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Abstract

The purpose of this paper is to construct explicitly fundamental matrices of solu-

tions to the differential equations of the theory of hemitropic elastic (chiral) materials.

We consider the differential equations corresponding to the cases of pseudo-oscillations

and steady state oscillations and in terms of elementary functions we construct funda-

mental matrices satisfying the generalized Sommerfeld-Kupradze type radiation condi-

tions. On the basis of Green’s formulae we derive the general integral representations

of solutions in bounded and unbounded domains by means of potential type integrals.

Properties of the single- and double-layer potentials and of certain, generated by them,

boundary integral (pseudodifferential) operators are studied. Applying the potential

method and the theory of pseudodifferential equations we prove the uniqueness and

existence theorems of solutions to the Dirichlet, Neumann and mixed boundary value

problems for the pseudo-oscillation equations. Some particular results are obtained for

the steady state oscillation equations.
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1 Introduction

A solid which is not isotropic with respect to inversion is called noncen-
trosymmetric, acentric, hemitropic, or chiral. Materials may exhibit chiral-
ity on the atomic scale, as in quartz and in biological molecules, as well as
on a large scale, as in composites with helical or screw-shaped inclusions
(for details see, e.g., [1], [20] and the references therein).

In recent years the electromagnetic field in chiral media has been the
object of intensive research, see e.g. [21], [43], [44], and the references
therein.

Mathematical models describing the chiral properties of elastic materi-
als have been proposed by Aero and Kuvshinski [1], [2] (for the history of
the problem see also [28], [35], [38], [48] and the references therein).

Particular problems of the elasticity theory of hemitropic continuum
related to the present paper have been considered in [35], [36], [37], [48],
[22], [23], [24], [20], [9].

The main goal of our investigation is to study the basic boundary value
and initial boundary value problems of the noncentrosymmetric theory of
elasticity for bodies of arbitrary geometrical shape. We consider separately
the equilibrium equations of statics, the steady state oscillation equations
(the time harmonic dependent case), and the general equations of dynamics,
and develop the potential method (boundary integral equations method)
to obtain the existence and uniqueness results. We construct also explicit
solutions of some particular canonical problems in the form of absolutely
and uniformly convergent series.

To this end, in this paper, which is the first part of our investigation,
the corresponding matrices of fundamental solutions are constructed ex-
plicitly (in terms of elementary functions) and the generalized Sommerfeld-
Kupradze type radiation conditions are formulated which play a crucial role
to establish the uniqueness results in the case of exterior boundary value
problems (BVP). Further, the boundary integral (pseudodifferential) oper-
ators generated by the single- and double-layer potentials are studied and
their ellipticity and normal solvability properties are established. Based on
the results obtained, the uniqueness and existence theorems of solutions to
the basic BVPs of pseudo-oscillations are proved in various Hölder (Ck,α),
Sobolev-Slobodetski (W s

p ) and Besov (Bs
p,q) functional spaces.

For the homogeneous system of the steady state oscillation equations (in
the whole space IR3) it is shown that it possesses only the trivial solution
in the class of vectors satisfying the generalized Sommerfeld-Kupradze type
radiation conditions. The corresponding exterior BVPs will be considered
in a forthcoming paper.
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2 Basic equations and Green formulae

2.1. Constitutive equations

Let IR3 be the three-dimensional Euclidean space and Ω+ ⊂ IR3 be a
bounded domain with a boundary S := ∂Ω+, Ω+ = Ω ∪ S ; Ω− = IR3\Ω+.
We assume that Ω ∈ {Ω+, Ω−} is filled with an elastic material possessing
the hemitropic properties.

Denote by u = (u1, u2, u3)> and ω = (ω1, ω2, ω3)> the displacement
vector and the microrotation vector, respectively; here and in what follows
the symbol (·)> denotes transposition. Note that the microrotation vec-
tor in the hemitropic elasticity theory is kinematically distinct from the
macrorotation vector 1

2 curl u.
The tensors of the force stress {τpq} and the couple stress {µpq} in the

linear theory are as follows (the constitutive equations)

τpq = τpq(U) := (µ + α)
∂uq

∂xp
+ (µ− α)

∂up

∂xq
+ λδpq div u

+δ δpq div ω + (κ + ν)
∂ωq

∂xp
+ κ− ν)

∂ωp

∂xq
− 2α

3∑

k=1

εpqkωk, (2.1)

µpq = µpq(U) := δ δpq div u + (κ + ν)

[
∂uq

∂xp
−

3∑

k=1

εpqkωk

]
+ β δpq div ω

+(κ− ν)

[
∂up

∂xq
−

3∑

k=1

εqpkωk

]
+ (γ + ε)

∂ωq

∂xp
+ (γ − ε)

∂ωp

∂xq
, (2.2)

where U = (u, ω)>, δpq is the Kronecker delta, εpqk is the permutation
(Levi-Civitá) symbol, and α, β, γ, δ, λ, µ, ν, κ, and ε are the material
constants (see [1]).

The components of the vectors of the force stress τ (n) and the cou-
pled stress µ(n), acting on a surface element with a normal vector n =
(n1, n2, n3), read as

τ (n)
q =

3∑

p=1

τpqnp, µ(n)
q =

3∑

p=1

µpqnp, q = 1, 2, 3. (2.3)

Let us introduce the generalized stress operator (6 × 6 matrix differential
operator)

T (∂, n) =
[

T (1)(∂, n) T (2)(∂, n)
T (3)(∂, n) T (4)(∂, n)

]

6×6

,

T (j) =
[
T (j)

pq

]
3×3

, j = 1, 4, (2.4)
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where ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj ,

T (1)
pq (∂, n) = (µ + α)δpq

∂

∂n
+ (µ− α)nq

∂

∂xp
+ λnp

∂

∂xq
,

T (2)
pq (∂, n) = (κ + ν)δpq

∂

∂n
+ (κ− ν)nq

∂

∂xp
+ δnp

∂

∂xq
− 2α

3∑

k=1

εpqknk,

T (3)
pq (∂, n) = (κ + ν)δpq

∂

∂n
+ (κ− ν)nq

∂

∂xp
+ δnp

∂

∂xq
,

T (4)
pq (∂, n) = (γ + ε)δpq

∂

∂n
+ (γ − ε)nq

∂

∂xp

+βnp
∂

∂xq
− 2ν

3∑

k=1

εpqknk. (2.5)

It can be easily checked that

(τ (n), µ(n))> = T (∂, n) U.

Denote by T
(j)
0 (∂, n) the principal homogeneous part (6× 6 matrix) of the

differential operator T (∂, n), i.e.,

T0(∂, n) =

[
T

(1)
0 (∂, n) T

(2)
0 (∂, n)

T
(3)
0 (∂, n) T

(4)
0 (∂, n)

]

6×6

,

T
(j)
0 =

[
T

(j)
0pq

]
3×3

, j = 1, 4,

T
(j)
0pq(∂, n) = T (j)

pq (∂, n), j = 1, 3,

T
(2)
0pq(∂, n) = T (2)

pq (∂, n) + 2α
3∑

k=1

εpqknk,

T
(4)
0pq(∂, n) = T (4)

pq (∂, n) + 2ν
3∑

k=1

εpqknk.

We have the evident equality

T (∂x, n)U = T0(∂x, n)U + 2[α n× ω, ν n× ω]>, (2.6)

where the symbol × denotes the cross product of two vectors.

2.2. The basic equations

The equations of dynamics of the hemitropic theory of elasticity have the
form

3∑

p=1

∂p τpq(x, t) + %Fq(x, t) = %
∂2uq(x, t)

∂t2
,
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3∑

p=1

∂pµpq(x, t) +
3∑

l,r=1

εqlrτlr(x, t) + %Gq(x, t) = I ∂2ωq(x, t)
∂t2

, q = 1, 2, 3,

where t is the time variable, F = (F1, F2, F3)> and G = (G1, G2, G3)> are
the body force and body couple vectors per unit mass, % is the mass density
of the elastic material, and I is a constant characterizing the so called spin
torque corresponding to the interior microrotations (i.e., the moment of
inertia per unit volume).

Using the relations (2.1)-(2.2) we can rewrite the above dynamic equa-
tions in terms of the displacement and microrotation vectors:

(µ + α)∆u(x, t) + (λ + µ− α) grad div u(x, t)
+(κ + ν)∆ω(x, t) + (δ + κ− ν) grad div ω(x, t)

+2α curlω(x, t) + %F (x, t) = %
∂2u(x, t)

∂t2
,

(κ + ν)∆u(x, t) + (δ + κ− ν) grad div u(x, t) + 2α curlu(x, t)
+(γ + ε)∆ω(x, t) + (β + γ − ε) grad div ω(x, t) + 4ν curlω(x, t)

−4α ω(x, t) + %G(x, t) = I ∂2ω(x, t)
∂t2

,

(2.7)

where ∆ is the Laplace operator.
If all the quantities involved in these equations are harmonic time depen-

dent, i.e., u(x, t) = u(x) exp{−i tσ}, ω(x, t) = ω(x) exp{−i tσ}, F (x, t) =
F (x) exp{−i tσ}, and G(x, t) = G(x) exp{−i tσ}, with σ ∈ IR1 and i =√−1, we obtain the steady state oscillation equations of the hemitropic
theory of elasticity:

(µ + α)∆u(x) + (λ + µ− α) grad div u(x) + (κ + ν)∆ω(x)
+(δ + κ− ν) grad div ω(x) + 2α curlω(x) + % σ2u(x) = −%F (x),

(κ + ν)∆u(x) + (δ + κ− ν) grad div u(x) + 2α curlu(x)
+(γ + ε)∆ω(x) + (β + γ − ε) grad div ω(x) + 4ν curlω(x)
+(Iσ2 − 4α)ω(x) = −%G(x);

(2.8)

here u, ω, F , and G are complex-valued vector functions, σ is a frequency
parameter.

If σ = σ1 + i σ2 is a complex parameter with σ2 6= 0, then the above
equations are called the pseudo-oscillation equations, while for σ = 0 they
represent the equilibrium equations of statics.

Let us introduce the matrix differential operator corresponding to the
system (2.8):

L(∂, σ) :=
[

L(1)(∂, σ), L(2)(∂, σ)
L(3)(∂, σ), L(4)(∂, σ)

]

6×6

, (2.9)
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where
L(1)(∂, σ) := [(µ + α)∆ + %σ2]I3 + (λ + µ− α)Q(∂),

L(2)(∂, σ) = L(3)(∂, σ) := (κ + ν)∆I3 + (δ + κ− ν)Q(∂) + 2αR(∂),

L(4)(∂, σ) := [(γ + ε)∆ + (Iσ2 − 4α)]I3 + (β + γ − ε)Q(∂) + 4νR(∂).

(2.10)

Here Ik stands for the k × k unit matrix and

R(∂) :=




0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0




3×3

, Q(∂) := [ ∂k∂j ]3×3. (2.11)

It is easy to see that

R(∂)u =




∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1


 = curl u, Q(∂) u = grad div u, (2.12)

R(−∂) = −R(∂) = [R(∂)]>, Q(∂) R(∂) = R(∂) Q(∂) = 0,

Q(∂) = [Q(∂)]>, [R(∂)]2 = Q(∂)−∆I3, [Q(∂)]2 = Q(∂)∆.
(2.13)

Due to the above notation, the equations (2.8) can be rewritten in matrix
form as

L(∂, σ)U(x) = Φ(x),

U = (u, ω)>, Φ = (Φ(1), Φ(2))> := (−%F (x),−%G(x))>.
(2.14)

Further, let us remark that the differential operator

L(∂) := L(∂, 0) (2.15)

corresponds to the static equilibrium case, while the differential operator

L0(∂) :=

[
L

(1)
0 (∂), L

(2)
0 (∂)

L
(3)
0 (∂), L

(4)
0 (∂)

]

6×6

(2.16)

with

L
(1)
0 (∂) := (µ + α)∆ I3 + (λ + µ− α) Q(∂),

L
(2)
0 (∂) = L

(3)
0 (∂) := (κ + ν)∆ I3 + (δ + κ− ν) Q(∂),

L
(4)
0 (∂) := (γ + ε)∆ I3 + (β + γ − ε) Q(∂),

(2.17)

represents the principal homogeneous part of the operators (2.9) and (2.15).
It is evident that

L(∂, σ)U − L(∂)U = (% σ2 u, I σ2 ω)>. (2.18)

Let us remark that the operators L(∂, σ) for real σ, L(∂), and L0(∂)
are formally self-adjoint, i.e., L(∂, σ) = [L(−∂, σ)]>, L(∂) = [L(−∂)]>,
L0(∂) = [L0(−∂)]>.
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2.3. Green’s formulae

For real-valued vectors U := (u, ω)>, U ′ := (u′, ω′)> ∈ [C2(Ω+)]6, we easily
derive the following Green formula

∫

Ω+

[
U ′ · L(∂)U + E(U ′, U)

]
dx =

∫

∂Ω+

U ′ · T (∂, n)U dS, (2.19)

where ∂Ω+ is a piecewise smooth manifold, n is the outward unit normal
vector to ∂Ω+, E(· , ·) is the so called energy bilinear form

E(U ′, U) = E(U,U ′) =
3∑

p,q=1

{ (µ + α)u′pqupq

+(µ− α)u′pquqp + (κ + ν)(u′pqωpq + ω′pqupq)

+(κ− ν)(u′pqωqp + ω′pquqp) + (γ + ε)ω′pqωpq + (γ − ε)ω′pqωqp

+δ(u′ppωqq + ω′qqupp) + λu′ppuqq + βω′ppωqq} (2.20)

with

upq = ∂puq −
3∑

k=1

εpqkωk, ωpq = ∂pωq, p, q = 1, 2, 3. (2.21)

Here and in what follows a · b denotes the usual scalar product of two (in
general) complex vectors a, b ∈ CI m:

a · b =
m∑

j=1

aj bj ,

where the over-bar denotes complex conjugation. The proof of the above
Green formula immediately follows from the identity

U ′ · L(∂)U + E(U ′, U) =
3∑

p,q=1

∂p [u′q τpq(U) + ω′q µpq(U)]. (2.22)

From (2.20) and (2.21) we get

E(U,U ′) =
3λ + 2µ

3

(
div u +

3δ + 2κ

3λ + 2µ
div ω

) (
div u′ +

3δ + 2κ

3λ + 2µ
div ω′

)

+
1
3

(
3β + 2γ − (3δ + 2κ)2

3λ + 2µ

)
(div ω)(div ω′)
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+
µ

2

3∑

k,j=1, k 6=j

[
∂uk

∂xj
+

∂uj

∂xk
+

κ

µ

(
∂ωk

∂xj
+

∂ωj

∂xk

)]

×
[
∂u′k
∂xj

+
∂u′j
∂xk

+
κ

µ

(
∂ω′k
∂xj

+
∂ω′j
∂xk

)]

+
µ

3

3∑

k,j=1

[
∂uk

∂xk
− ∂uj

∂xj
+

κ

µ

(
∂ωk

∂xk
− ∂ωj

∂xj

)]

×
[
∂u′k
∂xk

− ∂u′j
∂xj

+
κ

µ

(
∂ω′k
∂xk

− ∂ω′j
∂xj

)]

+
(

γ − κ2

µ

) 3∑

k,j=1, k 6=j

[
1
2

(
∂ωk

∂xj
+

∂ωj

∂xk

)(
∂ω′k
∂xj

+
∂ω′j
∂xk

)

+
1
3

(
∂ωk

∂xk
− ∂ωj

∂xj

)(
∂ω′k
∂xk

− ∂ω′j
∂xj

)]

+α
(
curl u +

ν

α
curl ω − 2ω

)
·

(
curl u′ +

ν

α
curl ω′ − 2ω′

)

+
(

ε− ν2

α

)
curl ω · curl ω′. (2.23)

In particular,

E(U,U) =
3λ + 2µ

3

(
div u +

3δ + 2κ

3λ + 2µ
div ω

)2

+
1
3

(
3β + 2γ − (3δ + 2κ)2

3λ + 2µ

)
(div ω)2

+
µ

2

3∑

k,j=1, k 6=j

[
∂uk

∂xj
+

∂uj

∂xk
+

κ

µ

(
∂ωk

∂xj
+

∂ωj

∂xk

)]2

+
µ

3

3∑

k,j=1

[
∂uk

∂xk
− ∂uj

∂xj
+

κ

µ

(
∂ωk

∂xk
− ∂ωj

∂xj

)]2

+
(

γ − κ2

µ

) 3∑

k,j=1, k 6=j

[
1
2

(
∂ωk

∂xj
+

∂ωj

∂xk

)2

+
1
3

(
∂ωk

∂xk
− ∂ωj

∂xj

)2
]
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+
(

ε− ν2

α

)
(curl ω)2 + α

(
curl u +

ν

α
curl ω − 2ω

)2
. (2.24)

From physical considerations (positive definiteness of the potential energy
(2.24) with respect to the variables (2.21)), it follows that the material
constants satisfy the inequalities (cf. [2])

µ > 0, α > 0, 3λ + 2µ > 0, µ γ − κ2 > 0, α ε− ν2 > 0,

(3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2 > 0.
(2.25)

These inequalities imply

γ > 0, ε > 0, λ + µ > 0, β + γ > 0,

d1 := (µ + α)(γ + ε)− (κ + ν)2 > 0,

d2 := (λ + 2µ)(β + 2γ)− (δ + 2κ)2 > 0.

(2.26)

Lemma 2.1 Let U = (u, ω)> ∈ [C1(Ω)]6 be a real-valued vector and E(U,U) =
0 in Ω. Then

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω, (2.27)

where a and b are arbitrary three-dimensional constant vectors.

Proof. It easily follows from (2.24) and (2.25).
Throughout the paper Lp, W s

p , Hs
p , and Bs

p,q (with s ∈ IR, 1 < p < ∞,
1 ≤ q ≤ ∞) denote the well-known Lebesgue, Sobolev-Slobodetski, Bessel
potential, and Besov spaces, respectively (see, e.g., [46], [47], [25]). We will
use the abbreviations W s

2 = W s, Hs
2 = Hs. We recall that Hs

2 = W s
2 =

Bs
2,2, W t

p = Bt
p,p, and Hk

p = W k
p , for any s ∈ IR, for any positive and

non-integer t, and for any non-negative integer k.
If U = U (1)+i U (2) is a complex-valued vector, where U (j) = (u(j), ω(j))>

(j = 1, 2) are real-valued vectors, then

E(U,U) = E(U (1), U (1)) + E(U (2), U (2)),

and, due to the positive definiteness of the energy form for real-valued
vector functions, we have

E(U,U) ≥ c0

3∑

p,q=1

[
(u(1)

pq )2 + (u(2)
pq )2 + (ω(1)

pq )2 + (ω(2)
pq )2

]
, (2.28)

where c0 is a positive constant depending only on the material constants,
and u

(j)
pq and ω

(j)
pq are defined by formulae (2.21) with u(j) and ω(j) for u

and ω.
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From the positive definiteness of the energy form E(·, ·) with respect to
the variables (2.21) it easily follows that there exist positive constants c1

and c2 such that for an arbitrary real-valued vector U ∈ [C1(Ω+)]6

B(U,U) :=
∫

Ω+

E(U,U)dx

≥ c1

∫

Ω+





3∑

p,q=1

[(∂puq)2 + (∂pωq)2] +
3∑

p=1

[u2
p + ω2

p]



 dx

−c2

∫

Ω+

3∑

p=1

[u2
p + ω2

p] dx, (2.29)

i.e., the following Korn’s type inequality holds (cf. [11], Part I, §12, [26],
Ch.10)

B(U,U) ≥ c1 ||U ||2[H1(Ω+)]6 − c2 ||U ||2[H0(Ω+)]6 , (2.30)

where || · ||[Hs(Ω+)]6 denotes the norm in the Sobolev space [Hs(Ω+)]6.
These results imply that the differential operators L(∂, σ), L(∂), and

L0(∂) are strongly elliptic and the following inequality (the accretivity con-
dition) holds (cf., e.g., [11], Part I, §5, [26], Ch.4, Lemma 4.5)

c′2 |ξ|2 |η|2 ≥ L0(ξ)η · η =
6∑

k,j=1

{L0(ξ)}kjηj ηk ≥ c′1 |ξ|2 |η|2 (2.31)

with some constants c′k > 0 (k = 1, 2) for arbitrary ξ ∈ IR3 and arbitrary
complex vector η ∈ CI 6.

Remark 2.2 From (2.18)-(2.19) it follows that∫

Ω+

[
U ′ · L(∂, σ)U − L(∂, σ)U ′ · U

]
dx

=
∫

∂Ω+

[
U ′ · T (∂, n)U − T (∂, n)U ′ · U]

dS (2.32)

for an arbitrary complex parameter σ.

Remark 2.3 By standard approach, Green’s formula (2.19) can be ex-
tended to Lipschitz domains (see, e.g., [34], [26]) and to the case of complex-
valued vector functions U ∈ [W 1

p (Ω+)]6 and U ′ ∈ [W 1
p′(Ω

+)]6 with 1/p +
1/p′ = 1 and L(∂, σ)U ∈ [Lp(Ω+)]6 (cf. [25], [5], [26])

∫

Ω+

[
U ′ · L(∂)U + E(U ′, U

]
dx =

〈
U ′ , T (∂, n)U

〉
∂Ω+

, (2.33)
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where 〈 · , · 〉∂Ω+ denotes the duality between the spaces [B1/p
p,p (∂Ω+)]6 and

[B−1/p
p′,p′ (∂Ω+)]6, which extends the usual L2-scalar product for regular vector-

functions, i.e., for f, g ∈ [L2(S)]6 we have

〈 f , g 〉S =
6∑

k=1

∫

S

fk gk dS = (f, g)L2(S).

Clearly, in this case the functional T (∂, n)U ∈ [B−1/p
p,p (∂Ω+)]6 is correctly

determined by the relation (2.33).

3 Basic fundamental matrices

3.1. Matrices of fundamental solutions of pseudo- and steady
state oscillation equations

Let Fx→ξ and F−1
ξ→x denote the direct and inverse generalized Fourier trans-

form in the space of tempered distributions (Schwarz space S ′(IR3)) which
for regular summable functions f and f̂ read as follows

Fx→ξ[f ] =
∫

IR3

f(x) ei x·ξdx = f̂(ξ),

F−1
ξ→x[f̂ ] =

1
(2π)3

∫

IR3

f̂(ξ) e−i x·ξdξ = f(x).
(3.1)

Moreover, for arbitrary multi-index α = (α1, α2, α3) and f ∈ S ′(IR3) there
hold

F [∂αf ] = (−i ξ)αF [f ], F−1[ξαf̂ ] = (i ∂)αF−1[f̂ ], (3.2)

where |α| = α1 + α2 + α3 and ξα = ξα1
1 ξα2

2 ξα3
3 .

Denote by Γ(x, σ) = [Γkj(x, σ)]6×6 the matrix of fundamental solutions
of the operator L(∂, σ) (see (2.9)-(2.10))

L(∂, σ) Γ(x, σ) = δ(x)I6. (3.3)

If we represent Γ(x, σ) with the help of the block matrices

Γ(x, σ) =
[

Γ(1)(x, σ) Γ(2)(x, σ)
Γ(3)(x, σ) Γ(4)(x, σ)

]

6×6

, Γ(j) =
[
Γ(j)

pq

]
3×3

, (3.4)
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then (3.3) is equivalent to the relations

L(1)(∂, σ)Γ(1)(x, σ) + L(2)(∂, σ)Γ(3)(x, σ) = I3 δ(x),

L(3)(∂, σ)Γ(1)(x, σ) + L(4)(∂, σ)Γ(3)(x, σ) = 0,

L(1)(∂, σ)Γ(2)(x, σ) + L(2)(∂, σ)Γ(4)(x, σ) = 0,

L(3)(∂, σ)Γ(2)(x, σ) + L(4)(∂, σ)Γ(4)(x, σ) = I3 δ(x),

(3.5)

Applying the Fourier transform to the equation (3.3), and taking into con-
sideration (3.2) and the equality F [δ(·)] = 1, we get

L(−i ξ, σ) Γ̂(ξ, σ) = I6. (3.6)

We assume that the frequency parameter σ is complex, in general:

σ = σ1 + i σ2, σ1, σ2 ∈ IR1. (3.7)

We have to determine Γ̂(ξ, σ) from (3.6) and afterwards, by inverting the
Fourier transform, to construct explicitly the fundamental matrix Γ(x, σ).

To this end, first of all we have to find L−1(−i ξ, σ). We set

r := |ξ| =
√

ξ2
1 + ξ2

2 + ξ2
3 ,

A(ξ) = L(1)(−i ξ, σ) = [−(µ + α)r2 + ρσ2]I3 − (λ + µ− α)Q(ξ),

B(ξ) = L(2)(−i ξ, σ) = −(κ + ν)r2I3 − (δ + κ− ν)Q(ξ)− i 2α R(ξ),

D(ξ) = L(4)(−i ξ, σ) = [(Iσ2 − 4α)− (γ + ε)r2]I3

−(β + γ − ε)Q(ξ)− i 4ν R(ξ),

(3.8)

where R(·) and Q(·) are defined by (2.11).
It is evident that

L(−i ξ, σ) =
[

A B
B D

]

6×6

. (3.9)

Note that, due to (2.9)-(2.13),

L(−iξ, σ) = [L(iξ, σ)]> = L(iξ, σ),

A(ξ) = A(−ξ) = A>(ξ), B(ξ) = B>(−ξ), D(ξ) = D>(−ξ),

Q(ξ) = [Q(ξ)]>, [R(ξ)]> = −R(ξ) = R(− ξ),

Q(ξ)R(ξ) = R(ξ)Q(ξ) = 0, [Q(ξ)]2 = r2Q(ξ), [R(ξ)]2 = Q(ξ)− r2 I3.

(3.10)

Therefore the matrices A, B, and D commute to each other, which allows
us to apply the Schur formula (see, e.g., [12], Ch.2, §5)

det L(−i ξ, σ) = det
[

A B
B D

]
= det [AD −B2]. (3.11)
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By (3.8) we get

AD = {(µ + α)(γ + ε)r4 − [(µ + α)(Iσ2 − 4α) + (γ + ε)ρσ2]r2

+ρσ2(Iσ2 − 4α)} I3 + {r2[(µ + α)(β + γ − ε) + (λ + µ− α)(γ + ε)
+(λ + µ− α)(β + γ − ε)]− (λ + µ− α)(Iσ2 − 4α)
−(β + γ − ε)ρσ2}Q(ξ) + i 4ν [(µ + α)r2 − ρσ2] R(ξ),

B2 = {(κ + ν)2 r4 + 4α2 r2} I3 + i 4α (κ + ν) r2 R(ξ)
+

{[
(δ + κ− ν)2 + 2(κ + ν)(δ + κ− ν)

]
r2 − 4α2

}
Q(ξ).

Whence

AD −B2 = aI3 + bQ(ξ) + icR(ξ), (3.12)

where

a = r4[(µ + α)(γ + ε)− (κ + ν)2]
−r2[(µ + α)(Iσ2 − 4α) + (γ + ε)ρσ2 + 4α2]
+ρσ2(Iσ2 − 4α), (3.13)

b = r2[(µ + α)(β + γ − ε) + (λ + µ− α)(γ + ε)
+(λ + µ− α)(β + γ − ε)− (δ + κ− ν)2

−2(κ + ν)(δ + κ− ν)]− [(β + γ − ε)ρσ2

+(λ + µ− α)(Iσ2 − 4α)− 4α2], (3.14)

c = r2 [4ν(µ + α)− 4α(κ + ν)]− 4νρσ2. (3.15)

By direct calculations we arrive at the equality

det [AD −B2] =

∣∣∣∣∣∣

a + bξ2
1 bξ1ξ2 − icξ3 bξ1ξ3 + icξ2

bξ1ξ2 + icξ3 a + bξ2
2 bξ2ξ3 − icξ1

bξ1ξ3 − icξ2 bξ2ξ3 + icξ1 a + bξ2
3

∣∣∣∣∣∣

= a3 + a2br2 − bc2[2ξ2
1ξ

2
3 + 2ξ2

2ξ
2
3 + 2ξ2

1ξ
2
2 + ξ4

1 + ξ4
2 + ξ4

3 ]− ac2r2

= a3 + a2br2 − bc2(ξ2
1 + ξ2

2 + ξ2
3)

2 − ac2r2

= a2(a + br2)− c2r2(br2 + a) = (a + br2)(a2 − c2r2).

Thus

det L(−i ξ, σ) = det[AD −B2] = (a + br2)(a2 − c2r2). (3.16)

Note that

a + br2 = r4[(λ + 2µ)(β + 2γ)− (δ + 2κ)2]− r2[(β + 2γ)ρσ2

+(λ + 2µ)(Iσ2 − 4α)] + ρσ2(Iσ2 − 4α). (3.17)

58



+ Mathematical Problems of the Theory of ... AMIM Vol.8 No.1, 2003

On the one hand

a2 − c2r2 = (a + cr)(a− cr), (3.18)

where (a± cr) are fourth order polynomials in r

a± cr = r4[(µ + α)(γ + ε)− (κ + ν)2]± r3[4ν(µ + α)− 4α(κ + ν)]
−r2[(µ + α)(Iσ2 − 4α) + (γ + ε)ρσ2 + 4α2]∓ r4νρσ2

+ρσ2(Iσ2 − 4α). (3.19)

On the other hand

a2 − c2r2 = r8[(µ + α)(γ + ε)− (κ + ν)2]2 − r6{2[(µ + α)(γ + ε)

−(κ + ν)2][(µ + α)(Iσ2 − 4α) + (γ + ε)ρσ2 + 4α2]

+[4α(κ + ν)− 4ν(µ + α)]2}+ r4{[(µ + α)(Iσ2 − 4α)

+(γ + ε)ρσ2 + 4α2]2 + 2ρσ2(Iσ2 − 4α)[(µ + α)(γ + ε)

−(κ + ν)2] + 8νρσ2[4ν(µ + α)− 4α(κ + ν)]}
−r2{2ρσ2(Iσ2 − 4α)[(µ + α)(Iσ2 − 4α) + (γ + ε)ρσ2 + 4α2]

+16ν2ρ2σ4}+ ρ2σ4(Iσ2 − 4α)2. (3.20)

Due to the evenness of the functions a(r), b(r), and c(r) it is evident that
if r = r0 is a root of either the equation a(r)+b(r) r2 = 0 or a(r)−c(r) r2 =
0, then so is r = −r0.

Denote the roots of the equation a+br2 = 0 by ±k1 and ±k2. Similarly,
let the roots of the equation a2 − r2c2 = 0 be ±k3, ±k4, ±k5, and ±k6.
Then

a + br2 = d2(r2 − k2
1)(r

2 − k2
2),

a2 − c2r2 = d2
1(r

2 − k2
3)(r

2 − k2
4)(r

2 − k2
5)(r

2 − k2
6),

(3.21)

where (for simplicity) we assume that

kj 6= kp for j 6= p, =kj ≥ 0, and if =kj = 0, then kj > 0. (3.22)

Note that k1 > 0 and k2 > 0 for Iσ2 − 4α > 0.
By (3.16), (3.21) and (3.22) we conclude that

det L(−i ξ, σ) = det[AD −B2] = (a + br2)(a2 − c2r2)

= d2
1 d2

6∏

j=1

(r2 − k2
j ). (3.23)
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Now let us recall (3.5) and (3.8) to write
[

A B
B D

] [
Γ̂(1)(ξ, σ) Γ̂(2)(ξ, σ)
Γ̂(3)(ξ, σ) Γ̂(4)(ξ, σ)

]
=

[
I3 0
0 I3

]
. (3.24)

Whence
{

AΓ̂(1)(ξ, σ) + BΓ̂(3)(ξ, σ) = I3,

BΓ̂(1)(ξ, σ) + DΓ̂(3)(ξ, σ) = 0,

{
AΓ̂(2)(ξ, σ) + BΓ̂(4)(ξ, σ) = 0,
BΓ̂(2)(ξ, σ) + DΓ̂(4)(ξ, σ) = I3.

In turn these relations yield
{

(AD −B2)Γ̂(1)(ξ, σ) = D,

(AD −B2)Γ̂(3)(ξ, σ) = −B,

{
(AD −B2)Γ̂(2)(ξ, σ) = −B,

(AD −B2)Γ̂(4)(ξ, σ) = A.
(3.25)

Denote (cf. (3.12))

M := AD −B2 = aI3 + bQ(ξ) + i cR(ξ). (3.26)

From (3.25) it follows that

Γ̂(1)(ξ, σ) = M−1D,

Γ̂(2)(ξ, σ) = Γ̂(3)(ξ, σ) = −M−1B, Γ̂(4)(ξ, σ) = M−1A.
(3.27)

It can be easily checked that

Γ̂(ξ, σ) =
[

M−1D −M−1B
−M−1B M−1A

]
= L−1(−i ξ, σ). (3.28)

Remark that detM = det[AD − B2] = detL(−i ξ, σ) is given by (3.23).
Let us construct the matrix inverse to M . To this end first we construct
the matrix M∗ = [M∗

kj ]3×3 adjoint to M . The matrix M can be written as
follows

M =




a + bξ2
1 bξ1ξ2 − icξ3 bξ1ξ3 + icξ2

bξ1ξ2 + icξ3 a + bξ2
2 bξ2ξ3 − icξ1

bξ1ξ3 − icξ2 bξ2ξ3 + icξ1 a + bξ2
3


 . (3.29)

Therefore we easily get

M∗
11 =

∣∣∣∣
a + bξ2

2 bξ2ξ3 − i cξ1

bξ2ξ3 + i cξ1 a + bξ2
3

∣∣∣∣ = a(a + br2)− (ab + c2)ξ2
1 ,

M∗
21 = −

∣∣∣∣
bξ1ξ2 + i cξ3 bξ2ξ3 − i cξ1

bξ1ξ3 − i cξ2 a + bξ2
3

∣∣∣∣ = −i (a + br2)cξ3 − (ab + c2)ξ1ξ2,

M∗
31 =

∣∣∣∣
bξ1ξ2 + icξ3 a + bξ2

2

bξ1ξ3 − icξ2 bξ2ξ3 + icξ1

∣∣∣∣ = −(ab + c2)ξ1ξ3 + i(a + br2)cξ2,
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M∗
12 = −

∣∣∣∣
bξ1ξ2 − icξ3 bξ1ξ3 + icξ2

bξ2ξ3 + icξ1 a + bξ2
3

∣∣∣∣ = i(a + br2)cξ3 − (ab + c2)ξ1ξ2,

M∗
22 =

∣∣∣∣
a + bξ2

1 bξ1ξ3 + icξ2

bξ1ξ3 − icξ2 a + bξ2
3

∣∣∣∣ = a(a + br2)− (ab + c2)ξ2
2 ,

M∗
32 = −

∣∣∣∣
a + bξ2

1 bξ1ξ2 − icξ3

bξ1ξ3 − icξ2 bξ2ξ3 + icξ1

∣∣∣∣ = −(ab + c2)ξ2ξ3 − i(a + br2)cξ1,

M∗
13 =

∣∣∣∣
bξ1ξ2 − icξ3 bξ1ξ3 + icξ2

a + bξ2
2 bξ2ξ3 − icξ1

∣∣∣∣ = −(ab + c2)ξ1ξ3 − i(a + br2)cξ2,

M∗
23 = −

∣∣∣∣
a + bξ2

1 bξ1ξ3 + icξ2

bξ1ξ2 + icξ3 bξ2ξ3 − icξ1

∣∣∣∣ = −(ab + c2)ξ2ξ3 + i (a + br2)cξ1,

M∗
33 =

∣∣∣∣
a + bξ2

1 bξ1ξ2 − icξ3

bξ1ξ3 + icξ3 a + bξ2
2

∣∣∣∣ = a(a + br2)− (ab + c2)ξ2
3 .

These formulae imply

M∗(ξ) = [M∗
kj ] = a(a + br2)I3 − (ab + c2)Q(ξ)− i c(a + br2)R(ξ). (3.30)

Therefore we finally have

M−1 =
1

det M(ξ)
M∗(ξ) =

1
(a + br2)(a2 − c2r2)

[a(a + br2)I3

−(ab + c2)Q(ξ)− ic(a + br2)R(ξ)]. (3.31)

Since M∗ commutes with the matrices A, B, and D, from (3.28) it follows
that

Γ̂(ξ, σ)

=
[

D(ξ) −B(ξ)
−B(ξ) A(ξ)

] [
M∗(ξ) 0

0 M∗(ξ)

]
1

(a + br2)(a2 − c2r2)

=
[

D(ξ) −B(ξ)
−B(ξ) A(ξ)

] [
M∗(ξ) 0

0 M∗(ξ)

]
1

d2
1 d2

∏6
j=1(r2 − k2

j )
,

(3.32)

By the inverse Fourier transform we conclude

Γ(x, σ) = F−1
ξ→x [ Γ̂(ξ, σ) ] =

1
d2

1 d2

[
D(i∂) −B(i∂)
−B(i∂) A(i∂)

]

×
[

M∗(i∂) 0
0 M∗(i∂)

]
F−1

[
1∏6

j=1(r2 − k2
j )

]
(3.33)
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where
A(i∂) = L(1)(−i ξ, σ)|ξ=i∂ = L(1)(∂, σ),

B(i∂) = L(2)(−i ξ, σ)|ξ=i∂ = L(2)(∂, σ),

D(i∂) = L(4)(−i ξ, σ)|ξ=i∂ = L(4)(∂, σ),

(3.34)

while

M∗(i∂) = M∗(ξ)|ξ=i∂ = a∗(∂)[a∗(∂)− b∗(∂)∆]I3

+
[
a∗(∂)b∗(∂) + [c∗(∂)]2

]
Q(∂) + c∗(∂)[a∗(∂)

−b∗(∂)∆]R(∂) =: M̃∗(∂) (3.35)

with
a(∗)(∂) = [(µ + α)(γ + ε)− (κ + ν)2]∆∆ + [(µ + α)(Iσ2 − 4α)

+(γ + ε)ρσ2 + 4α2]∆ + ρσ2(Iσ2 − 4α),

b(∗)(∂) = −[(µ + α)(β + γ − ε) + (λ + µ− α)(β + 2γ)
−(δ + κ− ν)2 − 2(κ + ν)(δ + κ− ν)]∆

−[(β + γ − ε)ρσ2 + (λ + µ− α)(Iσ2 − 4α)− 4α2],

c(∗)(∂) = 4 [α(κ + ν)− ν(µ + α)]∆− 4νρσ2.

(3.36)

To simplify (3.33) we apply the following representation and implications:

1∏6
j=1(r2 − k2

j )
=

6∑

j=1

pj

(r2 − k2
j )

=⇒ 1 =
6∑

j=1

pj




6∏

l=1,l 6=j

(r2 − k2
l )




=⇒ pj =




6∏

l=1,l 6=j

(k2
j − k2

l )



−1

. (3.37)

Note that, if =kj > 0, then in the space of tempered distributions S ′(IR3)
there holds

F−1

[
1

r2 − k2
j

]
=

1
(2π)3

lim
R→+∞

∫

|ξ|<R

e−i x·ξ

|ξ|2 − k2
j

dξ

=
1

(2π)3
lim

R→+∞

∫

|ξ|<R

ei x·ξ

|ξ|2 − k2
j

dξ = −eikj |x|

4π|x| , (3.38)

where the limits are understood in the sense of the space S ′(IR3), while for
=kj = 0 we have (the limiting absorption principle)

F−1

[
1

r2 − k2
j

]
= F−1

[
1

r2 − (kj + i 0)2

]
= −eikj |x|

4π|x| . (3.39)

62



+ Mathematical Problems of the Theory of ... AMIM Vol.8 No.1, 2003

The above equalities along with (3.33) give the following form for the fun-
damental matrix

Γ(x, σ) = − 1
4πd2

1 d2

[
L(4)(∂, σ) −L(2)(∂, σ)
−L(2)(∂, σ) L(1)(∂, σ)

]

×
[

M̃∗(∂) 0
0 M̃∗(∂)

]
Ψ(x, σ)

= − 1
4π d2

1 d2

[
L(4)(∂, σ)M̃∗(∂) −L(2)(∂, σ)M̃∗(∂)
−L(2)(∂, σ)M̃∗(∂) L(1)(∂, σ)M̃∗(∂)

]
Ψ(x, σ), (3.40)

where

Ψ(x, σ) =
6∑

j=1

pj
eikj |x|

|x| (3.41)

with kj satisfying (3.22).
From the equality

p1(r2 − k2
2) . . . (r2 − k2

6) + p2(r2 − k2
1)(r

2 − k2
3) . . . (r2 − k2

6)
+ . . . + p6(r2 − k2

1) . . . (r2 − k2
5) = 1, (3.42)

it follows that the numbers pj possess the properties

k2m
1 p1 + · · ·+ k2m

6 p6 = 0, m = 0, 4, k10
1 p1 + · · ·+ k10

6 p6 = 1. (3.43)

In view of (3.43) it follows that

6∑

j=1

pj

|x|e
ikj |x| =

6∑

j=1

pj

|x|
∞∑

q=0

(ikj |x|)q

q!
=

6∑

j=1

pj

∞∑

q=0

(ikj)q

q!
|x|q−1

=
∞∑

q=0




|x|q−1iq

q!

6∑

j=1

pjk
q
j



 =

∑

q∈{1,3,5,7,9}




|x|q−1iq

q!

6∑

j=1

pjk
q
j





−|x|
9

10!
+

∞∑

q=11

6∑

j=1

|x|q−1iqpjk
q
j

q!
(3.44)

which shows that the fundamental solution (3.40) has the singularityO(|x|−1)
in a vicinity of the origin, since the entries of the matrix L(j)(∂, σ) M̃∗(∂)
(j = 1, 4) are differential operators of order 10.

Remark 3.1 Note that (3.40) can be written in the form

Γ(x, σ) =
6∑

j=1

Γ̃(j)(x, σ), (3.45)
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where

Γ̃(j)(x, σ)

= − pj

4π d2
1 d2

[
L(4)(∂, σ)M̃∗(∂) −L(2)(∂, σ)M̃∗(∂)
−L(2)(∂, σ)M̃∗(∂) L(1)(∂, σ)M̃∗(∂)

]
eikj |x|

|x| . (3.46)

This representation shows that the entries of the matrix Γ̃(j)(x, σ) and its
derivatives satisfy the Sommerfeld radiation conditions at infinity:

∂

∂|x| [Γ̃
(j)(x, σ)]pq − i kj [Γ̃(j)(x, σ)]pq = exp{−=kj |x|}O(|x|−2) (3.47)

as |x| → +∞.

Remark 3.2 The entries of the matrix Γ̃(j)(x, σ) and its derivatives satisfy
also the following conditions at infinity:

∂

∂xl
[Γ̃(j)(x, σ)]pq − i kj

xl

|x| [Γ̃
(j)(x, σ)]pq = exp{−=kj |x|}O(|x|−2). (3.48)

These asymptotic equalities can be differentiated any times with respect to
the variable x.

Remark 3.3 Note that

Γ(−x, σ) =
1

8π3

∫

IR3

[L(−i ξ, σ)]−1 ei x·ξ dξ =
1

8π3

∫

IR3

[L(i ξ, σ)]−1 e−i x·ξ dξ

=
1

8π3

∫

IR3

[L>(−i ξ, σ)]−1 e−i x·ξ dξ = [Γ(x, σ)]>,

where the above formal integrals are understood as generalized Fourier trans-
forms.

Remark 3.4 In the case of repeated roots (i.e., when (3.22) is violated) the
fundamental solution can be obtained from (3.40) by the limiting procedure.

Remark 3.5 More careful analysis show that for σ = 0

∂α Γkj(x, 0) = O(|x|−1−|α|)

for k, j = 1, 6, and moreover,

∂α Γkj(x, 0) = O(|x|−2−|α|)

for either k ≥ 4 or j ≥ 4 as |x| → +∞.
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3.2. Principal singular part of the matrix (3.40)

In this subsection we will construct explicitly the principal singular part
of the fundamental matrix (3.40) of the operator L(∂, σ). This principal
part Γ0(x) represents a fundamental matrix of the operator L0(∂) defined
by (2.16) and solves the equation:

L0(∂) Γ0(x) = δ(x) I6. (3.49)

By the same approach as above, with the help of the generalized Fourier
transform, we reduce (3.49) to the equation in the space of tempered dis-
tributions S ′(IR3)

L0(−i ξ) Γ̂0(ξ) = I6, (3.50)

where

L0(−i ξ) = −L0(ξ) =
[

A0(ξ) B0(ξ)
B0(ξ) D0(ξ)

]
, Γ̂0 =

[
Γ̂(1)

0 Γ̂(2)
0

Γ̂(3)
0 Γ̂(4)

0

]
, (3.51)

A0(ξ) = −(µ + α)r2I3 − (λ + µ− α)Q(ξ),

B0(ξ) = C0(ξ) = −(κ + ν)r2I3 − (δ + κ− ν)Q(ξ),

D0(ξ) = −(γ + ε)r2I3 − (β + γ − ε)Q(ξ).

(3.52)

The equation (3.50) is equivalent to the relations

A0Γ̂
(1)
0 + B0Γ̂

(3)
0 = I3, B0Γ̂

(1)
0 + D0Γ̂

(3)
0 = 0,

A0Γ̂
(2)
0 + B0Γ̂

(4)
0 = 0, B0Γ̂

(2)
0 + D0Γ̂

(4)
0 = I3,

(3.53)

whence it follows that

(A0D0 −B2
0)Γ̂(1)

0 = D0, (A0D0 −B2
0)Γ̂(3)

0 = −B0,

(A0D0 −B2
0)Γ̂(4)

0 = A0, (A0D0 −B2
0)Γ̂(2)

0 = −B0.
(3.54)

Therefore

Γ̂0 =
[

M−1
0 D0 −M−1

0 B0

−M−1
0 B0 M−1

0 A0

]
, (3.55)

where M0 = A0D0 −B2
0 . Note that (cf. (3.16))

det M0 = det[A0D0 −B2
0 ] = det[a0I3 + b0Q(ξ)]

with (see (2.26))

a0 = [(µ + α)(γ + ε)− (κ + ν)2]r4 = d1r
4,

b0 = [(λ + 2µ)(β + γ − ε) + (γ + ε)(λ + µ− α)− (δ + κ− ν)2

−2(κ + ν)(δ + κ− ν)]r2 = (d2 − d1)r2. (3.56)
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Simple calculations lead to the equality

det M0 = det[a0I3 + b0Q(ξ)] = (a0 + b0r
2)a2

0 = d2
1 d2 r12. (3.57)

Moreover, the matrix M∗
0 (ξ), adjoint to M0(ξ), reads as follows (cf. (3.30))

M∗
0 (ξ) = d1 r6 [d2 r2 I3 − (d2 − d1)Q(ξ)]. (3.58)

Therefore, the matrix M−1
0 (ξ), inverse to M0(ξ), has the form

M−1
0 (ξ) =

1
detM1

0 (ξ)
M∗

0 (ξ) =
1

d1 d2 r6
[d2 r2 I3 − (d2 − d1)Q(ξ)]. (3.59)

Taking into consideration that

M−1
0 (ξ)A0(ξ) =

−1
d1 d2 r4

[
d2(µ + α)r2I3

+{λδ2 + (2d1 − d2)µ− d2α}Q(ξ)] , (3.60)

M−1
0 (ξ)B0(ξ) =

−1
d1d2r4

[
d2(κ + ν)r2I3

+{δd1 + κ(2d1 − d2)− d2ν}Q(ξ)] , (3.61)

M−1
0 (ξ)D0(ξ) =

−1
d1d2r4

[
d2(γ + ε)r2I3

+{βd1 + γ(2d1 − d2)− d2ε}Q(ξ)] , (3.62)

from (3.55) we get

Γ̂0(ξ) = − 1
d1

Λ1
1
r2
− 1

d1d2
Λ2

1
r4

, (3.63)

where

Λ1 =
[

(γ + ε)I3 −(κ + ν)I3

−(κ + ν)I3 (µ + α)I3

]
, (3.64)

Λ2 =
[

[βd1 + (2d1 − d2)γ − d2ε]Q(x) −[δd1 + (2d1 − d2)κ− d2ν]Q(x)
−[δd1 + (2d1 − d2)κ− d2ν]Q(x) [λd1 + (2d1 − d2)µ− d2α]Q(x)

]
(3.65)

We arrive at the equality

Γ0(x) = F−1[Γ̂0(ξ)] = − 1
d1

Λ1F−1

[
1
r2

]
− 1

d1d2
F−1

[
Λ2

1
r4

]

= − 1
8πd1d2|x|

{[
A(1) A(2)

A(2) A(3)

]
−

[
B(1)(x) B(2)(x)
B(2)(x) B(3)(x)

]}
(3.66)
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with

A(1) = [d2(γ + ε) + d1(β + 2γ)]I3,

A(2) = −[d2(κ + ν) + d1(δ + 2κ)]I3,

A(3) = [d2(µ + α) + d1(λ + 2µ)]I3,

B(1)(x) = [d1(β + 2γ)− d2(γ + ε)]|x|−2Q(x),
B(2)(x) = −[d1(δ + 2κ)− d2(κ + ν)]|x|−2Q(x),
B(3)(x) = [d1(λ + 2µ)− d2(µ + α)]|x|−2Q(x).

We can easily see that the entries of the matrix Γ0(x) are homogeneous
functions of order −1 and in a vicinity of the origin (i.e., for small |x|)

∂α [Γ(x, σ)− Γ0(x)] = O(|x|−|α|) (3.67)

for an arbitrary multi-index α = (α1, α2, α3) and an arbitrary complex
number σ, which shows that Γ0(x) is a principal singular part of the matrix
Γ(x, σ). Actually Γ0(x) is a kernel function of a parametrix operator for
the differential operator L(∂, σ) (it does not matter whether (3.22) holds
or not).

3.3. Special representation of the principal singular part

In this subsection we derive some formulae which will help us to calculate
the principal symbol matrices of the boundary integral (pseudodifferential)
operators generated by the single- and double-layer potentials (see Section
4).

We have

Γ0(x) = − 1
8π3

∫

IR3

[L0(ξ)]−1 e−i x·ξ dξ = − 1
8π3

∫

IR3

[L0(ξ)]−1 ei x·ξ dξ, (3.68)

where the above formal integrals are understood as generalized Fourier
transforms, i.e.,

Γ0(x) = −F−1[L−1
0 (ξ)] = − 1

8π3
F [L−1

0 (ξ)].

We recall that L0(ξ) is a positive definite matrix for ξ ∈ IR3 \ {0}.
Let E = [ekj ]3×3 : IR3 → IR3 be an orthogonal matrix with detE = 1:

E E> = E>E = I3. (3.69)

Then

Γ0(Ex) = − 1
8π3

∫

IR3

[L0(ξ)]−1e−i E x·ξ dξ = − 1
8π3

∫

IR3

[L0(E ξ)]−1e−i x·ξ dξ

=
1

4π2

∫

IR2

e−i x̃·ξ̃
{
− 1

2π

∫

IR1

[L0(E ξ)]−1e−i x3ξ3 dξ3

}
dξ̃, (3.70)
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where x̃ = (x1, x2), ξ̃ = (ξ1, ξ2), i.e.,

Γ0(E x) = F−1

ξ̃→x̃

[
− 1

2π

∫

IR1

[L0(E ξ)]−1e−ix3ξ3 dξ3

]
. (3.71)

This implies (due to the Cauchy integral theorem for analytic functions)

F
x̃→ξ̃

[Γ0(E x)] = − 1
2π

∫

IR1

[L0(E ξ)]−1e−i x3ξ3 dξ3

=

{ − 1
2π

∫
`+ [L0(E ξ)]−1e−i x3ξ3 dξ3 for x3 ≤ 0,

1
2π

∫
`− [L0(E ξ)]−1e−i x3ξ3 dξ3 for x3 ≥ 0,

(3.72)

where `+ [resp. `−] is a closed simple curve in the upper [resp. lower] half-
plane of the complex ξ3-plane (ξ3 = ξ′3 + iξ′′3 ) enveloping all the roots (with
respect to ξ3) of the equation detL0(E ξ) = 0 with positive [resp. negative]
imaginary parts. Clearly, (3.72) does not depend on the shape of `+ [resp.
`−].

The integration in (3.72) is performed counter clockwise. It can easily
be shown that the entries of the matrix (3.72) are homogeneous functions
in ξ̃ of order −1.

From (3.72) it follows that the matrix
[
−F

x̃→ξ̃
[Γ0(E x)]|x3=0

]
6×6

is

positive definite for arbitrary ξ̃ ∈ IR2 \ {0} due to the accretivity condition
(2.31). This matrix represents the principal homogeneous symbol (modulo
a positive constant multiplier) of the single-layer potentials associated with
the matrices Γ(· , σ) and Γ0( · ) (see Sections 4 and 6).

4 General integral representations

4.1. Representation formulae for bounded domains

In what follows we assume that the boundary S = ∂Ω± is Ck,α0-smooth,
with integer k ≥ 1 and 0 < α0 ≤ 1, and n(x) stands for the outward unit
normal vector to Ω+ at the point x ∈ S. The symbols [ · ]± denote the
limits on S from Ω±.

Let us introduce the generalized single- and double-layer potentials, and
the Newton type volume potential

V (σ)(ϕ)(x) =
∫

S
Γ(x− y, σ) ϕ(y) dSy, x ∈ IR3 \ S, (4.1)

W (σ)(ϕ)(x) =
∫

S
[T (∂y, n(y))Γ(y − x, σ)]> ϕ(y) dSy, x ∈ IR3 \ S, (4.2)

N
(σ)
Ω (ψ)(x) =

∫

Ω
Γ(x− y, σ) ψ(y) dy, x ∈ IR3, (4.3)
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where T (∂, n) is the stress operator of the theory of hemitropic elastic-
ity (see (2.4)), Γ(·, σ) is the fundamental matrix given by (3.40), ϕ =
(ϕ1, · · · , ϕ6)> is a density vector-function defined on S, while a density
vector-function ψ = (ψ1, · · · , ψ6)> is defined on Ω ∈ {Ω+, Ω−}.

Due to Remark 3.3 and the equality

Lkj(∂x, σ)
(
[T (∂y, n(y))Γ(y − x, σ)]T

)
jp

= Lkj(∂x)Tpq(∂y, n(y))Γqj(y − x, σ)

= Tpq(∂y, n(y))Lkj(∂x)Γqj(y − x, σ)

= Tpq(∂y, n(y))Lkj(∂x)Γjq(x− y, σ) = 0, x 6= y,

it can easily be checked that the potentials defined by (4.1) and (4.2)
are C∞-smooth in the domain IR3 \ S and solve the homogeneous equa-
tions (2.8) (F = 0, G = 0) for an arbitrary Lp-summable vector function
ϕ. The volume potential N

(σ)
Ω+ (ψ) solves the non-homogeneous equation

L(∂, σ)U(x) = ψ(x) in Ω+ for ψ ∈ [C0,α0(Ω+)]6.
The single- and double-layer potentials, and the volume potential con-

structed with the help of the fundamental matrix Γ0(·) (the principal sin-
gular part of the matrix Γ(·, σ)) will be denoted by V0(ϕ) and W0(ϕ), and
N0,Ω(ψ), respectively. Clearly, V0(ϕ) and W0(ϕ) solve the homogeneous
equation L0(∂)U(x) = 0 for an arbitrary Lp-summable vector function ϕ.

By standard arguments we can prove the following assertions (cf. [33],
Ch. I, Lemma 2.1; Ch. II, Lemma 8.2).

Theorem 4.1 Let U be a regular vector of the class [C2(Ω+)]6. Then there
holds the following integral representation formula

W (σ)([U ]+)(x)− V (σ)([TU ]+)(x) + N
(σ)
Ω+ (L(∂, σ)U)(x)

=
{

U(x) for x ∈ Ω+,
0 for x ∈ Ω−.

(4.4)

Theorem 4.2 Let U be a regular vector of the class [C2(Ω+)]6. Then there
holds the following integral representation formula

W0([U ]+)(x)− V0([T0U ]+)(x) + N0,Ω+(L0(∂)U)(x)

=
{

U(x) for x ∈ Ω+,
0 for x ∈ Ω−.

(4.5)

Note that these theorems can be extended to the case U ∈ [H1(Ω+)]6 with
L(∂, σ)U ∈ [L2(Ω+)]6 and L0(∂)U ∈ [L2(Ω+)]6 by a standard approach
(cf., e.g., [25], [5], [26]).
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4.2. Sommerfeld-Kupradze type radiation conditions and
representation formulae for unbounded domains

In this subsection we will derive integral representation formulae in the case
of unbounded domains with compact boundary. To this end we introduce
a special class of radiating functions.

We say that a C1-smooth vector function U = (U1, · · · , U6)> satisfies
the generalized Sommerfeld-Kupradze type radiation conditions in Ω− if

U(x) =
6∑

j=1

U (j)(x) in Ω−, (4.6)

where

U (j) = (U (j)
1 , · · · , U (j)

6 )>, ∆U (j)
p (x) + k2

j U (j)
p (x) = 0, j, p = 1, · · · , 6, (4.7)

with kj satisfying (3.22), and for sufficiently large |x| there hold the rela-
tions:

U
(j)
p (x) = exp {−=kj |x|} O(|x|−1),

∂

∂xl
U (j)

p − i kj x̂l U
(j)
p (x) = exp {−=kj |x|} O(|x|−2), j, p = 1, · · · , 6,

(4.8)

where x̂ = x/|x| and x̂l = xl/|x|, l = 1, 2, 3.
Denote the above described class of vectors by SK(Ω−). Vector func-

tions of this class will be referred to as radiating vectors. Due to Remarks
3.1 and 3.2 it is evident that the columns of the fundamental matrix Γ(x, σ)
are radiating vectors.

We recall that =kj ≥ 0, and if =kj = 0, then kj > 0 (see (3.22)).
Therefore,

kj + kp 6= 0 for j, p = 1, · · · , 6. (4.9)

Now we are in the position to prove the following

Theorem 4.3 Let U ∈ [C1(Ω−)]6 be a regular radiating solution of the ho-
mogeneous equation L(∂, σ)U(x) = 0 in Ω−. Then there holds the following
integral representation formula

−W (σ)([U ]−)(x) + V (σ)([TU ]−)(x) =
{

U(x) for x ∈ Ω−,
0 for x ∈ Ω+.

(4.10)

Proof. Let R be a sufficiently large positive number such that Ω+ ⊂
B(O, R), where B(O,R) is the ball of radius R centered at the origin O.
Denote Ω−R := Ω−∩B(O,R). Let x ∈ Ω− be an arbitrary point and choose
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R such that x ∈ Ω−R. Write the integral representation formula (4.4) for
U(x) in the domain Ω−R

U(x) = −W (σ)([U ]−)(x) + V (σ)([TU ]−)(x) + Ψ(x,R), (4.11)

with

Ψ(x,R) :=
∫

ΣR

{
[T (∂y, ŷ)Γ(y − x, σ)]> U(y)− Γ(x− y, σ)T (∂y, ŷ)U(y)

}
dΣR,

(4.12)

where ΣR is the boundary of B(O,R) and ŷ = y/|y| is the outward normal
to ΣR.

Further, let

Ũ(x) := U(x) + W (σ)([U ]−)(x)− V (σ)([TU ]−)(x). (4.13)

From (4.11) we then have

Ũ(x) = Ψ(x,R), x ∈ Ω−R. (4.14)

Note that the left-hand side expression Ũ(x) does not depend on R.
Let us integrate the last equality with respect to R over the interval

(R1, 2R1) and divide by R1 where R1 a sufficiently large number. We get

Ũ(x) =
1

R1

2R1∫

R1

Ψ(x, R) dR. (4.15)

In what follows we show that for a radiating solution U , the right-hand
side expression in (4.15) tends to zero as R1 → 0.

To this end, note that for a fixed x and sufficiently large |y| we have
(see (2.6) and Remark 3.2)

T (∂y, ŷ)U(y) =
6∑

j=1

{i kj T0(ŷ, ŷ)U (j)(y) +A(ŷ) U (j)(y)}+O(R−2), (4.16)

T (∂y, ŷ)Γ(y − x, σ) =
6∑

j=1

{
i kj T0(ŷ, ŷ)Γ̃(j)(y − x, σ)

+A(ŷ)Γ̃(j)(y − x, σ)
}

+O(R−2), (4.17)

where (see (2.6))

A(ŷ) =
[

[0]3×3 2αR(ŷ)
[0]3×3 2νR(ŷ)

]

6×6

(4.18)
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since U and Γ(·, σ) are radiating. Evidently,

A(ŷ) U (j)(y) = 2[α ŷ × ω(j)(y), ν ŷ × ω(j)(y)]>.

Therefore, from (4.15) and (4.12) it follows that

Ũ(x) =
1

R1

∫ 2R1

R1

dR

∫

ΣR

6∑

j,q=1

{[
i kj T0(ŷ, ŷ)Γ̃(j)(y − x, σ)

+ A(ŷ)Γ̃(j)(y − x, σ)
]>

U (q)(y)− [Γ̃(j)(y − x, σ)]>[ikq T0(ŷ, ŷ)U (q)(y)

+A(ŷ) U (q)(y)]
}

dΣR +O(R−1
1 ). (4.19)

To show that the right-hand side in (4.19) tends to sero as R1 →∞ it
suffices to prove that

ψjq(R1) =
1

R1

∫ 2R1

R1

dR

∫

Σ1

h(j)(Rŷ)g(q)(Rŷ)R2 dΣ1 → 0 (4.20)

as R1 → 0, where

h(j)(Rŷ) = O(R−1), ∂
∂Rh(j)(Rŷ)− i kj h(j)(Rŷ) = O(R−2),

g(q)(Rŷ) = O(R−1), ∂
∂Rg(q)(Rŷ)− i kq h(q)(Rŷ) = O(R−2).

(4.21)

Note that h(j)(Rŷ) = Γ̃(j)
ps (Rŷ − x) and g(q)(Rŷ) = U

(q)
m (Rŷ) satisfy the

above relations due to the radiation conditions (4.8).
Taking into consideration that kj + kq 6= 0 we get

h(j)(Rŷ) g(q)(Rŷ)

=
1

i(kj + kq)
[ikjh

(j)(Rŷ) g(q)(Rŷ) + h(j)(Rŷ)ikq g(q)(Rŷ)]

=
1

i(kj + kq)

[
∂h(j)(Rŷ)

∂R
g(q)(Rŷ) + h(j)(Rŷ)

∂g(q)(Rŷ)
∂R

]
+O(R−3).

Therefore from (4.20) with the help of the integration by parts formula
we derive

ψjq(R1) =
1

R1

∫

Σ1

dΣ
∫ 2R1

R1

R2

i(kj + kq)
∂

∂R
[h(j)(Rŷ) g(q)(Rŷ)]dR +O(R−1

1 )

=
1

i(kj + kq)R1

∫

Σ1

{
[R2 h(j)(Rŷ) g(q)(Rŷ)]2R1

R1
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−
∫ 2R1

R1

h(j)(Rŷ) g(q)(Rŷ)2R dR

}
dΣ1

=
1

i(kj + kq)R1

∫

Σ1

O(1) dΣ1 = O(R−1
1 ) → 0 as R1 → +∞.

Thus ψjq(R1) →) as R1 → +∞, which shows that the right-hand side
in (4.19) tends to zero as R1 → +∞. In turn this yields Ũ(x) = 0, whence
the proof of the equality (4.10) follows for x ∈ Ω−.

The proof for the case x ∈ Ω+ may be verbatim performed.

4.3. Uniqueness result for the whole space

Here we prove the following

Theorem 4.4 Let kj (j = 1, 6) satisfy the conditions (3.22), and let U be
a radiating solution of the homogeneous equation L(∂, σ)U(x) = 0 in IR3.
Then U vanishes identically in IR3.

Proof. Fix a point x ∈ IR3 and choose a positive number R such that |x| <
R. Due to Theorem 4.1 we can write the general integral representation
formula for the domain B(O, R) at the point x

U(x) =
∫

ΣR

{
[T (∂y, ŷ)Γ(y − x, σ)]> U(y)

−Γ(x− y, σ) T (∂y, ŷ)U(y)} dΣR. (4.22)

Applying the same arguments as in the proof of Theorem 4.4 (i.e., by
taking the integral mean value over the interval (R1, 2R1)) we can show
quite analogously that the integrals in the right-hand side of (4.22) tend to
zero as R1 →∞. This completes the proof since x is an arbitrary point.

5 Auxiliary BVPs

In this section we consider some auxiliary BVPs for the operator L0(∂) (see
(2.16)), which will help us to establish Fredholm properties of the boundary
integral (pseudodifferential) operators generated by the potentials (4.1) and
(4.2).

Problem (I0)±f . Find a regular solution U ∈ [C1(Ω±)]6 to the differ-
ential equation

L0(∂)U(x) = 0, x ∈ Ω±, (5.1)
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satisfying the Dirichlet type boundary condition

[U(x)]± = f(x), x ∈ S = ∂Ω±, (5.2)

where f is a given vector function on S.
Problem (II0)±f . Find a regular solution U ∈ [C1(Ω±)]6 of the differ-

ential equation (5.1) satisfying the Robin type boundary condition

[T0(∂, n)U(x)]± ± d [U(x)]± = f(x), x ∈ S, (5.3)

where f is a given vector function on S and d is a given non-negative
constant.

In addition, in the case of exterior domain Ω−, we assume that

U(x) = O(|x|−1), ∂jU(x) = O(|x|−2), j = 1, 2, 3 as |x| → +∞. (5.4)

Clearly, when d = 0 in (5.3) we get the Neumann type BVP.
We have the following Green’s formulae for arbitrary real-valued vector

functions U := (u, ω)>, U ′ := (u′, ω′)> ∈ [C2(Ω±)]6 satisfying the condi-
tions (5.4)

∫

Ω±

[
L0(∂)U · U ′ + E0(U,U ′)

]
dx = ±

∫

∂Ω±

T0(∂, n)U · U ′ dS, (5.5)

where n is the outward unit normal vector to ∂Ω+,

E0(U,U ′) = E0(U ′, U)

=
3λ + 2µ

3

(
div u +

3δ + 2κ

3λ + 2µ
div ω

)(
div u′ +

3δ + 2κ

3λ + 2µ
div ω′

)

+
1
3

(
3β + 2γ − (3δ + 2κ)2

3λ + 2µ

)
(div ω)(div ω′)

+
µ

2

3∑

k,j=1, k 6=j

[
∂uk

∂xj
+

∂uj

∂xk
+

κ

µ

(
∂ωk

∂xj
+

∂ωj

∂xk

)]

×
[
∂u′k
∂xj

+
∂u′j
∂xk

+
κ

µ

(
∂ω′k
∂xj

+
∂ω′j
∂xk

)]

+
µ

3

3∑

k,j=1

[
∂uk

∂xk
− ∂uj

∂xj
+

κ

µ

(
∂ωk

∂xk
− ∂ωj

∂xj

)]

×
[
∂u′k
∂xk

− ∂u′j
∂xj

+
κ

µ

(
∂ω′k
∂xk

− ∂ω′j
∂xj

)]
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+
(

γ − κ2

µ

) 3∑

k,j=1, k 6=j

[
1
2

(
∂ωk

∂xj
+

∂ωj

∂xk

)(
∂ω′k
∂xj

+
∂ω′j
∂xk

)

+
1
3

(
∂ωk

∂xk
− ∂ωj

∂xj

)(
∂ω′k
∂xk

− ∂ω′j
∂xj

)]

+α
(
curl u +

ν

α
curl ω

)
·

(
curl u′ +

ν

α
curl ω′

)

−
(

ε− ν2

α

)
curl ω · curl ω′. (5.6)

In particular,

E0(U,U) =
3λ + 2µ

3

(
div u +

3δ + 2κ

3λ + 2µ
div ω

)2

+
1
3

(
3β + 2γ − (3δ + 2κ)2

3λ + 2µ

)
(div ω)2

+
µ

2

3∑

k,j=1, k 6=j

[
∂uk

∂xj
+

∂uj

∂xk
+

κ

µ

(
∂ωk

∂xj
+

∂ωj

∂xk

)]2

+
µ

3

3∑

k,j=1

[
∂uk

∂xk
− ∂uj

∂xj
+

κ

µ

(
∂ωk

∂xk
− ∂ωj

∂xj

)]2

+
(

γ − κ2

µ

) 3∑

k,j=1, k 6=j

[
1
2

(
∂ωk

∂xj
+

∂ωj

∂xk

)2

+
1
3

(
∂ωk

∂xk
− ∂ωj

∂xj

)2
]

+
(

ε− ν2

α

)
(curl ω)2 + α

(
curl u +

ν

α
curl ω

)2
. (5.7)

Due to the relations (2.24) we easily derive that the equality E0(U,U) = 0
implies

U(x) = (b′, b′′)>, (5.8)

where b′ and b′′ are arbitrary three-dimensional constant vectors.
The following uniqueness results hold true.

Theorem 5.1 The homogeneous BVPs (I0)±0 , (II0)±0 with d > 0, and
(II0)−0 with d = 0 have only the trivial solutions.

The homogeneous BVP (II0)+0 with d = 0 has the general solution of
the form (5.8).
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Proof. It follows from (5.5) and (5.7).

6 Properties of potentials and boundary
pseudodifferential operators

The jump and mapping properties of the above introduced single- and
double-layer potentials and the corresponding boundary integral (pseu-
dodifferential) operators in the Hölder (Ck+α), Sobolev-Slobodetski (W s

p ),
Bessel potential (Hs

p) and Besov (Bs
p,q) spaces can be studied by standard

methods (see, e.g., [18], [10], [29], [3], [30], [31], [7], [8], [32], [33], and [26]).
We will use the following abbreviations (when no confusion can be

caused):

(a) if all elements of a vector v = (v1, ..., vm)> (a matrix N = [Nkj ]m×n)
belong to one and the same space X, we will write v ∈ X (N ∈ X) instead
of v ∈ Xm (N ∈ Xm×n);

(b) if K : X1 ×X2 × · · · ×Xm → Y1 × Y2 × · · · × Yn and X1 = X2 =
· · · = Xm, Y1 = Y2 = · · · = Yn, we will write K : X → Y instead of
K : Xm → Y n.

Theorem 6.1 Let S ∈ Ck+1,α0 where k ≥ 0 is an integer, 0 < α0 ≤ 1, and
let 0 < γ0 < α0. Then the operators

V (σ), V0 : Ck,γ0(S) → Ck+1,γ0(Ω±),

W (σ), W0 : Ck,γ0(S) → Ck,γ0(Ω±),
(6.1)

are bounded.
For any g ∈ Ck,γ0(S) and any x ∈ S

[V (σ)(g)(x)]± = V (σ)(g)(x) = H(σ) g(x),

[V0(g)(x)]± = V0(g)(x) = H0 g(x),
(6.2)

[T (∂x, n(x))V (σ)(g)(x)]± = [∓2−1I6 +K(σ)]g(x),

[T0(∂x, n(x))V0(g)(x)]± = [∓2−1I6 +K0]g(x),
(6.3)

[W (σ)(g)(x)]± = [±2−1I6 +K(σ)∗] g(x),

[W0(g)(x)]± = [±2−1I6 +K∗0] g(x),
(6.4)

[T (∂x, n(x))W (σ)(g)(x)]+ = [T (∂x, n(x))W (σ)(g)(x)]−

= L(σ) g(x),

[T0(∂x, n(x))W0(g)(x)]+ = [T0(∂x, n(x))W0(g)(x)]−

= L0 g(x), k ≥ 1,

(6.5)
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where

H(σ) g(x) :=
∫
S Γ(x− y, σ) g(y) dSy,

H0 g(x) :=
∫
S Γ0(x− y) g(y) dSy,

(6.6)

K(σ) g(x) :=
∫
S T (∂x, n(x))Γ(x− y, σ) g(y) dSy,

K0 g(x) :=
∫
S T0(∂x, n(x))Γ0(x− y) g(y) dSy,

(6.7)

K(σ)∗ g(x) :=
∫
S [T (∂y, n(y))Γ(y − x, σ)]> g(y) dSy,

K∗0 g(x) :=
∫
S [T0(∂y, n(y))Γ0(y − x]> g(y) dSy,

(6.8)

L(σ) g(x)
:= limΩ±3z→x∈S T (∂z, n(x))

∫
S [T (∂y, n(y))Γ(y − z, σ)]> g(y) dSy,

L0 g(x)
:= limΩ±3z→x∈S T0(∂z, n(x))

∫
S [T0(∂y, n(y))Γ0(y − z)]> g(y) dSy.

(6.9)

Proof. The proof of the boundedness and smoothness results is quite sim-
ilar to the proof of Theorems 4.1-4.3, 5.1, 5.2, 7.1, 7.2, 8.4 in the reference
[18], Ch. V, and Theorems 4.1, 4.2, 10.1, and 10.2 in the reference [33], Ch.
I-II.

To establish the jump relations (6.2)-(6.5), in addidtion to the above
mentioned technique developed in [18], Ch. V, and [33], Ch. I-II, we need
the following equality

∫

S
[T0(∂y, n(y))Γ0(y − x)]> dSy =





I6 for x ∈ Ω+,
2−1I6 for x ∈ S,
0 for x ∈ Ω−,

which is an analogue of the well-known Gauss formula for harmonic func-
tions.

Theorem 6.2 The operators V (σ), V0, W (σ), and W0 can be extended by
continuity to the bounded mappings

V (σ), V0 : H− 1
2 (S) → H1(Ω+) [H− 1

2 (S) → H1
loc(Ω

−)],

W (σ), W0 : H
1
2 (S) → H1(Ω+) [H

1
2 (S) → H1

loc(Ω
−)].

The jump relations (6.2)-(6.5) on S remain valid for the extended operators
in the corresponding functional spaces.

Proof. It is quite similar to the proof of the analogous theorems in [7], [8],
and [26], Ch. 6.
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Theorem 6.3 Let S, k, γ0, and α0 be as in Theorem 6.1. Then the oper-
ators

H : Ck,γ0(S) → Ck+1,γ0(S) [H− 1
2 (S) → H

1
2 (S) ], (6.10)

K : Ck,γ0(S) → Ck,γ0(S) [H− 1
2 (S) → H− 1

2 (S) ], (6.11)

K∗ : Ck,γ0(S) → Ck,γ0(S) [H
1
2 (S) → H

1
2 (S) ], (6.12)

L : Ck+1,γ0(S) → Ck,γ0(S) [H
1
2 (S) → H− 1

2 (S) ] (6.13)

are bounded, where

H ∈ {H(σ), H0}, K ∈ {±2−1I6 +K(σ), ±2−1I6 +K0},
L ∈ {L(σ), L0}, K∗ ∈ {±2−1I6 +K(σ)∗, ±2−1I6 +K∗0}.

Moreover,
(i) The principal homogeneous symbol matrices of the operators ±2−1I6+

K0 and ±2−1I6 + K∗0 are nondegenerate, while the principal homogeneous
symbol matrices of the operators H0 and L0 are positive definite; the oper-
ators H0, ±2−1I6 +K0, ±2−1I6 +K∗0, and L0 are elliptic pseudodifferential
operators of order −1, 0, 0, and 1, respectively;

(ii) the operators ±2−1I6 + K0 and ±2−1I6 + K∗0 are mutually adjoint
singular integral operators of normal type with index equal to zero. The
operators H0, 2−1I6 + K0 and 2−1I6 + K∗0 are invertible. The inverse of
H0

H−1
0 : Ck+1,γ0(S) → Ck,γ0(S) [H

1
2 (S) → H− 1

2 (S)]

is a singular integro-differential operator;
(iii) the L0 and L(σ) are singular integro-differential operators and the

following equalities hold in appropriate functional spaces:

K∗0H0 = H0K0, L0K∗0 = K0L0,

H0L0 = −4−1I6 + (K∗0)2, L0H0 = −4−1I6 +K2
0, (6.14)

K(σ)∗H(σ) = H(σ)K(σ), L(σ)K(σ)∗ = K(σ)L(σ),

H(σ)L(σ) = −4−1I6 + (K(σ)∗)2, L(σ)H(σ) = −4−1I6 + (K(σ))2; (6.15)

(iv) The operators −H0 and L0 are self-adjoint and non-negative elliptic
pseudodifferential operators with positive definite principal symbol matrices
and with index equal to zero:

〈−H0h, h〉S ≥ 0, 〈g,L0g〉S ≥ 0, (6.16)

∀h ∈ Cγ0(S), ∀g ∈ C1,γ0(S), [∀h ∈ H− 1
2 (S), ∀g ∈ H

1
2 (S) ],
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with equality only for h = 0 and for

g = (b′, b′′)> (6.17)

respectively, where b′, b′′ ∈ IR3 are arbitrary constant vectors; here 〈· , ·〉S
denotes the duality between the spaces

[
H

1
2 (S)

]6
and

[
H− 1

2 (S)
]6

which

extends the usual [ L2(S) ]6-scalar product;
(v) a general solution of the homogeneous equations [−2−1I6 +K∗0]g = 0

and L0 g = 0 is given by (6.17) (i.e., kerL0 = ker (−2−1I6 + K∗0) is a six
dimensional null-space).

Proof. The mapping properties (6.10)-(6.13) can be shown by the standard
approach developed in, e.g., [18], Ch. V, [33], Ch. I-II, [26], Ch. 6.

The items (i)-(v) of the theorem can be established by invoking the
results of Subsection 3.3 and Section 5, and applying the same arguments
as in [4], [33], Ch. I, §§ 4− 6, [26], Ch. 6.

Corollary 6.4 Let S, k, γ0, and α0 be as in Theorem 6.1. Then
(i) the operators ±2−1I6+K(σ) and ±2−1I6+K(σ)∗ are mutually adjoint

singular integral operators of normal type with index equal to zero;
(ii) the operators −H(σ) and L(σ) are elliptic pseudodifferential operators

of order −1 and +1, respectively, with index equal to zero and with positive
definite principal symbol matrices.

Proof. It is a straightforward consequence of Theorem 6.3 (i) and (iv) since
the pseudodifferential operators with superscript σ, defined by the formulae
(6.6)-(6.9), are compact pertubations of the corresponding operators with
subscript 0 given by the same formulae, due to the relation (3.67).

Applying the general theory of pseudodifferential operators and equa-
tions on smooth manifolds without boundary (see, e.g., [45], [10], [6], [40],
[41], [42] and the references therein) we can prove the following assertion.

Theorem 6.5 Let V (σ), V0, W (σ), W0, H, K, K∗, and L be as in Theo-
rems 6.2 and 6.3. The boundary integral (pseudodifferential) operators (6.1)
and (6.10)-(6.13) can be extended continuously to the following bounded op-
erators

V (σ), V0 : Bs
p,p(S) → H

s+1+ 1
p

p (Ω+) [Bs
p,p(S) → H

s+1+ 1
p

p,loc (Ω−)], (6.18)

: Bs
p,q(S) → B

s+1+ 1
p

p,q (Ω+) [Bs
p,q(S) → B

s+1+ 1
p

p,q,loc (Ω−)], (6.19)

W (σ), W0 : Bs
p,p(S) → H

s+ 1
p

p (Ω+) [Bs
p,p(S) → H

s+ 1
p

p,loc(Ω
−)], (6.20)
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: Bs
p,q(S) → B

s+ 1
p

p,q (Ω+) [Bs
p,q(S) → B

s+ 1
p

p,q,loc(Ω
−)]. (6.21)

H : Hs
p(S) → Hs+1

p (S) [Bs
p,q(S) → Bs+1

p,q (S)], (6.22)

K, K∗ : Hs
p(S) → Hs

p(S) [Bs
p,q(S) → Bs

p,q(S)], (6.23)

L : Hs+1
p (S) → Hs

p(S) [Bs+1
p,q (S) → Bs

p,q(S)], (6.24)

where s ∈ IR, 1 < p < ∞, 1 ≤ q ≤ ∞, S ∈ C∞.
The null-spaces of the operators (6.22)-(6.24) are invariant with respect

to p, q, and s.

7 Basic boundary value problems of
pseudo-oscillations

7.1. Formulation of the basic BVPs

Throughout this section we assume (if not otherwise stated)

σ = σ1 + iσ2, σ1 ∈ IR, σ2 > 0;

kj 6= kp for j 6= p, =kj > 0 for j, p = 1, 6.
(7.1)

We shall investigate the following BVPs:
Find a solution U ∈ (u, ω)> to the differential equation

L(∂, σ)U(x) = Φ(x) in Ω± (7.2)

satisfying one of the following boundary conditions on S = ∂Ω±:

Problem (I(σ))± (the Dirichlet problem):

[U(x)]± = f(x), x ∈ S; (7.3)

Problem (II(σ))± (the Neumann problem):

[T (∂, n)U(x)]± = F (x), x ∈ S; (7.4)

Problem (III(σ))± (a mixed problem):

[U(x)]± = fD(x), x ∈ SD, (7.5)

[T (∂, n)U(x)]± = FN (x), x ∈ SN , (7.6)

where SD and SN are two open, disjoint parts of S and SD ∪ SN = S.
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We look for either a regular solution (to Problems (I(σ))± and (II(σ))±)

U ∈ C1(Ω±) ∩ C2(Ω±) (7.7)

or a weak solution (to Problems (I(σ))±, (II(σ))±), and (III(σ))±)

U ∈ H1(Ω+)
[
U ∈ H1

loc(Ω
−)

]
. (7.8)

Note that, due to the strong ellipticity property of the operator L(∂, σ)
and the restriction (7.1), an arbitrary polynomially bounded solution of
the equation (7.2) in Ω−, actually decays exponentially as |x| → +∞ if
suppΦ is compact (see (3.45)-(3.46)).

In the case of regular setting, the vector function Φ and the boundary
data f and F belong to some Hölder spaces

Φ ∈ C0,α0(Ω±), suppΦ is compact, f ∈ C1,α0(S), F ∈ C0,α0(S), (7.9)

while in the case of weak formulation they belong to the functional spaces

f ∈ H
1
2 (S), F ∈ H− 1

2 (S),

fD ∈ H
1
2 (SD), FN ∈ H− 1

2 (SN ),

Φ ∈ H̃−1(Ω+)
[
Φ ∈ H̃−1

comp(Ω
−)

]
,

(7.10)

where for Ω ⊂ IR3 and M⊂ S

H̃s
p(Ω) :=

{
Φ ∈ Hs

p(IR3) : supp Φ ⊂ Ω
}

,

Hs
p(M) :=

{
f |M : f ∈ Hs

p(S)
}

,

Bs
p,q(M) :=

{
f |M : f ∈ Bs

p,q(S)
}

,

H̃s
p(M) := {f ∈ Hs

p(S) : supp f ⊂M},
B̃s

p,q(M) := {f ∈ Bs
p,q(S) : supp f ⊂M},

where f |M denotes the restriction of f to M.
As it is well known, even for C∞-smooth domains and C∞-smooth

data, solutions to mixed BVPs do not belong to the space C0,α0(Ω±) with
α0 ≥ 1/2, in general. Solutions or their derivatives have singularities at
the collision curves of changing boundary conditions. Therefore, we will
investigate the mixed BVP (III(σ))± in the weak formulation and along
with the correct solvability in the corresponding functional spaces we will
establish Hölder C0,α0-continuity of solutions (with exponent α0 < 1/2).

Note that in the case of weak setting of the above BVPs, i.e., when U ∈
H1(Ω±) and the conditions (7.10) hold, the Dirichlet conditions (7.3) and
(7.5) are understood in the usual trace sense, while the Neumann conditions
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(7.4) and (7.6) are understood in the functional sense with [T (∂, n)U ]± ∈
H− 1

2 (S) defined by the relation
〈
[T (∂, n)U ]±S , [U ′]±S

〉
S

:= ±
∫

Ω±

E(U,U ′) dx

for all U ′ ∈ H1(Ω±), where 〈 · , · 〉S denotes the duality between H− 1
2 (S)

and H
1
2 (S).

7.2. Uniqueness theorem

In this subsection we assume that Ω+ and Ω− are Lipschitz domains.

Theorem 7.1 The homogeneous versions of Problems (I(σ))±, (II(σ))±,
and (III(σ))± have only the trivial solution in the space H1(Ω±).

Proof. Let U ∈ H1(Ω+) solve one of the interior homogeneous boundary
value problem mentioned in the theorem. We apply Green’s formula (2.33)
with U and U ′ = U . We obtain (see (2.12))

∫

Ω+

[ E(U,U)− % σ2 |u|2 − I σ2 |ω|2] dx = 0, (7.11)

since
〈
[U ]+S , [T (∂, n)U ]+S

〉
S

= 0 due to the homogeneous boundary condi-

tions. Note that E(U,U) ≥ 0 due to (2.23).
Separating the imaginary part we get from (7.11)

2σ1 σ2

∫

Ω+

[ % |u|2 + I |ω|2] dx = 0,

whence u = 0 and ω = 0 in Ω+ follow if σ1 6= 0.
For σ1 = 0 we have from (7.11)

∫

Ω+

[ E(U,U) + % σ2
2 |u|2 + I σ2

2 |ω|2] dx = 0,

which implies U = 0 in Ω+. Thus the conclusion of the theorem holds for
the interior problems.

The proof for the exterior BVPs in Ω− is quite similar, since U ∈
H1(Ω−) and we can write Green’s formula

∫

Ω−

[U ′ · L(∂)U + E(U ′, U) ] dx = −
〈
[U ′]−S , [T (∂, n)U ]−S

〉
S

(7.12)

with arbitrary U ′ ∈ H1(Ω−).

82



+ Mathematical Problems of the Theory of ... AMIM Vol.8 No.1, 2003

Remark 7.2 It is evident that the nonhomogeneous BVPs (I(σ))±, (II(σ))±,
(III(σ))± have at most one solution in the spaces H1(Ω±) and C1(Ω±).

7.3. Existence results

In what follows, without loss of generality we assume that Φ = 0 in (7.2),
since a corresponding particular solution U

(p)
± can be written explicitly as

a volume potential (see (4.3))

U
(p)
± (x) := N

(σ)
Ω± (Φ)(x) =

∫

Ω±

Γ(x− y, σ)Φ(y) dy, x ∈ Ω±, (7.13)

where Γ( · , σ) is the fundamental matrix (3.40) of the operator L(∂, σ).

7.3.1. Problems (I(σ))± and (II(σ))±

First we consider the regular case, i.e.,

S = ∂Ω± ∈ Ck,α0 , f ∈ C1,γ0(S),

F ∈ C0,γ0(S), 0 < γ0 < α0 ≤ 1, k ≥ 2.
(7.14)

We look for a solution to Problem (I(σ))± in the form of the double-layer
potential (see (4.2))

U(x) = W (σ)(g)(x), x ∈ Ω±, (7.15)

while a solution to Problem (II(σ))± we seek in the form of the single-layer
potential (see (4.1))

U(x) = V (σ)(h)(x), x ∈ Ω±, (7.16)

where g ∈ [C1,γ0(S)]6 and h ∈ [C0,γ0(S)]6 are sought for densites.
Invoking Theorem 6.1 and the boundary conditions (7.3) and (7.4) we

see that the BVPs (I(σ))± and (II(σ))± are reduced to the singular integral
equations (see (6.8) and (6.7)), respectively:

[
±2−1I6 +K(σ)∗

]
g(x) = f(x), x ∈ S, (7.17)

and [
∓2−1I6 +K(σ)

]
h(x) = F (x), x ∈ S. (7.18)

Lemma 7.3 Let S, k, α0, and γ0 be as in (7.14). The operators

±2−1I6 +K(σ) : C0,γ0(S) → C0,γ0(S) (7.19)

±2−1I6 +K(σ)∗ : C0,γ0(S) → C0,γ0(S) (7.20)

are invertible.
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Proof. Let us show the invertibility of the operator 2−1I6 + K(σ). By
Corollary 6.4 it is a singular integral operator of normal type with index
zero. Due to the general theory of singular integral equations (see, e.g.,
[18], Ch. IV; [27], Ch. XII-XIV) it remains to show the injectivity of the
operator in question. Therefore we have to prove that the homogeneous
equation

[2−1I6 +K(σ)] h(x) = 0, x ∈ S (7.21)

possesses only the trivial solution. This can be shown by standard argu-
ments.

Indeed, let h be a solution to (7.21) and construct the single-layer po-
tential

U(x) = V (σ)(h)(x). (7.22)

This vector solves the homogeneous BVP (II(σ))− and therefore vanishes
in Ω− due to Theorem 7.1. Since the single-layer potential is continuous
in IR3, the vector (7.22) solves the interior homogeneous BVP (I(σ))+ and
due to Theorem 7.1 vanishes in Ω+ as well. Recall that (see (6.3))

h = [TV (σ)(h)]−S − [TV (σ)(h)]+S .

Therefore h = 0. Thus the operator

2−1I6 +K(σ) : C0,γ0(S) → C0,γ0(S)

is injective and, consequently, it is invertible.
Clearly, the same property holds also for the formally adjoint operator

2−1I6 +K(σ)∗.
The proof for the operators −2−1I6 +K(σ) and −2−1I6 +K(σ)∗ is word

for word.

Remark 7.4 Applying the well known embedding theorems for singular in-
tegral equations (see, e.g., [18], Ch. IV, §6), in the same way as above we
can show that the operators

±2−1I6 +K(σ), ±2−1I6 +K(σ)∗ : L2(S) → L2(S)

are also invertible.
Moreover, since (7.17) and (7.18) are singular integral equations of nor-

mal type (i.e., the corresponding principal symbol matrices are nondegenerate)
we have that, if S is as in (7.14) and f, F ∈ Ck−1,γ0(S), then the solutions
g, h ∈ Ck−1,γ0(S) (see, e.g., [18], Ch. IV, §6).

Now we can formulate the basic existence results which immediately
follow from Theorem 7.1, Lemma 7.3, and Remark 7.4.
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Theorem 7.5 Let S and f be as in (7.14) with k = 2. Then Prob-
lems (I(σ))± (with Φ = 0) are uniquely solvable in the space of regular
vector-functions. Moreover, the solutions belong to the space C1,γ0(Ω±) ∩
C∞(Ω±) and they can be represented by the double-layer potential (7.15)
where the density vector g ∈ C1,γ0(S) solves the corresponding integral
equation (7.17).

Theorem 7.6 Let S and F be as in (7.14) with k = 1. Then Prob-
lems (II(σ))± (with Φ = 0) are uniquely solvable in the space of regular
vector-functions. Moreover, the solutions belong to the space C1,γ0(Ω±) ∩
C∞(Ω±) and they can be represented by the single-layer potential (7.16)
where the density vector h ∈ C0,γ0(S) solves the corresponding integral
equation (7.18).

Theorem 6.3 and Corollary 6.4 give us possibility to represent solutions
of Problems (I(σ))± and (II(σ))± by means of single-layer and doble-layer
potentials, respectively.

Theorem 7.7 Let S and f be as in Theorem 7.5. Then the unique regular
solution of Problems (I(σ))± (with Φ = 0) can be represented in the form of
single-layer potential U(x) = V (σ)(h)(x) (x ∈ Ω±) where the density vector
h ∈ C0,γ0(S) solves the integral equation

H(σ) h(x) = f(x), x ∈ S. (7.23)

Proof. It can easily be shown that the operator

H(σ) : C0,γ0(S) → C1,γ0(S) (7.24)

is injective. In what follows we will show that (7.24) is surjective. To this
end let us apply the operator L(σ) to both sides of (7.23) to obtain the
equation

L(σ)H(σ) h(x) = L(σ) f(x), x ∈ S, (7.25)

and prove that (7.23) and (7.25) are equivalent. Due to Theorem 6.3 and
Corollary 6.4, L(σ)H(σ) = −4−1I6 + (K(σ))2 is a singular integral operator
of normal type with index zero and by Lemma 7.3 the operator

L(σ)H(σ) : C0,γ0(S) → C0,γ0(S) (7.26)

is invertible. Therefore equation (7.25) is solvable in the space C0,γ0(S) for
an arbitrary f ∈ C1,γ0(S).

By standard arguments, with the help of Theorem 7.1, it can be shown
that L(σ)ϕ(x) = 0 on S implies ϕ(x) = 0 on S.
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Thus, if h solves equation (7.25) then it solves also equation (7.23), and
vice versa, i.e., equations (7.23) and (7.25) are equivalent.

From the above arguments it follows that the operator (7.24) is inverible,
which completes the proof.

Theorem 7.8 Let S and F be as in Theorem 7.6. Then the unique regular
solution of Problems (II(σ))± (with Φ = 0) can be represented in the form of
double-layer potential U(x) = W (σ)(g)(x) (x ∈ Ω±) where the density vec-
tor g ∈ C1,γ0(S) solves the pseudodifferential (singular integro-differential)
equation

L(σ) g(x) = F (x), x ∈ S. (7.27)

Proof. We have to show that (7.27) is uniquely solvable for an arbitrary
F ∈ C0,γ0(S). As we have mentioned in the proof of Theorem 7.7, the
operator

L(σ) : C1,γ0(S) → C0,γ0(S) (7.28)

is injective.
Next we establish that (7.28) is surjective. To this end let us apply the

operator H(σ) to both sides of (7.28) to obtain the equation

H(σ) L(σ) g(x) = H(σ) F (x), x ∈ S. (7.29)

By Theorems 6.3 and Corollary 6.4 we have that the operator H(σ) L(σ) =
−4−1I6 +(K(σ)∗)2 is a singular integral operator of normal type with index
zero and by Lemma 7.3 the operator

H(σ) L(σ) : C1,γ0(S) → C1,γ0(S)

is invertible.
Therefore equation (7.29) is solvable in the space C1,γ0(S) for an ar-

bitrary F ∈ C0,γ0(S). Since the operator (7.24) is bijective, we conclude
that equations (7.28) and (7.29) are equivalent. In turn this implies that
(7.28) is surjective. Thus the operator (7.28) is bijective, which completes
the proof.

By standard arguments we can extend the above existence results to
the case of the weak setting (cf. [7], [8], [16], [17], [13], [13], [26]). We have
the following theorems.

Theorem 7.9 The operators

±2−1I6 +K(σ)∗ : H
1
2 (S) → H

1
2 (S), (7.30)
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±2−1I6 +K(σ) : H− 1
2 (S) → H− 1

2 (S), (7.31)

H(σ) : H− 1
2 (S) → H

1
2 (S), (7.32)

L(σ) : H
1
2 (S) → H− 1

2 (S), (7.33)

are invertible.
Moreover, if S ∈ C∞ then the operators

±2−1I6 +K(σ)∗ : Hs
p(S) → Hs

p(S) [Bs
p,q(S) → Bs

p,q(S)],

±2−1I6 +K(σ) : Hs
p(S) → Hs

p(S) [Bs
p,q(S) → Bs

p,q(S)],

H(σ) : Hs
p(S) → Hs+1

p (S) [Bs
p,q(S) → Bs+1

p,q (S)],

L(σ) : Hs+1
p (S) → Hs

p(S) [Bs+1
p,q (S) → Bs

p,q(S)],

are invertible for s ∈ IR, 1 < p < ∞, 1 ≤ q ≤ ∞.

Proof. It is a straightforward consequence of Theorems 6.2, 6.3, 6.5 and
7.1.

Applying these results we can easily prove the following assertions.

Theorem 7.10 Let f ∈ H
1
2 (S). Then there exists a unique solution

U ∈ H1(Ω±) of Problem (I(σ))± which can be represented by a double-layer
potential U(x) = W (σ)(g)(x) (x ∈ Ω±) where the density vector g ∈ H

1
2 (S)

solves the pseudodifferential equation on S

[±2−1I6 +K(σ)∗] g = f

(the sign ”+” corresponds to the domain Ω+ and ”−” to the domain Ω−).
Moreover, the solution vector U can also be represented by a single-layer

potential U(x) = V (σ)(h)(x) (x ∈ Ω±) where the density vector h ∈ H− 1
2 (S)

solves the uniquely solvable pseudodifferential equation H(σ) h = f.

Theorem 7.11 Let F ∈ H− 1
2 (S). Then there exists a unique solution

U ∈ H1(Ω±) of Problem (II(σ))± which can be represented by a single-layer
potential U(x) = V (σ)(h)(x) (x ∈ Ω±) where the density vector h ∈ H− 1

2 (S)
solves the pseudodifferential equation on S

[∓2−1I6 +K(σ)] h = f

(the sign ”−” corresponds to the domain Ω+ and ”+” to the domain Ω−).
Moreover, the solution vector U can also be represented by a double-layer

potential U(x) = W (σ)(g)(x) (x ∈ Ω±) where the density vector g ∈ H
1
2 (S)

solves the uniquely solvable pseudodifferential equation L(σ) g = F.
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Remark 7.12 Theorem 7.10 implies that a unique solution to Problem
(I(σ))± can be represented as a single-layer potential

U(x) = V (σ)
(
[H(σ)]−1 f

)
(x), x ∈ Ω±, (7.34)

where f = [U ]+ and [H(σ)]−1 is a pseudodifferential operator inverse to the
operator (7.32). Clearly, the principal homogeneous symbol matrix of the
operator [H(σ)]−1 is negative definite (cf. Corollary 6.4).

Moreover, if f ∈ B
1−1/p
p,q (S) with 1 < p < ∞ and 1 ≤ q ≤ ∞, Problem

(I(σ))± has a unique solution in the space [B1
p,q(Ω

±)]6 which is representable
in the form (7.34) where [H(σ)]−1 is a pseudodifferential operator inverse
to the operator H(σ) : B

−1/p
p,q (S) → B

1−1/p
p,q (S). The proof is quite similar

to the proof of Theorem 12.10 in [13].

7.3.2. Some results from the theory of pseudodifferential equa-
tions on manifolds with boundary.

In this subsection we shall present some principal results from the theory
of elliptic pseudodifferential equations on manifolds with boundary in Bessel
potential and Besov spaces. They can be found in [10], [39], [13, [40], [41],
[42], [6], and will be the main tools for proving existence theorems for the
mixed problems.

Let M ∈ C∞ be a compact, n-dimensional, nonselfintersecting, two-
sided manifold with boundary ∂M ∈ C∞ and let A be a strongly elliptic
m ×m matrix pseudodifferential operator of order α ∈ IR on M. Denote
by σA(x, ξ) the principal homogeneous symbol matrix of the operator A in
some local coordinate system (x ∈ M, ξ ∈ IRn \ {0}) and associate with
σA the m×m matrix function

A0η(x, ξ) = |ξ|−ασA(x, |ξ′|η, ξn), (7.35)

where η ∈ Sn−2 ⊂ IRn−1 with Sn−2 the unit sphere in IRn−1 and ξ′ =
(ξ1, ..., ξn−1).

It is known that the matrix A0η in (7.35) admits the factorization

A0η(x, ξ) = A−η (x, ξ)D(η, x, ξ)A+
η (x, ξ) for x ∈ ∂M,

where [A−η (x, ξ)]±1 and [A+
η (x, ξ)]±1 are matrices, which are homogeneous

of degree 0 in ξ and admit analytic bounded continuations with respect to
ξn into the lower and upper complex half-planes, respectively. D(η, x, ξ) is
a bounded lower triangular matrix with entries of the form

(ξn − i |ξ′|
ξn + i |ξ′|

)δj(x)
, j = 1, · · · ,m,
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on the main diagonal; here

δj(x) = (2π i)−1 lnλj(x), j = 1, · · · , m,

where λ1(x), · · · , λm(x) are the eigenvalues of the matrix

σ̃A(x) = [σA(x, 0, · · · , 0,−1)]−1[σA(x, 0, · · · , 0,+1)].

The branch in the logarithmic function is chosen with regard to the in-
equality 1/p−1 < Re δj(x) < 1/p, j = 1, · · · ,m. The numbers δj(x) do not
depend on the choice of the local coordinate system.

Note that if σA(x, ξ) is a positive definite matrix for every x ∈ M and
ξ ∈ IRn \ {0}, then

Re δj(x) = 0 for j = 1, · · · ,m, (7.36)

since, in this case, the eigenvalues of the matrix σ̃A(x) are positive numbers
for any x ∈ M (see [15], Lemma 6.4). The Fredholm properties of such
operators are characterized by the following lemma (see [6], [40], [41], [42]).

Lemma 7.13 Let s ∈ IR, 1 < p < ∞, 1 ≤ q ≤ ∞, and let A be a strongly
elliptic pseudodifferential operator of order α ∈ IR having a positive definite
principal homogeneous symbol matrix, i.e.,

σA(x, ξ)ζ · ζ ≥ c0|ζ|2 for x ∈M, ξ ∈ IRn with |ξ| = 1, and ζ ∈ CI m,
where c0 is a positive constant.

Then the operators

A : H̃s
p(M) → Hs−α

p (M), (7.37)

: B̃s
p,q(M) → Bs−α

p,q (M), (7.38)

are Fredholm operators with index zero if

1/p− 1 < s− α/2 < 1/p. (7.39)

Moreover, the null-spaces and indices of the operators (7.37), (7.38) are
the same (for all values of the parameter q ∈ [1,+∞]) provided p and s
satisfy the inequality (7.39).

7.3.3. Mixed Problem (III(σ))±

In this subsection we assume that (cf. (7.10))

Φ = 0, fD ∈ H
1
2 (SD), FN ∈ H− 1

2 (SN ). (7.40)
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Denote by f (e) some fixed extension of the vector-function fD from SD onto
S preserving the functional space H

1
2 (S):

f (e) ∈ H
1
2 (S), rSD

f (e) = fD; (7.41)

here and in what follows rM is the restriction operator to M.
Evidently, an arbitrary esxtension f of fD onto the whole of S which

preserves the functional space can be then represented as

f = f (e) + ϕ with ϕ ∈ H̃
1
2 (SN ). (7.42)

For definiteness, first we consider Problem (III(σ))+ (Problem (III(σ))−

can be considered quite similarly).
In accordance with Theorem 7.10 and Remark 7.12 we can look for a

solution in the form

U(x) = V (σ)
(
[H(σ)]−1 (f (e) + ϕ)

)
(x), (7.43)

where ϕ ∈ H̃
1
2 (SN ) is an unknown vector function.

It is easy to chek that the Dirichlet condition (7.5) on SD is satisfied
automatically. It remains only to satisfy the Neumann condition (7.6) on
SN which leads to the pseudodifferential equation

[−2−1I6 +K(σ)] [H(σ)]−1 (f (e) + ϕ) = FN (7.44)

on the open subsurface SN for the unknown vector function ϕ.
Let

N (σ) := [−2−1I6 +K(σ)] [H(σ)]−1, (7.45)

F (0) := FN − rSN
N (σ)f (e) ∈ H− 1

2 (SN ). (7.46)

Equation (7.44) can be then rewritten in the form

rSN
N (σ)ϕ = F (0) on SN . (7.47)

It can be seen that the operator N (σ) has the mapping property

N (σ) : H
1
2 (S) → H− 1

2 (S). (7.48)

Moreover, there hold the following assertions.

Lemma 7.14 The operator N (σ) is a strongly elliptic pseudodifferential
operator of order 1 with a positive definite principal homogeneous symbol
matrix.
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Proof. It is evident that the principal homogeneous symbol matrices of
the operators (7.45) and its main singular part N0 := [−2−1I6 + K0]H−1

0

are the same. Note that the operators with subscript 0 are generated by
the potentials with the kernel matrix Γ0( · ) which is a fundamental matrix
of the operator L0(∂) (see (2.16)) and represents a principal singular part
of the matrix Γ( · , σ) (see (3.45)).

We write Green’s formula (5.5) in Ω+ for real-valued vector functions
U(x) = U ′(x) = V0(H−1

0 g)(x) with g ∈ H
1
2 (S) to obtain

〈
[T0(∂, n)V0(H−1

0 g)]+ , [V0(H−1
0 g)]+

〉
S

=
∫

Ω+

E0

(
V0(H−1

0 g), V0(H−1
0 g)

)
dx

which implies (see (5.7) and Lemma 6.1)
〈
[−2−1I6 +K0]H−1

0 g , g
〉
S
≥ 0. (7.49)

Since the principal homogeneous symbol matrices of the operators−2−1I6+
K0 and H−1

0 are nondegenerate (see Theorem 6.3) and g is an arbitrary vec-
tor function of the space [H

1
2 (S)]6, it follows from (7.49) that the principal

homogeneous symbol matrix of the composition of these operators (i.e., of
the operator N0) is positive definite.

Lemma 7.15 The operators

rSN
N (σ) : H̃s

p(SN ) → Hs−1
p (SN ), (7.50)

: B̃s
p,q(SN ) → Bs−1

p,q (SN ), (7.51)

are invertible if

1/p− 1/2 < s < 1/p + 1/2. (7.52)

Moreover, the operators (7.50) and (7.51) have the trivial null-spaces and
zero indices (for all values of the parameter q ∈ [1,+∞]) provided p and s
satisfy the inequality (7.52).

Proof. The mapping properties (7.50) and (7.51) follow from Lemma 7.13
with α = 1, since N (σ) is a pseudodifferential operator of order 1 with a
positive definite homogeneous symbol matrix due to Theorem 7.14.

To prove the invertibility of the operators (7.50) and (7.51) we first
consider the case p = 2, s = 1/2, and q = 2, and show that the null space
of the operator

rSN
N (σ) : H̃

1
2 (SN ) = B̃

1
2
2,2(SN ) → H− 1

2 (SN ) = B̃
− 1

2
2,2 (SN )

91



AMIM Vol.8 No.1, 2003 D. Natroshvili, L. Giorgashvili, I. G. Stratis +

is trivial, i.e., the equation

rSN
N (σ)ϕ = 0 on SN (7.53)

admits only the trivial solution (ϕ = 0) in the space H̃
1
2 (SN ).

Indeed, let ϕ ∈ H̃
1
2 (SN ) be any solution of the homogeneous equation

(7.53). It is evident that the vector

U(x) = V (σ)
(
[H(σ)]−1ϕ

)
(x), x ∈ Ω+

belongs to the space H1(Ω+) = W 1
2 (Ω+) and solves the homogeneous mixed

Problem (III(σ))±. Therefore, U(x) = V (σ)
(
[H(σ)]−1ϕ

)
(x) = 0 for x ∈

Ω+, due to Theorem 7.1 and, consequently, [U(x)]+ = ϕ(x) = 0 for x ∈ S.
Since the principal singular part of the operator N (σ) is self-adjoint (due
to the positive definiteness of the principal homogeneous symbol matrix of
N (σ)) we conclude that the index of N (σ) is equal to zero and thus, by
Lemma 7.13 the operator

rSN
N (σ) : H̃

1
2 (SN ) → H− 1

2 (SN )

is invertible. Now Lemma 7.13 completes the proof.

Theorem 7.16 Let the conditions (7.40) be fulfilled. Then Problem (III(σ))+

has a unique solution representable in the form of (7.43) where ϕ ∈ H̃
1
2 (SN )

is defined by the uniquely solvable pseudodifferential equation (7.47).

Proof. It follows from Theorem 7.1 and Lemma 7.15.

Corollary 7.17 Let 4/3 < p < 4 and

Φ = 0, fD ∈ B1−1/p
p,p (SD), FN ∈ B−1/p

p,p (SN ). (7.54)

Then Problem (III(σ))+ has a unique solution U ∈ W 1
p (Ω+) which is rep-

resentable in the form of (7.43) where f (e) ∈ B
1−1/p
p,p (S) is some fixed exten-

sion of the vector function fD ∈ B
1−1/p
p,p (SD) from SD onto S preserving the

functional space B
1−1/p
p,p (S) and ϕ ∈ B̃

1−1/p
p,p (SN ) is defined by the uniquely

solvable pseudodifferential equation

rSN
N (σ)ϕ = F (0) on SN (7.55)

with
F (0) := FN − rSN

N (σ)f (e) ∈ B−1/p
p,p (SN ).
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Proof. First we note that in accordance with Lemma 7.13 equation (7.55)
is uniquely solvable for s = 1−1/p and 4/3 < p < 4, where the last equality
follows from the inequality (7.52). This implies the solvability of Problem
(III(σ))+ in the space W 1

p (Ω+) with p ∈ (4/3, 4).
Next we show the uniqueness of solution in the space W 1

p (Ω+) for ar-
bitrary p ∈ (4/3, 4) (for p = 2 it has been proved in Theorem 7.1). Let
U ∈ W 1

p (Ω+) be some solution of the homogeneous Problem (III(σ))+.
Clearly, then

[U ]+ ∈ B̃1−1/p
p,p (SN ). (7.56)

By Remark 7.12 we have the representation

U(x) = V (σ)
(
[H(σ)]−1[U ]+

)
(x), x ∈ Ω+.

Since U satisfies the homogeneous Neumann condition (7.6) on SN , we have

rSN
N (σ)[U ]+ = 0 on SN ,

whence [U ]+ = 0 on S follows due to the inclusion (7.56), Lemma 7.15, and
the inequality 4/3 < p < 4. Therefore, U = 0 in Ω+.

Further we prove the main regularity result for a solution to Problem
(III(σ))+.

Theorem 7.18 Let the conditions (7.54) and

4/3 < p < 4, 1 < t < ∞, 1 ≤ q ≤ ∞, 1/t− 1/2 < s < 1/t + 1/2, (7.57)

be fulfilled, and let U ∈ W 1
p (Ω+) be the unique solution to the mixed problem

(III(σ))+.
In addition to (7.54),
i) if

fD ∈ Bs
t,t(SD), FN ∈ Bs−1

t,t (SN ), (7.58)

then

U ∈ H
s+1/t
t (Ω+); (7.59)

ii) if

fD ∈ Bs
t,q(SD), FN ∈ Bs−1

t,q (SN ), (7.60)

then

U ∈ B
s+1/t
t,q (Ω+); (7.61)
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iii) if

fD ∈ Cα0(SD), FN ∈ Bα0−1
∞,∞ (SN ), α0 > 0, (7.62)

then

U ∈ Cβ0(Ω+) with any β0 ∈ (0, α1), α1 := min{α0, 1/2}. (7.63)

Proof. Applying Corollary 7.17, Lemma 7.15, the inclusions(7.54) and
(7.58) [resp. (7.60)] along with the inequalities (7.57), we conclude from
(7.58) that ϕ ∈ B̃s

t,t(SN ) [resp. ϕ ∈ B̃s
t,q(SN )] since F0 ∈ Bs−1

t,t (SN ) [resp.
F0 ∈ Bs−1

t,q (SN )].
Note that f (e) ∈ Bs

t,t(S) [resp. f (e) ∈ Bs
t,q(S)] is some extension of

the vector fD onto the whole of S. Therefore, by Theorem 6.5 and the
representation formula (7.43) the inclusion (7.59) [resp. (7.61)] follows.

To prove (iii) we use the following embeddings (see, e.g., [46], [47])

Cα0(S) = Bα0∞,∞(S) ⊂ Bα0−ε0
∞,1 (S) ⊂ Bα0−ε0∞,q (S)

⊂ Bα0−ε0
t,q (S) ⊂ Cα0−ε0−k/t(S), (7.64)

where ε0 is an arbitrary small positive number, S ⊂ IR3 is a compact k-
dimensional (k = 2, 3) smooth manifold with smooth boundary, 1 ≤ q ≤ ∞,
1 < t < ∞, α0 − ε0 − k/t > 0, α0 and α0 − ε0 − k/t are not integers. From
(7.62) and the embeddings (7.64) the condition (7.61) follows with any
s ≤ α0 − ε0.

Bearing in mind (7.57) and taking t sufficiently large and ε0 sufficiently
small, we may put s = α0 − ε0 if

1/t− 1/2 < α0 − ε0 < 1/t + 1/2, (7.65)

and s ∈ (1/t− 1/2, 1/t + 1/2) if

1/t + 1/2 < α0 − ε0. (7.66)

By (7.61) the solution U belongs then to B
s+1/t
t,q (Ω+) with s + 1/t = α0 −

ε0 + 1/t if (7.65) holds, and with s + 1/t ∈ (2/t− 1/2, 2/t + 1/2) if (7.66)
holds. In the last case we can take s + 1/t = 2/t + 1/2 − ε0. Therefore,
we have either U ∈ B

α0−ε0+1/t
t,q (Ω+), or U ∈ B

1/2+2/t−ε0

t,q (Ω+) in accordance
with the inequalities (7.65) and (7.66). The last embedding in (7.64) (with
k = 3) yields that either U ∈ Cα0−ε0−2/t(Ω+), or U ∈ C1/2−ε0−1/t(Ω+)
which lead to the inclusion

U ∈ Cα1−ε0−2/t(Ω+), (7.67)
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where α1 := min{α0, 1/2}. Since t is sufficiently large and ε0 is sufficiently
small, the embedding (7.67) completes the proof.

By the same arguments it can be shown that the uniqueness, existence
and regularity results, similar to the above ones, hold also true for a solution
to Problem (III(σ))−. We note only that the solution is representable again
in the form (7.43) where f (e) is the same as above, and ϕ solves (in various
functional spaces) the pseudodifferential equation

rSN
N (σ)
− ϕ = F

(0)
− on SN , (7.68)

where

N (σ)
− := [2−1I6 +K(σ)] [H(σ)]−1, (7.69)

F
(0)
− := FN − rSN

N (σ)
− f (e). (7.70)

The operator N (σ)
− has the same properties as N (σ) described above.

7.4. Basic BVPs of statics

For the interior and exterior BVPs of statics, i.e., for σ = 0, we have the
analogous uniqueness and existence results.

For illustration we will consider the interior and exterior BVPs (I(0))±f
and (II(0))±F (see (7.2), (7.3), (7.4) with σ = 0 and Φ = 0), where in the
case of exterior problems we assume that

∂αUk =

{ O(|x|−1−|α|) for k = 1, 2, 3,

O(|x|−2−|α|) for k = 4, 5, 6,
(7.71)

as |x| → +∞ for multi-indeces α = (α1, α2, α3) with |α| = 0, 1.
Taking into account Remark 3.5 we easily conclude that the correspond-

ing single- and double-layer potentials V (0)(g) and W (0)(g) satisfy the fol-
lowing decay conditions at infinity

∂α [V (0)(g)]k, ∂α [W (0)(g)]k =

{ O(|x|−1−|α|) for k = 1, 2, 3,

O(|x|−2−|α|) for k = 4, 5, 6,
(7.72)

as |x| → +∞ for arbitrary multi-indeces α = (α1, α2, α3).
Therefore with the help of the results obtained in Section 6 by the same

method as above we can prove the following assertions (with appropriate
slight modifications).

Theorem 7.19 The homogeneous versions of the BVPs (I(0))±0 and (II(0))−0
have only the trivial solution in the space of regular vector functions C1(Ω±),
while the problem (II(0))+0 has the vector (2.27) as a general solution.
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Proof. The proof for the interior problems follows from Green’s identity
(2.19) and Lemma 2.1, while for the exterior domains the uniqueness is a
consequence of the requirement (7.71) and the formula (with U = U ′)

∫

Ω−

[
U ′ · L(∂)U + E(U ′, U)

]
dx = −

∫

∂Ω−

[U ′]− · [T (∂, n)U ]− dS, (7.73)

which is valid for U,U ′ ∈ H1
loc(Ω

−) satisfying the conditions (7.71) and
L(∂)U ∈ L1(Ω−).

Theorem 7.20 Let S and f be as in (7.14) with k = 2. Then Problem
(I(0))+f is uniquely solvable in the space of regular vector-functions. More-
over, the solution belongs to the space C1,γ0(Ω+) ∩ C∞(Ω+) and it can be
represented by the double-layer potential U(x) = W (0)(g)(x), x ∈ Ω+, where
the density vector g ∈ C1,γ0(S) is defined by the uniquely solvable integral
equation [

2−1I6 +K(0)∗
]

g(x) = f(x), x ∈ S.

Proof. The proof immediately follows from Theorem 6.1 and the fact that
the mapping

2−1I6 +K(0)∗ : C1,γ0(S) → C1,γ0(S)

is an isomorphism.

Theorem 7.21 Let S and f be as in (7.14) with k = 2. Then Problem
(I(0))−f is uniquely solvable in the space of regular vector-functions. More-
over, the solution belongs to the space C1,γ0(Ω−) ∩ C∞(Ω−) and it can be
represented by the linear combination of the single- and double-layer poten-
tials U(x) = W (0)(g)(x) + V (0)(g)(x), x ∈ Ω−, where the density vector
g ∈ C1,γ0(S) is defined by the uniquely solvable integral equation

[
−2−1I6 +K(0)∗ +H(0)

]
g(x) = f(x), x ∈ S.

Proof. We can easily show that the mapping

−2−1I6 +K(0)∗ +H(0) : C1,γ0(S) → C1,γ0(S)

is an isomorphism. Whence the proof follows.

Theorem 7.22 Let S and F be as in (7.14) with k = 1. Then Problem
(II(0))−F is uniquely solvable in the space of regular vector-functions. More-
over, the solution belongs to the space C1,γ0(Ω−) ∩ C∞(Ω−) and it can be
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represented by the single-layer potential U(x) = V (0)(h)(x), x ∈ Ω−, where
the density vector h ∈ C1,γ0(S) is defined by the uniquely solvable integral
equation [

2−1I6 +K(0)
]

h(x) = F (x), x ∈ S.

Proof. The proof follows from Theorem 6.1 and the fact that the mapping

2−1I6 +K(0) : C1,γ0(S) → C1,γ0(S)

is an isomorphism.

To deal with the interior Neumann problem we proceed as follows.
Denote by XΩ{χ(1), χ(2), · · · , χ(6)} the linear span of vectors of rigid

displacements in a region Ω, where, for definiteness, we assume that (cf.
(2.27))

χ(1) = (0,−x3, x2, 1, 0, 0)>, χ(4) = (1, 0, 0, 0, 0, 0)>,

χ(2) = (x3, 0,−x1, 0, 1, 0)>, χ(5) = (0, 1, 0, 0, 0, 0)>,

χ(3) = (−x2, x1, 0, 0, 0, 1)>, χ(6) = (0, 0, 1, 0, 0, 0)>.

(7.74)

The restriction of the space XΩ{χ(1), χ(2), · · · , χ(6)} onto the boundary S =
∂Ω we denote by XS{χ(1), χ(2), · · · , χ(6)}. Clearly the vectors {χ(j)}6

j=1 are
linearly independent in the both spaces XΩ and XS .

Theorem 7.23 The linear span XS{χ(1), χ(2), · · · , χ(6)} represents the null
space of the operator −2−1I6 +K(0)∗.

Proof. It can be cheked that each vector χ(j) solves the homogeneous
differential equation L(∂)χ(j)(x) = 0 in Ω+ and T (∂, n)χ(j)(x) = 0 on
S. Threfore by the general integral representation formula (see (4.4) with
σ = 0) we establish that the vectors χ(j) ∈ XS solve the homogeneous
integral equation

[−2−1I6 +K(0)∗ ] χ(j) = 0, j = 1, 6.

Further it can be shown that the dimension of the null space of the ad-
joint operator −2−1I6 +K(0) equals to 6, since the corresponding nontrivial
linearly independent solutions of the adjoint homogeneous equation are re-
lated to the nontrivial linearly independent solutions of Problem (II(0))+0 ,
i.e., to the vectors of the space XΩ+ .

On the other hand, the index of the operator in question is zero (due
to Theorem 6.3.(ii)), which completes the proof.
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Theorem 7.24 The interior Neumann problems (II(0))+F is solvable if and
only if

∫

S

F · χ(j) dS = 0, j = 1, 6, (7.75)

and solutions can be represented by the single-layer potential U(x) = V (0)(h)(x),
x ∈ Ω+, where the density vector h ∈ C1,γ0(S) solves the integral equation

[
−2−1I6 +K(0)

]
h(x) = F (x), x ∈ S. (7.76)

A solution vector U is defined modulo a rigid displacement χ ∈ XΩ+, while
TU is determined uniquely.

Proof. The proof is standard.
The necessity of the conditions (7.75) follows from Green’s formula

(2.19) with U ′(x) = χ(j)(x), x ∈ Ω+.
Sufficiency follows from the general theory of singular integral equations

of normal type, since the solvability conditions for the equation (7.76) co-
incide with (7.75).
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