Q2) be a function such that

/wagvdx =0 forall ve C™®Q),
Q

that satisfy v =0 on g x [—1,1]. Then w = 0 [7].

(iv) The components of the weak limit x5 € (L?(2))? of the subsequence
(k(€))e>0 and the component weak limit h;; € L?(2) of the subsequence
(h(e))e>0 satisfy

Fap = €ap(), hag(u) = hap(u), Kzz = —(A+2M)A " egq(u).

Since fap(e) = eqp(u(e)) and u(e) — u in (HY(Q))°, if follows that
KaB — Kag = €ap(u) in (L?(£2))? and Eaﬁ(e) — hag = hag(u).
The variational equations found in problem P(e, ) can be written as

/ [y () G+ 2(Mas(€))” = 25 (o (£))” } avipda

29
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42 [{@Mraa(©)T + 275(Fsle))T) O
Q

+ (2(M/€a3(€))T — 2)\5(ﬁa3(6))T) aa’Ug} dx

453 [ {raole)T + (A + 200w @)} e = L),
Q
where

Letting v3 = 0 in these equations and multiplyng by e, we obtain:

/ {2(Mka3(2))T + 2X5(has (€)' } Ogvadr = —¢ / {AKpp(€)dap
Q Q

+2M Kqop(e) — 2/\5ﬁa5(5)}T Oavpdx + eL(v)

for all v € V(Q) such that vs3 = 0. For each such v; the left-hand side
converges to

/ {QMHQ;S + 2)\5ﬁa3}T agvadiﬂ
Q

as € — 0 by the definition of weak convergence, and the right-hand side
convergence is bounded.
Hence

/{2Ml-€a3 + 2)\5ﬁa3}T83vadx =0 for all v, € (HI(Q))Q, v3 =0
Q

that vanish on vy x [—1, 1] and thus
MFkq3 + Ashaz =0 (21)
by (iii).

Letting v, = 0 in the variational equations and multiplying by 2, we
likewise obtain

/ {Akioo(e) + (A + 2M)rgs(e)}T Byvsda
Q

_ . / [2M kias(€) — 22\5Tia3(e) )T Bavsdir + 2L(v) = 0,
Q

30
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for all v € V(Q) such that v, = 0. Hence, passing to the limit as ¢ — 0,
gives

/ {A/igg + (A + 2M)I€33}T Osvzdr =0
Q

for all v3 € (H'(2))? that vanish on vy x [~1,1] and thus
ka3 = —(A+2M) 1 Aeyy(u)

by (iii). Since kys = €55 (1), the assertion is established.
(v) The weak limit u € V g,(Q2) satisfies the variational problem Pk (£2)
described in the statement of the theorem and it is a unique solution.
Restrict the functions v = (v;) € V() appearing in the variational
equations of problem P(g,(2) to lie in the subspace Vi, (€2) defined in (ii).
Since e;3(v) = 0 and hye3(v) = 0 in this case, these equations reduce to

/ {[Arpp(€)das + 2Mrap(e)] eap(v) = 2X5hap(€)has(v) } dz = L(v)
Q

for all v € VKL(Q).
If ¢ — 0, we obtain

/ {[A*eoo(u)das + 2Menp(W)] eas(v) — 2X5hap(0)hap(v) } do = L(v)
Q

for all v € VKL(Q).

The bilinear form associated with problem Pk () is thus Vg ()-
elliptic; hence problem Pgk,(2) has one and only one solution, as a conse-
quence of the Lax-Milgram lemma.

(vi) Two definitions of the space Vg1, (€2) coincide, i.e.

/ / " " "

. ’
{veV(Q); e =0, hag(v) =0in Q} = {V = (v1, vg, v, V1, Vg, V3),
I 1" ’ !’ 1" 1"
Vg = V3 = ”7;’;’ Voo = Mo — x3aa77§v Vo = N — 3338&77;’
"

Nas N € H' (W), 05 € H*(w), Ny =14 =15 = Oums =0 on ’Yo}-

The relations egg = d3v3 = 0in Q and v3 = 0 on 7y x [—1, 1] imply that
there exists a function 73 € (H'(w))? such that 73 = 0 on o and

vg(x/,xg) = ng(xl) for almost all (.1‘,,%'3) €0 =wx|-1,1].
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The equation J,v3 + J3v, = 0 imply that ds3v = —04(93v3) = 0 in Q.
Hence there exist functions 74,7} € (H'(w))? such that 7, = nl =0 on v
and

vz, 23) = na(2)) + z3nk(z') for almost all (z',z3) € Q.

Since 0 = yv3 + O304 = Junz + 0k, we conclude that 73 € (H?(w))?2.

Since an3 = —nk € (H'(w))?, and that d,m3 = 0 on 7 since 9,13 =
—nl =0 on 7.

Since ho3 = 0 we conclude that &wé — 831); + 831); — (%Ug = 8,177;; +
Doy — Oty — Oatly = 0,00(n —13) = 0 on ny = 7y = 0 on 7. Hence

’ "

N3 = N3 = 13. These relations imply that

! / 1"

Vo = 1o — 230615, Vo = N — 300113y Tas Mo € H (W), 0} € H(w)

and

’ "

N = Mo = M3 = Oumz = 0 0n 0.

Hence the two definitions are equivalent.

(viii) The functions (3 and ¢y = (C{, Cé, C;, Cg) satisfy the variational
prtoblems announced in the statement of the theorem.

Replacing the components u; and v; of the functions u,v € Vg (Q2) by

Uo = Coc - 9533aC37 usz = <37 and Vo = Na — xaaozn?n U3 = 1n3,

where
G= (G, )7, g = (m5,m3)",

we obtain
eap() = eap(Crr) — 3008G3, €ap(V) = €as(Mp) — £3043M3,

oo (1) = €5o(Cpr) — 3AG, €7 (V) = err(ny) — 23A(,

1 / / " "
has(W) = 5 (9aCs = 03C, + 03 = 0l ) has(V)
1 / / " "
= 3 (c%mg — 0N + Opny — oﬂ?ﬁ)

and we find the desired variational equations simply by noticing that

1 1 1
[ dxs =2, [ x3drs=0, [ 23drs= % [
] 1 1

The existence of the limit u found in Theorem 2 provides de facto an
existence theory for the limit scaled two-dimensional problem, hence for
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both the scaled flexural and membrane equations. The uniqueness of their
solution likewise follows from the uniqueness of the limit u established in
the same theorem.

But below we give a "direct” proof of existence and uniqueness for
each variational problem. We also write the two-dimensional boundary
value problems that are, at least formally, equivalent to these variational
problem.

Theorem 3. (a) Assume that py + ps, g, + ¢, € L?(w). The scaled
flexural equations of a linearly elastic plate, viz., find {5 such that

G € Va(w) := {nj € H*(w), nj = dum = 0on 0},

2/\ " * 4/\ % « ’ " *
/ {SAACz Ans + 3u3a,@<33a5n3} dw = / (P3 + p3)n3dw

w w

- / (ds + ¢)0umide for all 15 € Va(w),

w
where 5
p>0 and )\+§ﬁ>0, (22)

has one and only one solution. If 7y = =, the variational equations may
also be written as
2 ~ —~ % * ’ N ’ " %
3 (A +27) /ACgAngdw = /(pg + p3)nzdw — /(qa + Go ) Oanzdw.
w

w w

(b) Assume that the boundary « of w, the functions p;, + pg, q; —i—q; and the
solution (3 are smooth enough. Then (3 is also a solution of the following
boundary value problem

—OapMap = Pé +PI3: + 8&(Qa + q/clz) n w,
(3 = 0uG5 =0 on 7,
Maglalg =0 on 71,

(Oamap)vs + 0r(Maprats) = —(qy + @u)Va om0 Y1,

where 71 = v — 70, (Vo) is the unit outer normal vector along v, 7 :=
—Uy, To =1

2 4 1 )
Mas = — {3)\AC35QB + 3/1('3&5@} = _gaaﬁaTaaTC?,a
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2~
Aafor = g)\éaﬁ(saT + Qﬁ(éaoéﬁr + 50[7—5ﬁ0)-

The partial differential equation satisfied by (3 may be also written as
a biharmonic equation

2 ~ R % ’ " ’ " .
g()\ + 2M)A2C3 =p3+p3+ aa(‘]a + Qa) n w,

where A? = AA = O0aa0pp denotes the biharmonic operator.
Proof. (i) Let w be a domain in R?, and let 79 be a measurable subset
of v with length ~p > 0. Then there exists a constant ¢ > 0 such that

M 2w < 1172w

for all n* € V3(w).
To see this, we first notice that the semi-norm |- |2, is a norm in the
space V3(w). For |n*|2, = 0 implies that

*
n*(z1,2) = ap + a1x2 + agx,

by a classical result from the distribution theory, the boundary conditions
n* = 0,n* = 0 on 7y then imply that a1 = as = ag = 0, since length vy > 0
by assumption.

If the announced inequality is false, there exists a sequence (n*k) of
functions n** € V3(w), k = 0,1, ..., such that

17** 2w =1 forall k, and lim |n**|s. = 0.
k—o00

By the Rellich-Kondrasov theorem [7], there exists a subsequence (1*!)
that converges in H'(w). Since each subsequence (9a51*') converges in
L?(w) (to 0), the subsequence is a Cauchy sequence in H?(w); hence it
converges to some element n* € V3(w). From |n*|y, = lliTgé 7*! 20 = 0, we

infer that n* = 0 since we have just showed that |- |2, is a norm on V3(w),
but this contradicts ||1*!||s,, for all I.

Consequently, the bilinear form in the flexural equations in V3(w) is
elliptic, since

2 (S0 A ~ * * _ g N 2/\ * A ¥
/3 {)\An AN* 4 2010051 Onpn }dw —/3 {</\+ 3u> An*An

w w

2/\ * * ~ * * 2 N 2/\ * *
— 310001l Opan" + 2/i0apn” Oap }dw = / 3 { (A + 3u) An*An

w
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2 * * 2 * * *
+§M(51177 — 9oon™)? + g#(alln % 4 099" + 60121 2)} dw

-3
by condition (22) (it follows from conditions (12') and (19)). The bilinear
and linear forms in the flexural equations being continuous with respect
to || - [|2,w, the existence and uniqueness of a solution follow from the Lax-
Milgram lemma.
If 79 = 7, the space V3(w) coincides with HZ(w). Since, by Green’s
formula.

Ap
2
2,w = ?

23, for all n* € Vi(w)

/Oagcpaambdw = —/Gaggo@agd)dw = /Gaacpaﬁgwdw

for all ¢, ¥ € D(w) and D(w) is dense in HZ(w), these relations remain valid
for all ¢, 1 € H3(w). Hence the last assertion in part (a) is established.

(ii) In view of finding the boundary value problem solved by (3, we first
note that the left-hand side of the variational equations may also be written
as

~

2~ 4

w

where mg is defined in the theorem. Two applications of the Green formula
then give

_/magﬁaﬂn*dw = —/(8a5maﬁ)n*dw—i—/(@amaﬁ)yﬂn*dv
w w ¥
—/magya8g77*d7.
~y

Since 0gn* = v30,n* + 1730;1*, we may write
—/magyaygdvz /magyayﬁé)yn*d’y—i—/maguam&n*dy.
¥ ¥ ¥

Observing that

/wﬁrn*dv = —/(r%so)n*d% since /3T(<m7*)dv = 0.

Y v Y

- / MafOapn dw = — / (Oapmap)n*dw + / {(Oamap)vs

w Y
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+ Or(Mmapratp)} n'dy — /maﬁyay/g(?,,n*dy
y

is valid for all m,5 € H?(w) and n* € H*(w).
For all ¢, + ¢, € H'(w) and n* € H'(w) vanishing on 7o

- /(q; + ) 0an dw = /Ha(q; + qo)n dw — /(q; + gV dy.

w 71

Hence part (b) is proved. ]

Theorem 4. Let the following conditions be fulfilled
A5 <0, p1 >0, AT+ p1 >0, detM > 0, det (A* + M) > 0. (23)

Then: (a) Assume that p, € (L?(w))?. The scaled membrane equations,
viz., find ¢ such that

Cir € Via(w) i= {myr = 011, 1oy mi m5) € (Hi(@)), myg =0 on 5o}

/ [2(M o (Cir)) T err (i) + A(Meas(Car))  eas (i)

—4X5hap(C)has(np) } dw
= /(pa)Tnadw for all (nyg) € Vg(w),

w

where

1 1 / / " "
eaﬂ(CH) = 5(%@ + 35%% haﬁ(CH) = 5(%% - 8ﬁCa + 36Ca - 304(5)7

have one and only one solution.
(b) A smooth enough solution ¢ of these equations is also a solution
of the following boundary value problem:

—08Nag = Pa N W,
¢y =0 on 7,

nagvg =0 on 7,

where
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Nap 3= 20"€56(Cpr)0ap + 4Meap(Cr) + 4Ashap(Crr),
hap(C) = (hap(Cpr)s Poal(Cp))T
Proof. Let w be a domain in R2, and let vy be a measurable subset of
v = Ow with length 9 > 0. Then there exists a constant ¢ > 0 such that

1

2

¢ Hmplhie < le@mmlow < Y (leasltw + leasltw)
a,
for all ny € Vg (w).
To prove this two-dimensional Korn inequality, first we notice that the
semi-norm |e(ng)|ow is @ norm on the space Vi (w). For |e(ny)
implies that

O,w:()

OapNa = 8a€ﬂa<77H) + 3ﬁ€aa(nH) - 8a€aﬂ<77H) =0 n DI(W)7

I "
_ _ _ T
hence 1 (x1, z2) = a;—bxs and n1 (1, x2) = as+bx1, where a,, = (a,, a,

(b/, b//)T. These relations, together with the boundary conditions 7, = 0
on vy, show that ny = 0.

If the announced inequality is false, there exists a sequence (n’il) of
functions 77];1 € Vy(w), k=0,1,..., such that

Infillie =1, forall k and lim le(nf)low = 0.

By the Rellich-Kondrasov theorem, there exists a subsequence (n;)
that converges in (L%(w))?. Since the subsequence (e(nl;)) converges in
(L2(w)?*1)2%2 (to 0), the subsequence (n';) is a Cauchy sequence with
respect to the norm

1
Ny — {|77H|g,w + |e(77H)|%,w}2 :

By the two-dimensional Korn inequality without boundary conditions,
this norm is equivalent to the norm [|-||; ., over the space Vg (w). Hence the
(n';) is also Cauchy sequence with respect to || - ||1,, and this converges to
the some element ny € Vy(w). From |e(ny)|ow = llirgo le(n’;)]ow = 0, we

infer that g = 0, since |e(-)|pw is @ norm on Vi (w); but this contradicts
n%]l1.w = 1 for all .

By conditions (27) and Lemma 2, there exists a constant 6* > 0 such
that

/ [2(A o (M) err () + A(Meas () eas(mn)

—4has(Mp)has(Mp)dw}
> 5 (lemu)lgw + Mm)l5 L)
> 5*0_2”771{”%,“; forall my € Vg(w).
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The existence and uniqueness of a solution then follow from Lax-Milgram
lemma. Hence part (a) is proved.

(ii) In view of finding the boundary value problem solved by {;, we
first note that the left-hand side of the variational equations may also be
written as

/ [2(A o (1) err () + A(Meas () eas(ms)

—AAshas(Mp)has(Mp)} dw

w

where n,g is defined in the theorem. The Green formula
/ ()" Opnadw = — / (Dpn08) Moo + / (nagvs) Mady,
w w B

valid for all n,s € (H'(w))? and ny € Vpy(w), then yields the partial
differential equations and boundary conditions on ; that are satisfied by
¢ - Hence part (b) is proved. |
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