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Abstract

The paper presents theoretical aspects dealing with a posteriori error estima-

tion for the finite element hp-approximation applied to the 3D-based first order shell

model. The assignment of the presented error estimation is its application to hierar-

chical modelling and adaptive analysis of shell parts of complex structures consisting

of thin-walled, thick-walled and solid parts. The main feature of the 3D-based formu-

lation is that it is equipped with 3D degrees of freedom, while its mechanical model

corresponds to the classical first order shell theory. The hp-approximation applied

to the elaborated 3D-based model allows local p- and h-adaptivities, where h is the

element size parameter while p is the transverse approximation order of the element.

The organization of the paper is the following. First we present the model shell

problem through definition of the three-dimensional geometry of shell and introduction

of the three-dimensional local and variational formulations of the Reissner-Mindlin the-

ory. Next we apply the hp-approximation to the problem. The main body of the paper

is devoted to a posteriori approximation error estimation for the elaborated model.

Within this subject we present local and global characteristics of the error. The global

characteristic is based on the difference of the potential energies corresponding to the

exact and approximated solutions. It has been proved in the paper that the proposed

error estimator is equivalent to the estimator based on the strain energy defined on the

local error. We have also shown the upper bound property of the proposed global error

estimate. Moreover, we have introduced the element approximation error indicators,

the sum of which gives us the mentioned global estimate. The values of the local indi-

cators can be obtained through solution of the element local problems. The practical

method of obtaining these indicators is based on the finite element discretization of

the local problems. The paper is completed with the conclusions.

The implementation details corresponding to the elaborated method of a

posteriori approximation error estimation of the 3D-based first order shell model will
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be presented in the forthcoming paper [1].
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1. Introduction

The main objective of the paper is to present problems concerning a pos-
teriori error estimation for the first order shell theory based on three-
dimensional approach. The proposed approach is characterized by applica-
tion of the classical mechanical model corresponding to Reissner-Mindlin
first order shell theory, while the displacement field is that corresponding
to three-dimensional theory of elasticity. In our approach we use three
displacements at any point of the three-dimensional body of the shell as
a primary unknowns instead of three displacements and two rotations of
the mid-shell surface. In order to retain equivalence of the classical and
our approach we introduce the proper constraints reflecting deformation of
the straight lines perpendicular to the mid-shell surface into straight lines
without elongation. This way we form a constrained six-parameter model
equivalent to the classical five parameter model.

The main motivation of introduction of three-dimensional approach
proposed in [2] for description of the first order shell theory is to obtain
the formulation which is compatible with 3D-based hierarchical shell mod-
els and three-dimensional theory of elasticity as well. Thanks to that
all the mentioned theories of the first order shell, hierarchical shell and
three-dimensional elasticity can be applied together for hierarchical mod-
elling and adaptive finite element analysis of complex structures consisting
of thin- and thick-walled parts, solid parts and transition zones between
them. With the three-dimensional description one can use the consistent
approach (based on the same type of dofs and the same shape functions) to
the finite element approximation of all mechanical models applied within a
complex structure. Also, the consistent error estimation and adaptive pro-
cedures based on three-dimensional degrees of freedom can be applied to
the each part of the structure, without any necessity to introduce different
approaches for different mechanical models. Such an advantage is of great
importance from the implementation point of view, as it very much sim-
plifies the finite element formulation assigned for adaptive modelling and
solution of the problems in which are utilized more than one mechanical
models.
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In this paper we concentrate on some theoretical and implementa-
tion aspects of a method of a posteriori approximation error estimation,
based on the equilibrated residual approach. The theoretical basis for this
approach can be found in the initiating work of Ainsworth and Oden [3],
which constitutes a generalization of the previous works of Kelly [4] as
well as of Bank and Weisser [5]. Application of the equilibrated residual
approach to finite element methods can be found again in the works of Ain-
worth and Oden [6, 7]. In that context they considered elliptic problems
of the second order in [8, 9] and together with Wu [10] the specific case of
linear elasticity which is close to our interest. In the method proposed by
them they start with introduction of the ad hoc error functional leading to
the error estimator defined as the strain energy of the difference between
the exact and approximated solutions.

In this paper we will pay our attention to the main difference be-
tween our and their approaches. Note that in our approach we will start
with the functional based on the difference of the potential energies corre-
sponding to the exact and approximated solutions. The advantage of our
approach is that it has clearer physical interpretation, easily understood
by practitioners. In our method the error estimate can be equivalently ex-
pressed as a difference of the strain energies of both solutions. We will prove
that both error estimates are equivalent. A consequence of our approach
is that we will search for the estimate of the exact solution rather than for
the estimated value of the error. The error estimate will be calculated next
as a difference of the solutions.

As far as the implementation aspects of the finite element error es-
timation are concerned, we will focus our attention on the aspects resulting
from the constrained character of our 3D-based formulation of the first or-
der shell model. Our formulation will lead to the modified definition of the
splitting functions of the equilibrated stress fluxes utilized in solution of
the element local problems, which leads us to the searched estimate. Other
implementation details will be shown in [1].

2. The model problem

2.1. Three-dimensional geometry of a shell

Classical description. Let us define a three-dimensional shell geometry
through introduction of the mid-shell surface

s
S ⊂ R2, called sometimes

the reference surface and viewed as an open bounded region of a piecewise
smooth boundary ∂

s
S, and through introduction of the notion of the shell
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thickness t. The sufficiently smooth open bounded region representing the

volume V ⊂ R3 of the shell can be viewed as: V =
s
S ×

(
− t

2
,
t

2

)
. In

order to describe the geometry more precisely let us utilize the specific
curvilinear coordinates η called normal coordinates consisting of two natu-
ral coordinates (η1, η2), which are tangent to the mid-shell surface and the
third Cartesian coordinate η3 ≡ x′3 normal to the mid-shell surface at any
point. This way one can obtain the classical shell geometry description of
the form:

V =
{

η : (η1, η2, η3) ⊂ R3|(η1, η2) ∈ s
S, η3 ≡ x′3 ∈

(
− t

2
,
t

2

)}
(2.1)

Local and global Cartesian descriptions. Apart from the above clas-
sical description we will also apply the local and global Cartesian systems
of coordinates very useful for the finite element approximation introduced
in the next sections.

Let us note that at any point (η1, η2) of the mid-shell surface the
local Cartesian coordinate system x′ = x′(η1, η2) can be proposed with two
first axes tangent and the third axis normal to the mid-shell surface. Hence
the alternative local Cartesian description of the shell body is possible:

V =
{
x′ : (x′1, x

′
2, x

′
3) ⊂ R3|(x′1, x′2) ∈

s
S, x′3 ∈

(
− t

2
,
t

2

)}
(2.2)

Also the global representation of the shell geometry can be equiva-
lently introduced with the fixed Cartesian system of coordinates x typical
for problems of three-dimensional elasticity

V =
{
x : (x1, x2, x3) ⊂ R3|(x′1, x′2) ∈

s
S, x′3 ∈

(
− t

2
,
t

2

)
,x′ = θx

}
, (2.3)

where the matrix function θ = θ(η1, η2) transforms the global Cartesian
coordinates to the local ones. Due to three-dimensional approach to for-
mulation of the first order shell theory we will apply the above description
later on in the paper.

For the sake of formal completeness of the geometry description let

us finally introduce the lateral boundary
l
S = ∂

s
S×

(
− t

2
,
t

2

)
, as well as the
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top surface and bottom surface boundaries defined as follows:
t
S =

s
S×

{
t

2

}
,

b
S =

s
S×

{
− t

2

}
. The closure of V constitutes a total boundary of the shell:

∂V ≡ S, which can be obtained by the closed versions of the component

boundaries S =
t

S ∪
b

S ∪
l

S.

2.2. The 3D-based Reissner-Mindlin model

Local formulation

Starting relations of three-dimensional elasticity. In order to in-
troduce our 3D-based formulation of the Reissner-Mindlin first order shell
theory let us start with application of the classical formulation of three-
dimensional elasticity to the three-dimensional shell body defined in the
previous subsection. The governing matrix equilibrium, constitutive, and
compatibility equations of the theory of elasticity within the volume V of
the body can be written as follows

ΓT σ (u) + f = 0

σ (u) = Dε (u)

ε (u) = Γu





, x ∈ V, (2.4)

where: x = (x1, x2, x3)T are the global Cartesian coordinates from the
previous subsection, u = (u1, u2, u3)T is a sufficiently smooth field of
global displacements, the terms ε = (ε11, ε22, ε33, ε12, ε23, ε31)T and σ =
(σ11, σ22, σ33, σ12, σ23, σ31)T denote the six-component strain and stress vec-
tors, and D represents the symmetric positive definite matrix of three-
dimensional elasticity, satisfying the ellipticity condition of the following
form: yTDy ≥ αyTy, ∀y ∈ R6, α > 0. The body load vector f repre-
sents sufficiently smooth (Lipschitzian) data, e.g. f ∈ (L2(V ))3, while Γ
is the matrix divergence operator which for the case of global Cartesian
description takes the form

107



AMIM Vol.8 No.1, 2003 G. Zboiński +

Γ =




∂/∂x1 0 0

0 ∂/∂x2 0

0 0 ∂/∂x3

∂/∂x2 ∂/∂x1 0

0 ∂/∂x3 ∂/∂x2

∂/∂x3 0 ∂/∂x1




(2.5)

The above set of relations have to be completed with the displace-
ment and traction boundary conditions on the parts P and Q into which the
surface of the shell body can be subdivided according to: ∂V ≡ S = P ∪Q,
P ∩Q = ∅. The proper Dirichlet conditions are

H (ν) σ (u) = p, x ∈ P (2.6)

while the Newmann supporting conditions can be written as

u = 0, x ∈Q. (2.7)

In the first of the above two equations the surface load vector p repre-
sents smooth, Lipschitzian set of data: p ∈ (

L2 (S)
)3, while the matrix

H is expressed by the components of the unit outward normal vector
ν = (ν1, ν2, ν3)

T in the following way

H (ν)=




ν1 0 0 ν2 0 ν3

0 ν2 0 ν1 ν3 0

0 0 ν3 0 ν2 ν1


 (2.8)

Equivalent formulation of three-dimensional elasticity. Let us ex-
press now the equilibrium equation in the following modified form corre-
sponding to substitution of the third and second relation (4) into the first
one

ΓTDΓu− f = 0 (2.9)

We can change now the description of the equilibrium by choosing
the local Cartesian coordinates x′ = (x′1, x

′
2, x

′
3)

T . The proper equilibrium
equation will hold now
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Γ′TDΓ′u′ − f = 0 (2.10)

where u′ = θu, f ′ = θf are local vectors of displacements and body forces
with θ being the transformation matrix introduced in the previous subsec-
tion. The local divergence operator Γ′ takes the form (5) in which global
derivatives with respect to three components of x have to be replaced by
local derivatives with respect to the components of the local coordinates
x′. With this operator the local strains can be defined: ε′ = Γ′u′. Substitu-
tion of the definition of u′ into relation (10) and left multiplication of this
relation by the transposition of θ gives

θTΓ′TDΓ′θu− θT f ′ = 0 (2.11)

which after introduction of the simplifying relation: f = θT f ′ reads

Γ′′TDΓ′′u− f = 0 (2.12)

In the above equilibrium equation we have also applied the modified
version Γ′′ of the local divergence operator Γ′, defined in accordance with

Γ′′ = Γ′θ =


θ11∂/∂x′1 θ12∂/∂x′1 θ13∂/∂x′1
θ21∂/∂x′2 θ22∂/∂x′2 θ23∂/∂x′2
θ13∂/∂x′3 θ23∂/∂x′3 θ33∂/∂x′3

θ11∂/∂x′2 + θ21∂/∂x′1 θ12∂/∂x′2 + θ22∂/∂x′1 θ13∂/∂x′2 + θ23∂/∂x′1
θ21∂/∂x′3 + θ31∂/∂x′2 θ22∂/∂x′3 + θ32∂/∂x′2 θ23∂/∂x′3 + θ33∂/∂x′2
θ11∂/∂x′3 + θ31∂/∂x′1 θ12∂/∂x′3 + θ32∂/∂x′1 θ13∂/∂x′3 + θ33∂/∂x′1




.(2.13)

It is necessary to notice that the initial and modified forms (9) and
(11) of the equilibrium equations of three-dimensional elasticity are totally
equivalent. The difference is that the former relation is based on the global
strains ε while in the latter one we utilize local strains ε′. However, the
corresponding divergence operators act on the global displacement vector u
in both cases. These features of the latter formulation will be of use while
deriving the 3D-based Reissner-Mindlin equations.
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3D-based Reissner-Mindlin equations. In order to obtain the equi-
librium equations of the Reissner-Mindlin shell model we have to introduce
the thin shell assumption of plane stress into the formulation presented in
the paragraph above. The mentioned assumption can be expressed in the
form

ε′33 =
ν

1− ν
(ε′11 + ε′22) (2.14)

whereν is Poisson’s ratio. Relation (14) can be obtained from the
third scalar equation of the constitutive matrix equation defined locally:
σ′(u′) = Dε′(u′) after introduction of the condition σ′33 = 0.

Introduction of (14) into the local strain vector expressed through
global displacements ε′(u′) = Γ′u′ = Γ′′u = ε′(θu) leads to the following
modified form Γ′′′ of the divergence matrix operator Γ′′, the terms of which
are given by (13):

Γ′′′ =




Γ′′′11 Γ′′′12 Γ′′′13

Γ′′′21 Γ′′′22 Γ′′′23

Γ′′′31 Γ′′′32 Γ′′′33

Γ′′′41 Γ′′′42 Γ′′′43

Γ′′′51 Γ′′′52 Γ′′′53

Γ′′′61 Γ′′′62 Γ′′′63




=




Γ′′11 Γ′′12 Γ′′13

Γ′′21 Γ′′22 Γ′′23
ν

1− ν
(Γ′′11 + Γ′′21)

ν

1− ν
(Γ′′12 + Γ′′22)

ν

1− ν
(Γ′′13 + Γ′′23)

Γ′′41 Γ′′42 Γ′′43

Γ′′51 Γ′′52 Γ′′53

Γ′′61 Γ′′62 Γ′′63




.(2.15)

Thus the final form of the equilibrium equations of the 3D-based first order
shell model can now be written in the form

Γ′′′TDΓ′′′u− f = 0, x ∈ V. (2.16)
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The above equation has to be enriched with the internal constraints
corresponding to the kinematic assumptions of the Reissner-Mindlin theory.
The first of them is deformation of the straight lines perpendicular to the
mid-shell surface into other straight (not necessarily perpendicular) lines

u′k =
s

u′k −x′3
t

(
t

u′k −
b

u′k), u′k = θkiui, x ∈ V, (2.17)

where k = 1, 2 represents two local tangent directions, while the local dis-
placements of the middle, top and bottom surfaces are: u′k = u′k (x′1, x

′
2, 0),

t

u′k= u′k
(
x′1, x

′
2,

t
2

)
,

b

u′k= u′k
(
x′1, x

′
2,− t

2

)
. If necessary, the above constraint

equations can be expressed by the global displacements with use of the
terms θji, j, i = 1, 2, 3 of the transformation matrix θ.

The second assumption is the lack of elongation of the lines perpen-
dicular to mid-shell surface during deformation: ∂u′3/∂x′3 = 0. Utilizing the
terms of the transformation matrix the proper constraint equation can be
expressed as

θ3i
∂ui

∂xj
θj3 = 0, x ∈ V. (2.18)

The final form of the governing equation of the 3D-based Reissner-Mindlin
shell theory consists of the relations (16), (17) and (18) holding in the
volume V of the three-dimensional shell body as well as of the unchanged
traction and kinematic boundary conditions (6) and (7) on parts P and Q
of the surface S of the body.

Variational formulation

Let us write now the potential energy Π of the shell body conforming the
3D-based Reissner-Mindlin shell model from the previous sections

Π(u) =
1
2

∫

V
uTΓTDΓ′′′u dV −

∫

V
uT f dV −

∫

P
uTp dS. (2.19)

We can treat this energy as a functional of u = u (x) being the
kinematically admissible displacements from the proper space U defined in
accordance with

U (V ) =

{
u ∈ (

H1 (V )
)3 : u′k =

s

u′k −x′3
t

(
t

u′k −
b

u′k

)
,

∂u′3
∂x′3

= 0,

u′j = θjiui, x′3 = θ3ixi in : V, u = 0 on : Q
}

(2.20)
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where k = 1, 2 and j = 1, 2, 3 refer to local directions, while i = 1, 2, 3
corresponds to global ones.

Minimization of the above functional δΠ(u) =0 by taking its first
variation with respect to the admissible displacements u leads to the fol-
lowing stationary condition

∫

V
δuTΓ′′′TDΓ′′′u dV−

∫

V
δuT f dV−

∫

P
uTp dS = 0 (2.21)

After introduction of the simplifying notation reflecting the bilinear and
linear character of the virtual strain energy and virtual work of external
forces

B(u,δu) =
∫
V δuTΓ′′′TDΓ′′′u dV

L(δu) =
∫
V δuT f dV +

∫
P uTp dS

(2.22)

the condition (21) can be written as

B(u, δu) = L(δu). (2.23)

Note that finding the solution to equilibrium equation (23) consists in search
for u ∈ U (V ) conforming (23) for ∀ δu ∈ U (V ). It can be proved with the
standard methods of linear elasticity that the solution to (23) satisfies the
set of (16), (17), (18) as well as of (6) and (7), and conversely. Also the
existence and uniqueness of the solution to (23) can be proved with the
standard approach presented for example in [10].

2.3. Introduction of the global finite element approximation
(misha)

Let us divide our three-dimensional shell body of volume V into a set of E
finite elements Ve according to the partitioning D of the following properties

V =
E⋃

e=1

V e,

∧

e 6=f

Ve ∩ Vf = ∅, (2.24)

∧

e 6=f

V e ∩ V f = ∂Ve ∩ ∂Vf ≡ Se ∩ Sf = Sef ,
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where e, f = 1, 2, ..., E(D) are the numbers of the elements. In the above
relations we obviously have: V e = Ve + ∂Ve ≡ Ve + Se.

Let us show now geometry of each finite element described by the
approximated coordinates

e
x hpas an image of the global approximated co-

ordinates xhp restricted to the element e: xhp|Ve ≡
e
x hp. The local approx-

imated geometry can be obtained from the global exact representation x
with the element-wise projection

e
P of the real geometry of the body onto

the local three-dimensional polynomial space (W (Ve))3 in accordance with:
e
x hp =

e
P (x). Note that collection of the local projections leads us to the

global approximated piecewise polynomial representation of the geometry
of the body xhp.

Analogous treatment of the admissible displacements u ∈ U , i.e.
its restriction to Ve leads us to the local admissible displacements of the
element e: u|Ve ≡

e
u, which after introduction of the proper polynomial ap-

proximation gives: uhp|Ve ≡
e
u hp. In this way the proper local approximation

space of admissible displacements can be introduced:

e
u

hp∈ Uhp(Ve) ⊂ U(Ve). (2.25)

The collection of the local approximations of admissible displacements gives
us the global approximated piecewise representation of uhp:

uhp ∈ Uhp(V ) ⊂ U(V ) (2.26)

In order to retain global continuity, i.e. uhp ∈ C0(V ), of the piece-
wise polynomials uhp resulting from hp-approximation of the field u, we
have to assume that the local fields of admissible displacements are suit-
ably constrained so as the following consistency conditions are satisfied:
e
u |Sef

=
f
u |Sfe

for ∀f 6= e. It should be emphasized that the applied hp
version of the finite element approximation can be replaced by h or p ver-
sions if necessary. Note also that our hp approximation is of local character,
i.e. the mesh density parameter

e
h= diam(Ve) representing the diameter of

the outer sphere of the element, can be different for each element. Also
the local values of the transverse orders of approximation

e
p of the three-

dimensional polynomial spaces (W (Ve))3 = (W
e
p(

s
Se))2×W 1(x′3),

s
Se≡

s
S |Ve

suitable for the shell structures description can vary from one element to
another. Some practical aspects concerning the hp-approximation of the
3D-based Reissner-Mindlin model can be found in [11].

113



AMIM Vol.8 No.1, 2003 G. Zboiński +

Remark 2.1. It can be concluded from the above definition of the three-
dimensional polynomial spaces that we use transverse approximation of
varying order

e
p through the elements. On the contrary, linear order ap-

proximation of displacements in the transverse direction is applied within
the elements. As a consequence of the latter assumption, the internal con-
straints (17) are automatically satisfied and they do not have to be intro-
duced into the element formulation.

With all above in mind we can introduce now the finite element
approximation of (23) and write it in the following form

B(uhp, δuhp) = L(δuhp) (2.27)

for ∀ δuhp belonging to the space of admissible displacements Uhp such
that

Uhp(V ) =

{
uhp(xhp) ∈ (H1(V ))3 :

∂u′hp
3

∂x′hp
3

= 0, u′hp
3 = θ3iu

hp
i ,

x′hp
3 = θ3ix

hp
i in : V, uhp = 0 on :Q

}
. (2.28)

3. A posteriori approximation error estimation

3.1. Approximation error

Local error. If we denote by u the exact solution resulting from the
Reissner-Mindlin theory based on three-dimensional approach and uhp rep-
resents the numerical solution resulting from finite element approximation
of the Reissner-Mindlin model, then the local approximation error of the
mentioned theory will be equal to

e = u− uhp. (3.1)

Global characteristics of the approximation error of the Reissner-
Mindlin theory. The definition presented above is point-wise as it allows
finding the error at any point of the modelled structure. In order to get
more general description of the approximation error let us introduce the
global characteristics of the error measured in the norm of the strain energy
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U equivalent to the characteristics based on the difference of the potential
energies Π(u) and Π(uhp) corresponding to the exact and approximated
solutions u and uhp which are unknown and known, respectively. Thus,
the global approximation error can be determined as follows

−1
2
‖e‖2

U = inf
u∈U(V )

J (u) = inf
u∈U(V )

Π(u)−Π
(
uhp

)
, (3.2)

where u stands for the kinematically admissible displacements, while U (V )
is the corresponding space.

Taking now advantage of the definition Π(u) =1
2B(u, u)−L(u),

where the bilinear B(u, u) and linear L(u) forms are defined analogously
as in (22) and of the definition concerning the approximate solution
Π(uhp) =1

2B(uhp, uhp)−L(uhp), in which for our Reissner-Mindlin case we
have

B(uhp, uhp) =
∫
V uhpT

Γ′′′TDΓ′′′uhpdV,

L(uhp) =
∫
V uhpT

fdV +
∫
P uhpT

pdS,

(3.3)

we can determine the functional J(u) as follows

J(u) =
1
2
B(u, u)−L(u)−1

2
B(uhp, uhp)+L(uhp)

=
1
2
B(u, u)−1

2
B(uhp, uhp)−L(u− uhp)

=
1
2
B(u ,u)−1

2
B(uhp, uhp)−B(u ,u− uhp)

=
1
2
B(u, u)−1

2
B(uhp, uhp)−B(u, u)+B(u, uhp)

= −1
2
B(u− uhp, u− uhp) = −1

2
B(e, e). (3.4)

In relation (32) we used the feature of solutions u and uhp, consisting in
minimization of the potential energy: B(u, u− uhp) =L(u− uhp), simi-
larly to (21). Finally, let us notice that relation (3.4) expresses the differ-
ence of the potential energies or alternatively the strain energy related to
the difference of the solutions.
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Remark 2.2. It can be concluded from the above reasoning that the ap-
proximation error norm based on the difference of the potential energies,
which could be denoted as ‖e‖2

Π, is equivalent to the strain energy based
norm introduced by the predecessors. That is why we have retained the
traditional notation ‖e‖2

U of this norm throughout the paper.

In order to prove equivalence of our approach of the error estima-
tion, which is based on the displacements u, and the predecessors’ approach
based on the error e itself [8,9,10], we will prove the following theorem.

Theorem 2.1. Let the error e = u−uhp be the unique minimizer of the
following residual loaded functional J(e) over U(V ), defined in [8]

J(e) =
1
2
B(e, e)− L(e) + B(uhp, e). (3.5)

Then the displacement u is a unique minimizer of the functional J(u) of
(3.2).

Proof. The proof is straightforward and takes advantage of the
definition of the error. Minimization of the functional (3.5) by taking its
first variation with use of the following relation between variations of the
error and displacements δe = δ(u− uhp) = δu leads to

δJ(e) = δJ(u− uhp)

= δ

[
1
2
B(u− uhp,u− uhp)− L(u− uhp) + B(uhp,u− uhp)

]

= B(u, δu)−B(uhp, δu)− L(δu) + B(uhp, δu) = B(u, δu)− L(δu)

= Π(δu) = Π
[
δ(u− uhp)

]
= δ

[
Π(u)−Π(uhp)

]

= δJ(u) = 0. (3.6)

It can be seen in (3.6) that the stationary condition of (3.5) is converted
into the stationary condition of (3.2), which completes the proof.

Returning to our definition (3.2) of the global approximation error,
let us apply now the partitioning D introduced in the previous sections and
divide our body into E = E(D) finite elements. Such a partitioning leads
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to division of the total potential energies into components corresponding to
each finite element. These components have to take into account the work
of the inter-element stress reactions. Taking them into consideration and
introducing the condition of minimization of the potential energy Π(uhp)
in the form L(uhp) = B(uhp,uhp), resulting from (23), the functional J(u)
can be written as

J(u) = Π(u)−Π(uhp) = Π(u) +
1
2
B(uhp,uhp)

=
E∑

e=1

[
e
Π(u) +

1
2

e
B(uhp,uhp)−

∫

Se\(P∪Q)
uT e

r (u)dSe

]

+
∑

Sef

∫

Sef

[[u]]T r(u)dSef , (3.7)

where P and Q denote loaded and supported parts of the boundary of the
body, Se corresponds to the boundary of the element, while Sef , e 6= f ,
e, f = 1, 2, ..., E, is the common boundary part of elements e and f : Sef =
Se ∩ Sf . In agreement with the above partitioning of the domain V into a

set of subdomains Ve, let us introduce local solution spaces
e
U such that

e
U =

{
u ∈ (H1(Ve))3 : u′k =

s

u′k − x′3
t

(
t

u′k −
b

u′k),
∂u′3
∂x′3

= 0,

u′j = θjiui, x′3 = θ3ixi in : Ve, u = 0 on : Se∩ Q

}
. (3.8)

The logical product of the conditions in the element volumes Ve and on the
parts Se ∩Q of the element boundaries gives us the following space defined
on the partition D

U (D) =
E(D)∏

e=1

e
U (3.9)

of the following property: U (V ) ⊂ U (D).

Note that formally the form (3.7) can be treated as an extension of
the functional J(u) introduced in (3.2) from the space U (V ) to the space
U (D).
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In equation (3.7) the vector [[u]] stands for the difference of the
kinematically admissible displacements of the neighboring elements

[[u]] =





e
u − f

u⇔ e > f
f
u − e

u⇔ e < f
, (3.10)

where the element vectors
e
u= u|Ve and

f
u= u|Vf

denote the dis-
placements u ∈ U (D) restricted to subdomains Ve and Vf . Subsequently,
the unknown vectors of the inter-element stress reactions can be expressed
through unknown displacements as follows

r (u) =

{ e
r (u) ⇔ e > f
f
r (u) ⇔ e < f

, (3.11)

with
e
r (u) = H

(
e
ν
)

e
σ (u) , (3.12)

where
e
ν= (

e
ν1,

e
ν2,

e
ν3)T represents the vector of the unit outward normal to

the element side Se and
e
σ is the six-component element stress vector. It

can be easily verified that using the above notation the following relation
hold for u ∈ U

∫

Se\(P∪Q)
uT e

r (u) dSe =
∑

Sef

∫

Sef

[[u]]T r (u) dSef . (3.13)

In order to linearize the functional (3.7) we will replace the vector
r (u) with the equivalent vector of the inter-element stress fluxes

〈
r
(
uhp

)〉 ≡
r (u) expressed by the known displacements uhp

〈
r
(
uhp

)〉
=





〈
e
r (uhp)

〉
⇔ e > f〈

f
r (uhp)

〉
⇔ e < f

, (3.14)

where
〈

e
r

(
uhp

)〉
=

f
α H

(
e
ν
)

e
σ

(
uhp

)
+

e
α H

(
e
ν
)

f
σ

(
uhp

)
. (3.15)

In the above relation the matrix of functions describing the distribution of
the equilibrated inter-element stresses is given by
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f
α= [

f
α1,

f
α2,

f
α3] (3.16)

and additionally the following condition holds:
f
α= 1− e

α, where 1 =
diag[1, 1, 1]. By their definition these functions have to be chosen so as
to guarantee equilibration of the inter-element reaction forces. Hence not
only the stresses

e
σ

(
uhp

)
depend on the solution uhp, but also the functions

e
α=

e
α

(
uhp

)
.

Let us notice now that the solution uhp is subject to constraints
(28). That is why we have to use local values

e
α
′
of the splitting functions

in (3.15) instead of the global ones

e
α=

e

α′
(
uhp

)
, uhp ∈ Uhp(V ). (3.17)

As a consequence, the definition (3.15) to be used in the approximation
error estimation of the 3D-based Reissner-Mindlin model should be taken
in the following non-standard form

〈
e
r

(
uhp

)〉
= θT

[
(1−

e

α′)θ H
(

e
ν
)

e
σ (uhp) +

e

α′ θ H
(

e
ν
)

f
σ (uhp)

]
.

(3.18)

The method of obtaining the local splitting functions will be presented in
the sister paper [1] concerning implementation details.

The upper bound of the approximation error in the strain energy
norm. Let us take advantage of relations (3.2) and (3.7) as well as of
the definition of the inter-element stress fluxes. Then the global error of
the finite element approximation of the Reissner-Mindlin theory based on
three-dimensional approach is

−1
2
‖e‖2

U = inf
u∈U(V )

J(u)

= infu∈U(D)

{
E∑

e=1

[
e
Π(u) +

1
2

e
B (uhp,uhp)−

∫

Se\(P∪Q)
uT 〈er (uhp)〉dSe

]

+
∑

Sef

∫

Sef

[[u]]T 〈r(uhp)〉dSef

}
. (3.19)
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One can easily notice that the definition of the space U(D) allows an
existence of displacement discontinuities on the inter-element boundaries.
In order to assure nullification of the inter-element jumps of displacements
appearing in the above equation and determined with relation (3.10), we
can apply the Lagrange multipliers method. For this purpose we can utilize
the approach elaborated in [10, 3] for three-dimensional elasticity problems.
So let us introduce the Lagrange functional of the form

∧

u∈U(D)

∧

µ∈M
L(u, µ) = J(u)− µ ([[u]]) , (3.20)

where M is the proper space of multipliers. The principal property of the
proposed Lagrangean is

∧

u∈U(V )

L(u,µ) = J(u). (3.21)

In such circumstances the following relation holds:

sup
µ∈M

L(u, µ) =

{
J(u) ⇔ u ∈ U(V )

∞ ⇔ u /∈ U(V ) ∧ u ∈ U(D)
. (3.22)

Associating now the first definition of (3.19), condition (3.21), and relation
(3.22) we come to the following:

−1
2
‖e‖2

U = inf
u∈U(V )

J(u) = inf
u∈U(V )

L(u, µ) = inf
u∈U(D)

sup
µ∈M

L(u,µ)

≥ sup
µ∈M

inf
u∈U(D)

L(u,µ) ≥ inf
u∈U(D)

L(u, µ), ∀µ ∈M. (3.23)

Choosing now the multipliers from M in the specific manner guar-
anteeing disappearance of the inter-element jumps of displacements

µ([[u]]) =
∑

Sef

∫

Sef

[[u]]T 〈r(uhp)〉dSef (3.24)

and then substituting them and the definition of J(u) contained in (3.19)
into relation (3.20), and the latter in turn into (3.23), we get the following
relation

1
2
‖e‖2

U ≥ inf
u∈U(D)

E∑

e=1

[
e
Π (u) +

1
2

e
B (uhp,uhp)−

∫

Se\(P∪Q)
uT 〈er (uhp)〉dSe

]
,

(3.25)
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or alternatively

e‖2
U≤−2

E∑

e=1

inf
u∈U

[
e
Π(

e
u)+

1
2

e
B(

e
u hp,

e
u hp)−

∫

Se\(P∪Q)

e
u T

〈
r(

e
u hp)

〉
dSe

]
.

(3.26)

The right hand side of the above inequality constitutes the upper bound
estimate of the global approximation error in the strain energy norm.

The practical interpretation of the obtained result is the following.
The value of the functional J(u) obtained from solution u ∈ U(D) being

a collection of the local solutions
e
u∈ e
U is always equal or greater than the

corresponding value obtained from the global solution u ∈ U(V ).

3.2. Estimators of the approximation error

Local problems for approximation error estimation of the Reissner-
Mindlin theory. It can be easily noticed that calculation of the upper
bound of the global approximation error consists in finding the lower bounds
of the expressions appearing under the sum in inequality (3.26) for each fi-
nite element. This task is equivalent to search for the stationary conditions
of the local functionals

δ
e
J (

e
u) = δ

{
−2

[
e
Π(

e
u)+

1
2

e
B(

e
uhp,

e
uhp)−

∫

Se\(P∪Q)

e
uT 〈er( e

uhp)〉dSe

]}

= −2

[
e
Π(

e
δu)−

∫

Se\(P∪Q)

e

δuT 〈er( e
uhp)〉dSe

]
=0 (3.27)

for ∀δ e
u∈ e
U , which after utilizing the potential energy definition analogous

to that from (3.2) and (3.4), leads us to solutions of the following local
problems

e
B(

e
u, δ

e
u)− e

L(δ
e
u)−

∫

Se\(P∪Q)

e

δuT 〈er( e
uhp)〉dSe = 0. (3.28)

Taking now relation (3.26) into consideration, as well as the above equation
and the definition of the potential energy analogous to (3.2) and (3.4), one
can notice that

‖e‖2
U ≤

E∑

e=1

[
e
B(

e
u,

e
u)− e

B(
e
uhp,

e
uhp)] =

E∑

e=1

e

η2, (3.29)
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where
e
η are the element approximation error indicators, while their sum

constitutes the global approximation error estimator of the upper bound
property.

Discretization of the local problems for the approximation error
estimation. The local problems described above will be solved with the
finite element approximation for which the discretization parameters can
be denoted by H and P . It is obvious that the exact values of the global
estimator and local indicators correspond to the case H, P →∞. However,
in practice we utilize lower values of these two parameters. They can be
equal to the element values of the discretization parameters p and h from
the global problem (P = p, H = h), or greater than p and/or h. Taking
the practical reasons into account we can write (3.28) in the form

e
B(

e
uHP , δ

e
uHP )− e

L(δ
e
uHP )−

∫

Se\(P∪Q)
δ

e
uHP T 〈er( e

uhp)〉 dSe = 0, (3.30)

where δ
e
uHP ∈ e

U HP ,
e
U HP ⊂ e

U stands for the displacement variation, while
e
U HP denotes the space of the kinematically admissible displacements

e
uHP

within the local discretized problems:

e
U HP =

{
e
uHP ∈ (H1(Ve))3 : ∂

e

u′ HP
3 /∂

e
x ′HP

3 = 0,
e

u′ HP
3 = θ3iu

HP
i ,

e

x′ HP
3 = θ3i

e

x′ HP
i in : Ve,

e
uHP = 0 on : Se∩ Q

}
. (3.31)

In this situation the following relation describing the approximation of the
element error indicator holds

e

η2≈e
η HP 2

=
e
B

(
e
uHP ,

e
uHP

)
− e

B
(

e
uHP ,

e
uHP

)
. (3.32)

4. Conclusions

There is a possibility of formulation of the 3D-based first order shell model
equipped with three-dimensional degrees of freedom. The model can also be
characterized as constrained (due to kinematic assumptions of the Reissner-
Mindlin theory) six parameter (three top and three bottom displacements)
model.

It is possible to construct an a posteriori global approximation error
estimate based on the residual equilibration method for such a model.
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It can be proved that our global estimate which is based on the dif-
ference of the potential energies corresponding to exact and approximated
solutions is equivalent to the estimate based on the strain energy defined
on the local error.

The proposed global estimate possesses an upper bound property,
which is the result of replacement of the global exact solution by the col-
lection of the solutions for the problems defined locally, i.e. for each finite
element.

Determination of the local problems deals with taking the inter-
element stress reactions into consideration, which should be in equilibrium.
Equilibration of the inter-element stresses has to be performed towards the
local Cartesian directions due to the internal constraints imposed on the
3D-based Reissner-Mindlin model.

The value of the global estimate can be calculated by summation
of the element error indicators obtained through solution of the local prob-
lems. The unknowns of the local problems are element displacements esti-
mating the exact solution of the problem. Subtraction of the estimations
of the exact values of displacements obtained from the local problems and
approximated values of displacements from solution of the global problem
for each finite element gives us the value of the element error indicator.

A practical method of solution of the local problems takes advantage
of the finite element approximation of these problems.
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