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Abstract

In the present paper static one-dimensional hierarchical model for elastic cusped

rod is constructed. The corresponding boundary value problem is studied and the

uniqueness and existence of its solution in suitable weighted Sobolev spaces is proved.

The convergence of the sequence of approximate solutions restored from the solutions

of one-dimensional problems to the solution of original three-dimensional problem is

proved and under regularity conditions the rate of approximation is estimated.
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The construction and the intensive investigation of the lower-dimensio-
nal mathematical models of bodies with negligible thickness or width in
comparison with the other geometric dimensions arise with the wide use
of structures of such type in the practice ([1, 2]). One of the methods of
constructing hierarchic models for elastic prismatic shells was proposed by
I. Vekua in [3]. Note, that in [3] initial boundary value problems were con-
sidered in the spaces of sufficiently smooth functions and convergence of
the sequence of approximate solutions to the exact solution of the three-
dimensional problem was not investigated. In static case the existence and
uniqueness of the solution to reduced two-dimensional problem obtained in
[3] in Sobolev spaces first were investigated in [4]. The rate of approxima-
tion of the solution to the original three-dimensional problem by vector-
functions restored from the solution of reduced problems in Ck spaces was
estimated in [5]. Later, various lower-dimensional models were constructed
and investigated in [6-10].

1Dedicated to the memory of Professor Victor Kupradze on the occasion of the 100th

anniversary of his birth
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The present work is devoted to study of static boundary value problem
for cusped rods in the linear theory of elasticity. Generalizing an idea of I.
Vekua, one-dimensional hierarchic model of rods was obtained in [11]. In
the nondegenerate case, i.e. in the case of strictly positive rod thickness and
width, hierarchic model of static boundary value problem was constructed
in [12], where the existence and uniqueness of the solution to obtained
one-dimensional model is investigated and the relation of the model to the
original problem is studied. In this paper we construct the hierarchic one-
dimensional model of elastic cusped rod in static equilibrium and investigate
the corresponding boundary value problem in weighted Sobolev spaces.
Moreover, we prove the convergence of the sequence of vector-functions
constructed by means of the solutions to reduced problems and estimate
the rate of approximation.

Let us consider an elastic rod with initial configuration Ω ⊂ R3, which
consists of homogeneous isotropic material with Lamé constants λ, µ and
Lipschitz domain Ω of the following form

Ω =
{
x = (x1, x2, x3) ∈ R3; h−α (x3) < xα < h+

α (x3), x3 ∈ I, α = 1, 2
}

,

where I = (d1, d2), d2 > d1, h±α ∈ C0(I) ∩ C1(I), h+
α (x3) > h−α (x3), for

x3 ∈ (d1, d2], α = 1, 2. Denote by Γ2 = {x ∈ Ω;x3 = d2} the upper face
of the rod and the rest part of the boundary Γ = ∂Ω - by Γ1 = Γ\Γ2.
Assume, that the rod is subjected to applied body forces with density
f = (fi), the upper face Γ2 is clamped and on the surface Γ1 the surface
forces with density τ = (τi) are acting, fi, τi are components of the body
and surface forces, respectively, i = 1, 3. Throughout the paper we assume
that the indices i, j, p, q vary in the set {1, 2, 3}. The partial derivative
with respect to i-th argument ∂/∂xi we denote by ∂i. For any Lipschitz
domain D ⊂ Rs, s ∈ N, we denote by Hk(D) the Sobolev space of order
k ∈ N based on L2(D), H0(D) = L2(D), Hk

0 (D) is the closure of the set
C∞

0 (D) of the infinitely differentiable functions with compact support in
D in the space Hk(D), and H1/2(Γ1) is the Sobolev space on the part of
the boundary Γ1 ⊂ ∂D, which is an element of Lipschitz dissection of ∂D
([13]). The spaces of vector-functions we denote by Hk(D) = [Hk(D)]3,
H1/2(Γ1) = [H1/2(Γ1)]3, k ∈ N.

The variational formulation of the static problem of the three-dimensio-
nal theory of linearized elasticity is the following: find the vector-function
u = (ui) ∈ V (Ω) = {v = (vi) ∈ H1 (Ω) ; v = 0 on Γ2}, which for all
v ∈ V (Ω) satisfies equation

∫

Ω

(λepp(u)eqq(v) + 2µeij(u)eij(v)) dx = 〈f , v〉Ω + 〈τ , v〉Γ1 , (1)
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where summation convention with respect to the repeated indices is used,
eij(v) = 1/2(∂ivj + ∂jvi), f ∈ H̃−1(Ω), τ ∈ H−1/2(Γ1), H̃−1(Ω) and
H−1/2(Γ1) are the dual spaces of the Sobolev spaces H1(Ω) and H1/2(Γ1),
respectively ([13]), and 〈., .〉Ω, 〈., .〉Γ1 denote the duality between the corre-
sponding spaces.

The three-dimensional problem (1) has a unique solution u if Lamé
constants µ > 0, 3λ+2µ > 0, and then u is also a solution to the following
minimization problem: find u ∈ V (Ω) such that

J(u) = inf
v∈V (Ω)

J(v), J(v) =
1
2
B(v, v)− L(v), ∀v ∈ V (Ω) ,

where B(., .) is the bilinear form with respect to u and v in the left side of
equation (1) and L(.) is the linear form in the right side of (1).

In order to reduce the problem (1) to one-dimensional problem let us
consider the subspace VN1N2(Ω) ⊂ V (Ω), Nα = (N1

α, N2
α, N3

α), α = 1, 2, of
vector-functions, the i-th components of which are polynomials of degree
N i

1 with respect to the variable x1 and of degree N i
2 with respect to the

variable x2, i.e.

VN1N2(Ω) = {vN1N2 ∈ H1(Ω); vN1N2i =
N i

1∑

ki
1=0

N i
2∑

ki
2=0

1
h1h2

(ki
1 +

1
2
)(ki

2 +
1
2
)

ki
1ki

2
vi Pki

1
(ω1)Pki

2
(ω2), (h1h2)−1/2 ki

1ki
2

vi ∈ L2(I), vN1N2 = 0 on Γ2, i = 1, 3},

where ωα = (xα − hα)/hα, hα = (h+
α − h−α )/2, hα = (h+

α + h−α )/2, α = 1, 2,
and Pk denotes the Legendre polynomial of degree k. Considering the
problem (1) on VN1N2(Ω) we obtain the following variational problem: the
unknown is the vector-function wN1N2 = (wN1N2i) ∈ VN1N2(Ω),

wN1N2i =
N i

1∑

ki
1=0

N i
2∑

ki
2=0

1
h1h2

(
ki

1 +
1
2

)(
ki

2 +
1
2

)
ki
1ki

2
wi Pki

1
(ω1)Pki

2
(ω2),

which satisfies equation

B(wN1N2 , vN1N2) = L(vN1N2), ∀vN1N2 ∈ VN1N2(Ω). (2)

From the definition of the space VN1N2(Ω), taking into account h±α ∈ C1(I)
and hα > 0 in I (α = 1, 2), it follows that for each vector-function vN1N2 ∈
VN1N2(Ω) the functions

ki
1ki

2
vi belong to the space H1 in the interior of the

interval I, i.e.
ki
1ki

2
vi ∈ H1

loc(I), 0 ≤ ki
α ≤ N i

α, α = 1, 2, i = 1, 3. Moreover,
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since vN1N2 ∈ H1(Ω), applying the properties of the Legendre polynomials

([14]), for the vector-function ~vN1N2 with components
ki
1ki

2
vi (i.e. ~vN1N2 =

(
00
v1, ...,

N i
1N i

2
v1 ,

00
v2, ...,

N2
1 N2

2
v2 ,

00
v3, ...,

N3
1 N3

2
v3 )T ) we have, that

‖vN1N2‖2
H1(Ω) =

3∑

i=1

N i
1∑

si
1=0

N i
2∑

si
2=0

(si
1 +

1
2
)(si

2 +
1
2
)
[
‖(h1h2)−1/2 si

1si
2

vi ‖2
L2(I)+

+
2∑

α=1

‖
N i

α∑

ki
α=si

α

(ki
α +

1
2
)(1− (−1)ki

α+si
α)(h1h2)−1h−1/2

α [(2− α)]
ki
1si

2
vi +

+(α− 1)
si
1ki

2
vi ]‖2

L2(I) + ‖(h1h2)−1/2

(
(
si
1si

2
vi )′ −

2∑

α=1

h−1
α h′α(si

α + 1)
si
1si

2
vi −

−
2∑

α=1

N i
α∑

ki
α=si

α+1

(ki
α +

1
2
)
(
(h+

α )′ − (−1)ki
α−si

α(h−α )′
)

h−1
α

((2− α)
ki
1si

2
vi +(α− 1)

si
1ki

2
vi )

)
‖2

L2(I)

]
< ∞,

where the prime denotes differentiation with respect to the argument and
we assume that the sum is equal to zero if its upper limit is less than the
lower one. Note that the square root of the last expression is the norm in

the space [H1
loc(I)]N

1,2,3
1,2 , N1,2,3

1,2 =
3∑

i=1

N i
1N

i
2 + 3, which we denote by ‖.‖∗.

So, the problem (2) is equivalent to the following problem: find ~wN1N2 ∈
~VN1N2(I) = {~vN1N2 = (

ki
1ki

2
vi ) = [H1

loc(I)]N
1,2,3
1,2 ; ‖~vN1N2‖2

∗ < ∞,
ki
1ki

2
vi =

0 for x3 = d2, ki
α = 0, N i

α, α = 1, 2, i = 1, 3}, which satisfies equation

BN1N2(~wN1N2 , ~vN1N2) = LN1N2(~vN1N2), ∀~vN1N2 ∈ ~VN1N2(I), (3)

where BN1N2 , LN1N2 are the forms B and L on the subspace VN1N2(Ω)
rewritten in terms of ~wN1N2 , ~vN1N2 .

Note that in the definition of the space ~VN1N2(I) condition
ki
1ki

2
vi = 0 for

x3 = d2 is understood on the trace sense, since for the vector-functions from
the space ~VN1N2(I) we can define the trace on the end x3 = d2 of I. Indeed,
if ~vN1N2 ∈ ~VN1N2(I), then the corresponding vN1N2 ∈ VN1N2(Ω) ⊂ H1(Ω)

and therefore for the functions
ki
1ki

2
vi (ki

α = 0, N i
α, α = 1, 2, i = 1, 3) we define

the trace operator tr∗ by

tr∗(
ki
1ki

2
vi ) =

h+
1∫

h−1

h+
2∫

h−2

tr(vN1N2i)|Γ2
Pki

1
(ω1)Pki

2
(ω2)dx1dx2.
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Thus, we have reduced the original three-dimensional static problem
(1) for linearly elastic cusped rod to one-dimensional problem, for which
the following existence and uniqueness theorem is valid.

Theorem 1. If Lamé constants µ > 0, 3λ + 2µ > 0, f ∈ H̃−1(Ω)
and τ ∈ H−1/2(Γ1), then the obtained one-dimensional problem (3) has a
unique solution ~wN1N2 , which also is a solution to the following minimiza-
tion problem: find ~wN1N2 ∈ ~VN1N2(I), such that

JN1N2(~wN1N2) = inf
~vN1N2

∈~VN1N2
(I)

JN1N2(~vN1N2),

JN1N2(~vN1N2) =
1
2
BN1N2

(~vN1N2 , ~vN1N2)− LN1N2
(~vN1N2).

Proof. First, let us prove that the space ~VN1N2(I) is complete. Let
{~v(l)

N1N2
}∞l=1 be a Cauchy sequence in ~VN1N2(I), i.e.

‖v(l)
N1N2

− v
(m)
N1N2

‖∗ → 0, as l,m →∞.

From the definition of the norm ‖.‖∗ we infer, that {v(l)
N1N2

}∞l=1 is a

Cauchy sequence in the space VN1N2(Ω), where v
(l)
N1N2

= (v(l)
N1N2i),

v
(l)
N1N2i =

N i
1∑

ki
1=0

N i
2∑

ki
2=0

1
h1h2

(
ki

1 +
1
2

) (
ki

2 +
1
2

)
ki
1ki

2
vi

(l)

Pki
1
(ω1)Pki

2
(ω2), i = 1, 3.

Hence, there exists vN1N2 ∈ H1(Ω) such that v
(l)
N1N2

→ vN1N2 in H1(Ω),

as l →∞, and, consequently, trv
(l)
N1N2

→ trvN1N2 in H1/2(∂Ω),

rs
v

(l)

N1N2i=

h+
1∫

h−1

h+
2∫

h−2

v
(l)
N1N2iPr(ω1)Ps(ω2)dx1dx2 →

→rs
vN1N2i=

h+
1∫

h−1

h+
2∫

h−2

vN1N2iPr(ω1)Ps(ω2)dx1dx2,

in the space L2(I), as l →∞, for all r, s ∈ N∪{0}. Since v
(l)
N1N2

∈ VN1N2(Ω),

we have that trv
(l)
N1N2

= 0 on Γ2 and
ki
1ki

2
v

(l)

N1N2i= 0, for all ki
1 > N i

1, ki
2 > N i

2.

Therefore, vN1N2
= 0 on Γ2 and

ki
1ki

2
v N1N2i= 0, for all ki

1 > N i
1, ki

2 > N i
2,
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i = 1, 2, 3. So, the i-th component of the limit vector-function vN1N2
is of

the following form:

vN1N2i =
N i

1∑

ki
1=0

N i
2∑

ki
2=0

1
h1h2

(
ki

1 +
1
2

)(
ki

2 +
1
2

)
ki
1ki

2
vi Pki

1
(ω1)Pki

2
(ω2), i = 1, 3,

and, hence, vN1N2 = (vN1N2i) ∈ VN1N2(Ω). Thus, the corresponding

vector-function ~vN1N2 = (
00
v1, ...,

N1
1 N1

2
v1 ,

00
v2, ...,

N2
1 N2

2
v2 ,

00
v3, ...,

N3
1 N3

2
v3 )T ∈ ~VN1N2(I),

since ‖~vN1N2‖∗ = ‖vN1N2‖H1(Ω) < ∞,
ki
1ki

2
vi =

ki
1ki

2
v N1N2i∈ H1

loc(I),
ki
1ki

2
v N1N2i=

0 for x3 = d2, 0 ≤ ki
α ≤ N i

α, α = 1, 2, i = 1, 3. Moreover,
∥∥∥~v

(l)
N1N2

− ~vN1N2

∥∥∥
∗

=
∥∥∥v

(l)
N1N2

− vN1N2

∥∥∥
H1(Ω)

→ 0, as l →∞.

Hence, ~VN1N2(I) is a Hilbert space with respect to the scalar product de-
fined by the norm ‖.‖∗ .

Since the bilinear form B is coercive on V (Ω), then it is coercive on the
subspace VN1N2(Ω) ⊂ V (Ω), and, consequently, the bilinear form BN1N2 is
coercive on the space ~VN1N2(I), i.e., for all ~vN1N2 ∈ ~VN1N2(I),

BN1N2(~vN1N2 , ~vN1N2) = B(vN1N2 , vN1N2) ≥ α ‖vN1N2‖2
H1(Ω) = α ‖~vN1N2‖2

∗ .

From the conditions of the theorem it follows that the linear form L
is continuous and therefore LN1N2 is continuous too, i.e., for all ~vN1N2 ∈
~VN1N2(I),

LN1N2(~vN1N2) = L(vN1N2) ≤ c ‖vN1N2‖2
H1(Ω) = c ‖~vN1N2‖2

∗ .

Thus, all the conditions of Lax-Milgram lemma are fulfilled and, hence, the
formulated theorem is proved. 2

So, we have reduced the three-dimensional problem (1) to one-dimensio-
nal problem (3) and prove that it has a unique solution. Now we study the
relation of the obtained model of rod to its original model, i.e. investigate
convergence of the sequence {wN1N2}, where wN1N2 ∈ VN1N2(Ω) corre-
sponds to the solution ~wN1N2 of the one-dimensional problem (3), to the
exact solution of the three-dimensional problem. The convergence result
and estimate of the rate of convergence is given in the next theorem, but
before we formulate it, let us introduce the following anisotropic weighted
Sobolev space

Hs,s,1

h±1,2

(Ω) = {v ∈ H1(Ω); ∂k−1
α v ∈ H1(Ω), (h±α )′∂k

αv ∈ L2(Ω), 1 ≤ k ≤ s},
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where α = 1, 2, s ∈ N, equipped with the norm

‖v‖2
Hs,s,1

h±1,2

(Ω)
=

s∑

k=1

2∑

α=1

(∥∥∥∂k−1
α v

∥∥∥
2

H1(Ω)
+

∥∥∥(h+
α )′∂k

αv
∥∥∥

2

L2(Ω)
+

+
∥∥∥(h−α )′∂k

αv
∥∥∥

2

L2(Ω)

)
.

Note that Hs,s,1

h±1,2

(Ω) is a Hilbert space. Indeed, any Cauchy sequence

{vn}n≥1 in the space Hs,s,1

h±1,2

(Ω) is a Cauchy sequence in the space H1(Ω)

and, consequently, vn → v in H1(Ω), as n → ∞. Moreover, ∂k−1
α vn →

∂k−1
α v in H1(Ω), as n →∞, k = 1, s. Since h±1 , h±2 ∈ C1(I), we have that

h±1 , h±2 ∈ C1(I1), where I1 is any subinterval of I, I1 ⊂ I, and hence we
obtain

(h±α )′∂k
αvn → (h±α )′∂k

αv in L2(Ω1), as n →∞, α = 1, 2, (4)

where k = 1, s, Ω1 is any subdomain of Ω, Ω1 ⊂ Ω. From the definition of
the space Hs,s,1

h±1,2

(Ω) it follows, that the sequence {(h±α )′∂k
αvn}n≥1 converges

in L2(Ω), and, taking into account (4), we have (h±α )′∂k
αvn → (h±α )′∂k

αv
in L2(Ω), as n → ∞, k = 1, s, α = 1, 2, and thus the space Hs,s,1

h±1,2

(Ω) is

complete.
Theorem 2. If all the conditions of Theorem 1 are fulfilled, then the

vector-function wN1N2 = (wN1N2i),

wN1N2i =
N i

1∑

ki
1=0

N i
2∑

ki
2=0

1
h1h2

(
ki

1 +
1
2

)(
ki

2 +
1
2

)
ki
1ki

2
wi Pki

1
(ω1)Pki

2
(ω2), i = 1, 3,

restored from the solution ~wN1N2 = (
00
w1, ...,

N1
1 N1

2
w1 , . . . ,

00
w3, ...,

N3
1 N3

2
w3 )T of one-

dimensional problem (3) tends to the solution u of the three-dimensional
problem (1) in the space H1(Ω), as N i

α →∞, i = 1, 3, α = 1, 2. Moreover,
if u ∈ Hs,s,1

h±1,2

(Ω), s ≥ 2, then

‖u−wN1N2‖2
H1(Ω) ≤

(
1

N2s−3
1

+
1

N2s−3
2

)
θ(Ω, Γ2, h

±
1 , h±2 ,N1,N2),

where Nα = min
1≤i≤3

{N i
α}, θ(Ω, Γ2, h

±
1 , h±2 ,N1,N2) → 0, as N i

α → ∞, i =

1, 3, α = 1, 2. If, in addition, ‖u‖
Hs,s,1

h±1,2

(Ω)
≤ c, c is independent of hmax

α =

39



AMIM Vol.8 No.1, 2003 D. Gordeziani, G. Avalishvili +

max
x3∈I

hα(x3), α = 1, 2, then

‖u−wN1N2‖2
E(Ω) ≤

(
(hmax

1 )2(s−1)

N2s−3
1

+
(hmax

2 )2(s−1)

N2s−3
2

)
θ(N1,N2),

where θ(N1,N2) → 0, as N1, N2 →∞, ‖v‖E(Ω) =
√

BΩ(v,v), v ∈ V (Ω).
Proof. According to the Theorem 1, the solution ~wN1N2 of the problem

(3) minimizes the functional JN1N2 on the space ~VN1N2(I), i.e.,

1
2
BN1N2

(~wN1N2 , ~wN1N2)− LN1N2
(~wN1N2) ≤

≤ 1
2
BN1N2

(~vN1N2 , ~vN1N2)− LN1N2
(~vN1N2), ∀~vN1N2 ∈ ~VN1N2(I). (5)

Since for all ~vN1N2 ∈ ~VN1N2(I),

BN1N2(~vN1N2 , ~vN1N2) = B(vN1N2 , vN1N2), LN1N2(~vN1N2) = L(vN1N2),

where vN1N2 = (vN1N2i), vN1N2i =
N i

1∑

ki
1=0

N i
2∑

ki
2=0

1
h1h2

(
ki

1 +
1
2

)(
ki

2 +
1
2

)
ki
1ki

2
vi

Pki
1
(ω1)Pki

2
(ω2), i = 1, 3, then from (5) we obtain

B(u−wN1N2 , u−wN1N2) ≤ B(u, u)− 2L(vN1N2) + B(vN1N2 , vN1N2),

and, consequently, for all vN1N2 ∈ VN1N2(Ω),

B(u−wN1N2 , u−wN1N2) ≤ B(u− vN1N2 , u− vN1N2). (6)

From the last inequality it follows, that the vector-function wN1N2 ap-
proximates the solution u of the original problem. Indeed, by trace the-
orems for Sobolev spaces ([13]), for any v ∈ H1(Ω), v = 0 on Γ2, there
exists continuation ṽ ∈ H1

0 (Ω1) of v, where Ω1 is a Lipschitz domain,
Ω1 ⊃ Ω, ∂Ω1 ⊃ Γ0. From the density of C∞

0 (Ω1) in H1
0 (Ω1), we obtain

that the set of infinitely differentiable vector-functions on Ω, which are
equal to zero on Γ2, is dense in the space V (Ω̃1), Ω̃1 = {x ∈ R3; h̃−α (x3) <
xα < h̃+

α (x3), x3 ∈ I, α = 1, 2}, where the functions h̃−α , h̃+
α are such, that

h̃−α (x3) ≤ h−α (x3) ≤ h+
α (x3) ≤ h̃+

α (x3), x3 ∈ Ī , h̃−α (d1) < h̃+
α (d1) and

Ω ⊂ Ω̃1 ⊂ Ω1. Since the union
⋃

N1,N2≥0

VN1N2(Ω̃1) of the spaces VN1N2(Ω̃1)

for all N i
α ≥ 0, i = 1, 3, α = 1, 2, is dense in V (Ω̃1) ([12]), we have that⋃

N1,N2≥0

VN1N2(Ω) is dense in V (Ω), and due to coerciveness of the bilinear
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form B, from the inequality (6) it follows that wN1N2 → u in the space
H1(Ω), as N1

1 , N1
2 ,...,N3

1 , N3
2 →∞.

Let us estimate the rate of approximation of u by wN1N2 , if u satisfies
additional regularity conditions of the theorem. By means of the solution
u of the three-dimensional problem we construct vector-function uN1N2 ,
the i-th component uN1N2i of which is the sum of the first (N i

1 +1)(N i
2 +1)

terms of ui Fourier-Legendre series expansion with respect to the variables
x1, x2, i.e.

uN1N2i =
N i

1∑

ki
1=0

N i
2∑

ki
2=0

1
h1h2

(
ki

1 +
1
2

)(
ki

2 +
1
2

)
ki
1ki

2
ui Pki

1
(ω1)Pki

2
(ω2),

where
ki
1ki

2
ui =

h+
1∫

h−1

h+
2∫

h−2

uiPki
1
(ω1)Pki

2
(ω2)dx1dx2, ki

α = 0, N i
α, i = 1, 3, α = 1, 2.

Note, that the vector-function uN1N2 ∈ VN1N2(Ω). Indeed, since u ∈
V (Ω), we have that uN1N2 = 0 on Γ2. So, it suffices to prove that uN1N2 ∈
H1(Ω). Applying properties of the Legendre polynomials ([14])

Pk(t) =
1

2k + 1
(P ′

k+1(t)− P ′
k−1(t)), ∀k ∈ N,

tP ′
k(t) = P ′

k+1(t)− (k + 1)Pk(t), ∀k ∈ N ∪ {0},

we have that for all k1, k2 ∈ N and i = 1, 2, 3,

k1k2
ui =

h1

2k1 + 1
(
k1−1,k2

∂1ui −
k1+1,k2

∂1ui ) =
h2

2k2 + 1
(
k1,k2−1

∂2ui −
k1,k2+1

∂2ui ), (7)

h1h2∂3

(
1

h1h2

k1k2
ui

)
=

k1k2

∂3ui +h̄′1
k1k2

∂1ui +h′1

(
1
h1

k1
k1k2
ui +

k1+1,k2

∂1ui

)
+

+h̄′2
k1k2

∂2ui +h′2

(
1
h2

k2
k1k2
ui +

k1,k2+1

∂2ui

)
.

Taking into account the latter formulas and expressions for derivatives of
Legendre polynomials

P ′
k(t) =

k−1∑

s=0

(
s +

1
2

)
(1− (−1)k+s)Ps(t),

tP ′
k(t) = kPk(t) +

k−1∑

s=0

(
s +

1
2

)
(1 + (−1)k+s)Ps(t),

∀k ∈ N,
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we obtain, for α = 1, 2,

∂uN1N2i

∂xα
=

N i
α−1∑

ki
α=0

N i
3−α∑

ki
3−α=0

1
h1h2

(
ki

1 +
1
2

)(
ki

2 +
1
2

)
ki
1ki

2

∂αui Pki
1
(ω1)Pki

2
(ω2)−

−
N i

α+1∑

ki
α=N i

α

N i
3−α∑

ki
3−α=0

1
2h1h2

(
ki

3−α +
1
2

)
ki
1ki

2

∂αui Pki
3−α

(ω3−α)

ki
α−2∑

si
α=0

(
si
α +

1
2

)
(1 + (−1)ki

α+si
α)Psi

α
(ωα),

∂uN1N2i

∂x3
=

N i
1∑

ki
1=0

N i
2∑

ki
2=0

1
h1h2

(
ki

1 +
1
2

)(
ki

2 +
1
2

)
ki
1ki

2

∂3ui Pki
1
(ω1)Pki

2
(ω2)+

+
2∑

α=1

N i
3−α∑

ki
3−α=0

1
h1h2

(
ki

3−α +
1
2

) [
h̄′α

(
N i

α +
1
2

)(
(α− 1)

ki
1N i

2

∂2ui +

+(2− α)
N i

1ki
2

∂1ui

)
PN i

α
(ωα) +

N i
α+1∑

ki
α=N i

α

ki
α−1∑

si
α=0

(
si
α +

1
2

)
ki
1ki

2

∂αui

(
(h+

α )′

2
+

+
(h−α )′(−1)ki

α+si
α

2

)
Psi

α
(ωα)

]
Pki

3−α
(ω3−α).

From the latter expressions for ∂juN1N2i, taking into account conditions of
the theorem ui ∈ H1(Ω), h′α∂αui, h̄′α∂αui ∈ L2(Ω), we have that uN1N2i ∈
H1(Ω), i, j = 1, 3, α = 1, 2.

In order to obtain the estimates of the theorem, let us consider the
remainder term εN1N2 = (εN1N2i),

εN1N2i =
∞∑

ki
1=N i

1

∞∑

ki
2=N i

2

(
ki

1 +
1
2

)(
ki

2 +
1
2

) ki
1ki

2
ui

h1h2
Pki

1
(ω1)Pki

2
(ω2), i = 1, 3.

Taking into account the formulas for derivatives of the components of
uN1N2 , properties of Legendre polynomials and applying Parseval equality,
we infer that

‖εN1N2i‖2
L2(Ω) =

∞∑

ki
1=N i

1+1

∨
∞∑

ki
2=N i

2+1

∫

I

1
h1h2

(
ki

1 +
1
2

) (
ki

2 +
1
2

)
(
ki
1ki

2
ui )2dx3,

∥∥∥∥
∂εN1N2i

∂xα

∥∥∥∥
2

L2(Ω)

=
∞∑

ki
α=N i

α

∨
∞∑

ki
3−α=N i

3−α+1

∫

I

(
ki

1 +
1
2

)(
ki

2 +
1
2

)
(

ki
1ki

2

∂αui)2

h1h2
dx3+
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+
N i

α+1∑

ki
α=N i

α

N i
3−α∑

ki
3−α=0

∫

I

1
h1h2

(
ki

3−α +
1
2

)
ki

α(ki
α − 1)
4

(
ki
1ki

2

∂αui)2dx3,

∥∥∥∥
∂εN1N2i

∂x3

∥∥∥∥
2

L2(Ω)

≤5




∞∑

ki
1=N i

1+1

∨
∞∑

ki
2=N i

2+1

∫

I

(
ki

1 +
1
2

)(
ki

2 +
1
2

)
(

ki
1ki

2

∂3ui)2

h1h2
dx3+

+
2∑

α=1

N i
α+1∑

ki
α=N i

α

N i
3−α∑

ki
3−α=0

∫

I

(
ki

3−α +
1
2

)
N i

α + 1
4h1h2

(
ki
1ki

2

∂αui)2
(
(2ki

α −N i
α)(h′α)2+

+(3N i
α − 2ki

α + 2)(h̄′α)2
)
dx3

where α = 1, 2,
∞∑

k1=N̂1

∨
∞∑

k2=N̂2

denotes the sum with respect to the indices

k1 and k2 for all pairs (k1, k2), k1 ≥ N̂1 or k2 ≥ N̂2. From (7) we have that

‖
k1k2

∂β
j ui ‖2

L2(I) ≤
c1

k
2(s−β)
1

k1+s−β∑

k̃1=k1−s+β

‖hs−β
1

k̃1k2

(∂s−β
1 ∂jui) ‖2

L2(I),

‖
k1k2

∂β
j ui ‖2

L2(I) ≤
c2

k
2(s−β)
2

k2+s−β∑

k̃2=k2−s+β

‖hs−β
2

k1k̃2

(∂s−β
2 ∂jui) ‖2

L2(I),

(8)

where min{k1, k2} ≥ s, β = 0, 1, i, j = 1, 3, c1, c2 are positive constants
independent from h±1 , h±2 and k1, k2. Therefore, for εN1N2 we obtain the
following estimates

‖εN1N2i‖2
L2(Ω) ≤

(
1

(N i
1)2s

+
1

(N i
2)2s

)
θi(h±1 , h±2 , N i

1, N
i
2),

‖∂jεN1N2i‖2
L2(Ω) ≤

(
1

(N i
1)2s−3

+
1

(N i
2)2s−3

)
θi(h±1 , h±2 , N i

1, N
i
2),

where θi(h±1 , h±2 , N i
1, N

i
2) → 0, as N i

1, N
i
2 → ∞, i, j = 1, 2, 3. The latter

estimates together with coerciveness of the bilinear form B and inequality
(6) imply

‖u−wN1N2‖2
H1(Ω) ≤

(
1

N2s−3
1

+
1

N2s−3
2

)
θ(Ω, Γ2, h

±
1 , h±2 ,N1,N2),

where Nα = min
1≤i≤3

{N i
α}, θ(Ω, Γ2, h

±
1 , h±2 ,N1,N2) → 0, as N1, N2 →∞.

Moreover, if the norm ‖u‖
Hs,s,1

h±1,2

(Ω)
is independent from hmax

1 , hmax
2 , then
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from (8) we obtain

‖εN1N2i‖2
L2(Ω) ≤

(
(hmax

1 )2s

(N i
1)2s

+
(hmax

2 )2s

(N i
2)2s

)
θ̄i(N i

1, N
i
2),

‖∂jεN1N2i‖2
L2(Ω) ≤

(
(hmax

1 )2(s−1)

(N i
1)2s−3

+
(hmax

2 )2(s−1)

(N i
2)2s−3

)
θ̄i(N i

1, N
i
2),

where θ̄i(N i
1, N

i
2) → 0, as N i

1, N
i
2 →∞, i, j = 1, 3. From the latter inequa-

lities, applying (6), we infer the second estimate of the theorem

‖u−wN1N2‖2
E(Ω) ≤

(
(hmax

1 )2(s−1)

N2s−3
1

+
(hmax

2 )2(s−1)

N2s−3
2

)
θ̄(N1,N2),

where θ̄(N1,N2) → 0, as N1, N2 →∞. 2
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