
AN ANISOTROPIC ELECTROMAGNETIC-ELASTIC ANALOGY

Ph. Boulanger1, M. Hayes2
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Abstract

An analogy is exhibited between results for electromagnetic waves in linear media

which are both electrically and magnetically anisotropic (crystals) and results for finite

amplitude elastic waves in deformed Mooney-Rivlin materials. More precisely, the

results for elastic waves in deformed Mooney-Rivlin materials appear formally as a

special case of the results for electromagnetic waves in electrically and magnetically

anisotropic crystals. The analogy is used to formulate the problem of finding the

wave speeds and the polarization directions of the finite amplitude elastic waves as an

eigenvalue problem.
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1. Introduction

The analogy between the propagation of electromagnetic waves in vacuum
and the propagation of acoustic waves in a hypothetical linear incompress-
ible elastic material (“aether”) is well known and has played a crucial role
in the origins of the electromagnetic theory of light [1]. The term “electric
displacement” in electromagnetism has its origin in this analogy.

Here, however, we are interested in anisotropic properties of waves.
On the one hand, detailed results are available [2],[3] for electromagnetic

waves in linear, non dissipative, non dispersive materials which are both
electrically and magnetically anisotropic. The structure of these results
arises from the fact that the electric permittivity and magnetic permeability
tensors are placed on an equal footing.
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On the other hand, a widely used model of incompressible material in
finite elasticity theory is the Mooney-Rivlin model (see, for instance [4])
which is used to describe the behaviour of rubberlike materials. Mooney-
Rivlin materials are isotropic, but when subjected to a finite static homo-
geneous deformation they behave as anisotropic for superimposed elastic
waves. Detailed results for finite-amplitude waves in deformed Mooney-
Rivlin materials are also available [5]-[8]. Although the theory is non linear,
these waves have many features in common with anisotropic linear waves.
In particular, their wave speed is a constant for any given propagation
direction ( but varies with the propagation direction).

In this paper, an analogy between the two sets of results is exhibited.
More exactly, it is shown that the results for elastic waves in deformed
Mooney-Rivlin materials may be obtained from the results for electromag-
netic waves in electrically and magnetically anisotropic crystals by appro-
priate formal substitutions. The anisotropic properties of electromagnetic
waves in these crystals are described in terms of two tensors, the electric
permittivity and magnetic permeability tensors, which do not necessarily
have the same principal axes. The anisotropic properties of elastic waves
in deformed Mooney-Rivlin materials are described in terms of one tensor,
the left Cauchy-Green strain tensor of the static homogeneous deforma-
tion of the material. The formal substitutions proposed here express both
the electric permittivity and magnetic permeability tensors in terms of one
tensor, the left Cauchy-Green strain tensor of the static deformation of
Mooney-Rivlin materials. Hence, the results for elastic waves in deformed
Mooney-Rivlin materials appear formally as a special case of the results for
electromagnetic waves in crystals.

In §2, basic results for electromagnetic waves in linear crystals which
are both electrically and magnetically anisotropic are recalled. Introducing
the generalized optic axes, further results are collected in §3.

Similarly, in §4, basic results for finite-amplitude elastic waves in de-
formed Mooney-Rivlin materials are recalled, and the corresponding acous-
tic axes are introduced in §5.

The formal substitutions for obtaining the results of §4–5 from those of
§2–3 are presented in §6. They are used to show that the wave speeds and
polarization directions of finite amplitude elastic waves propagating in de-
formed Mooney-Rivlin materials may be obtained by solving an eigenvalue
problem. The main results are summarized in §7.
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2. Results for electromagnetic waves in crystals

Here, we recall results obtained for time harmonic plane waves propagat-
ing in crystals which are both electrically and magnetically anisotropic.
These results are mainly taken from [2], where both homogeneous and in-
homogeneous plane waves are studied. Here, we restrict our attention to
homogeneous plane waves propagating in an arbitrary direction n (n·n = 1)
with phase speed v. For these, Maxwell’s equations yield

n ·D = 0, n ·B = 0, (2.1)

n×E = vB, n×H = −vD, (2.2)

where E,H,D and B are constant amplitude vectors of the electric field,
the magnetic field, the electric displacement, and the magnetic induction,
respectively. The constitutive equations are assumed to be such that

D = κE, B = µH, (2.3)

where the electric permittivity tensor κ and the magnetic permeability
tensor µ are constant, real, symmetric and positive definite (linear, non
dissipative and non dispersive media).

Let Γ denotes the dual skew-symmetric tensor associated with n, and
Π = −Γ2 the projection tensor onto the plane orthogonal to n:

Γij = εikjnk, Πij = δij − ninj . (2.4)

The propagation condition in terms of E reads [2]

(
Γµ−1Γ + v2κ

)
E = 0, (2.5)

or, in terms of H,

(
Γκ−1Γ + v2µ

)
H = 0. (2.6)

Alternatively, in terms of D, the propagation condition is [3]
{
Πκ−1Π− v2(detµ)(n · µn)−1Πµ−1Π

}
D = 0, (2.7)

or, in terms of B,
{
Πµ−1Π− v2 (detκ) (n · κn)−1 Πκ−1Π

}
B = 0. (2.8)

In general, for any given propagation direction n, two linearly polarized
plane waves may propagate. The two possible directions of the amplitude
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D (or B) are the common conjugate directions of the ellipses in which the
plane n · x = 0 cuts the two ellipsoids x · κ−1x = 1 (”index ellipsoid”) and
x·µ−1x = 1. The two phase speeds are obtained from the corresponding
eigenvalues of Πκ−1Π with respect to Πµ−1Π (or Πµ−1Π with respect to
Πκ−1Π). They are the solutions of the secular equation, which reads [3]

v4− (n ·Φn) v2+(n · κn) (n · µn) detκ−1 detµ−1 = 0, (2.9)

where Φ is the real symmetric tensor given by

Φ = detκ−1
{
tr(κµ−1)κ− κµ−1κ

}
= det µ−1

{
tr(µκ−1)µ− µκ−1µ

}
.

(2.10)
Let v2

1, v2
2 be the two solutions of (2.9) and let D1, D2 be the corre-

sponding amplitudes of the electric displacement. Because D1 and D2 are
along the common conjugate directions of the ellipses in which the plane
n · x = 0 cuts the two ellipsoids xκ−1 · x = 1 and xµ−1 · x = 1, their
directions are characterized by

n ·D1 = n ·D2 = 0 , D1 · κ−1D2 = D1 · µ−1D2 = 0 , (2.11)

and the phase speeds are given by [2]

v2
1 = detκ−1(n · κn)

D2 · µ−1D2

D2 · κ−1D2
= det µ−1(n · µn)

D1 · κ−1D1

D1 · µ−1D1
,

(2.12)

v2
2 = detκ−1(n · κn)

D1 · µ−1D1

D1 · κ−1D1
= det µ−1(n · µn)

D2 · κ−1D2

D2 · µ−1D2
.

Equivalently,

v−2
1 =

(D1 ×D2) · (D1 ×D2)
(D1 · κ−1D1)(D2 · µ−1D2)

, v−2
2 =

(D1 ×D2) · (D1 ×D2)
(D2 · κ−1D2)(D1 · µ−1D1)

.

(2.13)
This may be geometrically interpreted [2]: the slowness 1/v1 (1/v2) of the
wave propagating along n with amplitude D1 (D2) is equal to the area
of the parallelogram formed by the radius along D1 (D2) to the ellipsoid
x · κ−1x = 1 and the radius along D2 (D1) to the ellipsoid x·µ−1x = 1.

The energy flux velocity g, defined as the mean energy flux vector
(Poynting vector) divided by the mean energy density, is given by

(D ·E + B ·H)g = 2E×H . (2.14)

For the waves with amplitudes D1 and D2, we have [2], for their respective
energy flux velocities g1 and g2,

v1g1 =
κ−1D1 × µ−1D2

|D1 ×D2| , v2g2 =
µ−1D1 × κ−1D2

|D1 ×D2| . (2.15)
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3. Optic axes

As in [2], we introduce here the eigenvectors Vi, (i = 1, 2, 3), of the tensor
µ−1 with respect to κ−1, corresponding to the eigenvalues λi :

(µ−1 − λiκ
−1)Vi = 0 . (no sum) (3.1)

Their directions are conjugate with respect to both ellipsoids x · κ−1x = 1
and x · µ−1x = 1, that is

Vi · κ−1Vj = Vi · µ−1Vj = 0 . (i 6= j) (3.2)

Let ki and mi be defined by

k−1
i = Vi · κ−1Vi , m−1

i = Vi · µ−1Vi , (no sum) (3.3)

and let
Vi
∗ = kiκ

−1Vi = miµ
−1Vi . ( no sum) (3.4)

The set Vi∗ is reciprocal to the set Vi : Vi∗ ·Vj = δi
j , and we have

(κ− λiµ)Vi
∗ = 0 , (no sum) (3.5)

so that Vi∗ are the eigenvectors of κ with respect to µ, corresponding to
the eigenvalues λi. Their directions are conjugate with respect to both
ellipsoids x · κx = 1 and x · µx = 1, that is

Vi
∗ · κVj

∗ = Vi
∗ · µVj

∗ = 0 . (i 6= j) (3.6)

Also,
ki = Vi

∗ · κVi
∗ , mi = Vi

∗ · µVi
∗ . (no sum) (3.7)

Here we consider the general case when the three eigenvalues λi = ki/mi

are all different, and we order them λ1 > λ2 > λ3 (“biaxial” crystals).
Then, there are two “generalized optic axes” [2] whose directions are given
by the vectors

n±O =
{

k3(λ1 − λ2)
k2(λ1 − λ3)

}1/2

V1
∗ ±

{
k1(λ2 − λ3)
k2(λ1 − λ3)

}1/2

V3
∗ , (3.8)

which are normal to the two planes that cut the ellipsoids x · κ−1x = 1
and x ·µ−1x = 1 in similar and similarly situated ellipses [9]. We note the
identity [9]

µ−1 = λ2κ
−1 +

k2(λ1 − λ3)
2k1k3

(n+
O ⊗ n−O + n−O ⊗ n+

O) . (3.9)
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The generalized optic axes are the propagation directions for which the two
phase speeds v1, v2 are equal.

Referring an arbitrary direction n to the basis Vi∗, we write n =niVi∗,
and the secular equation (2.9) may be put in the form [2]

3∑

i=1

min
2
i

λ−1
i (n · µn)− (detµ)v2

= 0, (3.10)

or, equivalently
3∑

i=1

kin
2
i

λi(n · κn)− (detκ)v2
= 0. (3.11)

Note that (3.10) generalizes Fresnels’s equation (see, for instance [10]) to
the case of electrically and magnetically anisotropic crystals. We call (3.10)
and (3.11) the ”Fresnel forms” of the secular equation for electromagnetic
waves in crystals. Using the results of [9], it may be seen that the amplitudes
D1,D2 may be expressed in terms of the propagation direction n, using the
generalized optic axes n±O . We have [9]

D1,2 = (n× n+
O)/σ+ ± (n× n−O)/σ−, (3.12)

where σ± are given by

σ2
± = m2(n× n±O) · µ−1(n× n±O) = k2(n× n±O) · κ−1(n× n±O). (3.13)

The corresponding phase speeds are given by [3]

v2
1,2 =

1
2

det µ−1(n · µn)(λ−1
3 + λ−1

1 ) +

λ−1
3 − λ−1

1

2m1m3

{
m2(detµ−1)(n · µn+

O)(n · µn−O)± σ+σ−
}

, (3.14)

or, equivalently,

v2
1,2 =

1
2

det κ−1(n · κn)(λ1 + λ3)−
λ1 − λ3

2k1k3

{
k2(detκ−1)(n · κn+

O)(n · κn−O)∓ σ+σ−
}

. (3.15)

These formulae generalize formulae derived by Neumann for the case of
electrically anisotropic but magnetically isotropic crystals (see, for instance,
[11]).
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4. Results for finite amplitude elastic waves in de-
formed Mooney-Rivlin materials

Here we recall results obtained for the propagation of finite amplitude elas-
tic plane waves in a Mooney-Rivlin material which is maintained in a state
of arbitrary static homogeneous deformation. These results are taken from
[5],[6] (see also [7],[8] for collected results).

Mooney-Rivlin materials are incompressible isotropic elastic materials
characterized by a strain-energy density W per unit volume given by

2W = C(I − 3) + D(II − 3), (4.1)

where C and D are material constants (we here assume C > 0, D > 0),
and

I = trB, 2II = (trB)2 − tr(B2). (4.2)

Here B denotes the left Cauchy-Green strain tensor, whose components, in
a rectangular Cartesian coordinate system, are

Bij=
∂xi

∂XA

∂xj

∂XA
, (4.3)

where xi, (i = 1, 2, 3), denotes the position, after deformation, of the par-
ticle whose position is XA, (A = 1, 2, 3), before deformation. Because the
material is incompressible, III = detB = 1. The corresponding constitu-
tive equation for the symmetric Cauchy stress tensor T may be written in
the form

T = −p1 + CB−DB−1 , (4.4)

where p is an indeterminate pressure corresponding to the incompressibility
constraint. We also note that, because III = 1, we have II = trB−1.

Consider now a static finite homogeneous deformation xi = FiAXA,
with detF = 1, of a Mooney-Rivlin material, and let B=FFT be the cor-
responding constant left Cauchy-Green strain tensor. Then, superimposed
on this finite homogeneous static deformation, we consider finite ampli-
tude linearly polarized plane waves taking the particle at x in the static
deformation to x, given by

x = x + af(η, t) , η = n · x . (4.5)

Here, n is a unit vector along the propagation direction, and a a vector
along the polarization direction. For the sake of comparison with results of
§2-3, we do not assume that a is a unit vector. It has been shown [5] that
along any direction n, two such finite amplitude waves may propagate with
polarization directions a = a1,a2 characterized by
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n · a1= n · a2 = 0, a1·a2= a1·B−1a2 = 0. (4.6)

The two possible polarization directions a1,a2 are along the principal axes
of the elliptical section of the ellipsoid x·B−1x = 1 by the plane n · x = 0.
Although the material is nonlinear and the waves are of finite amplitude,
the function f(η, t) is governed by the second order linear wave equation

∂2
t f − v2∂2

ηf = 0, (4.7)

where v2 = v2
1, v

2
2 is given by

ρv2
1 = Cn · Bn + D

ˆ
a1 ·B−1 ˆ

a1, ρv2
2 = Cn · Bn + D

ˆ
a2 ·B−1 ˆ

a2 . (4.8)

Here ρ denotes the constant mass density of the material, and
ˆ
a1,2 are

unit vectors along a1,2:
ˆ
a1,2= a1,2/ |a1,2| . In particular, we may choose

f = cosω(v−1η − t) as a solution of (4.7), so that the corresponding waves
are time-harmonic plane waved (with angular frequency ω). The vector a
then represents the amplitude vector of the displacement field u =x−x.

Also, it has been shown [6] that it is useful to introduce the tensor E,
defined by

ρE = C1 + DB, (4.9)

for the formulation of various properties of the waves. In particular, the
two squared wave speeds are the solutions of the secular equation

v4 − v2n · {trE)B− BE}n + (detE)(n · Bn)(n · BE−1n) = 0. (4.10)

The solutions v2
1, v

2
2 of this equation may also be expressed using the tensor

E. Indeed, we have [8]

v2
1 = (n · Bn)

(a2 · EB−1a2)
(a2 · B−1a2)

= (detE)(n · BE−1n)
(a1 · B−1a1)

(a1 · EB−1a1)
,

(4.11)

v2
2 = (n · Bn)

(a1 · EB−1a1)
(a1 · B−1a1)

= (detE)(n · BE−1n)
(a2 · B−1a2)

(a2 · EB−1a2)
.

Alternatively,

v−2
1 =

(a1 × a2) · (a1 × a2)
(a1 · B−1a1)(a2 · EB−1a2)

, v−2
2 =

(a1 × a2) · (a1 × a2)
(a2 · B−1a2)(a1 · EB−1a1)

.

(4.12)
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Of course, here, a1 ·a2 = 0 so that (a1×a2) · (a1×a2) = a2
1a

2
2. The expres-

sions (4.12) may be geometrically interpreted: the slowness 1/v1 (1/v2)
of the wave propagating along n with amplitude a1(a2) is equal to the
area of the rectangle formed by the radius along a1(a2) to the ellipsoid
x · B−1x = 1 and the radius along a2(a1) to the ellipsoid x · EB−1x = 1.
We also note that the conditions (4.6) characterizing the two polarization
directions a1,a2 may be written equivalently as

n · a1= n · a2 = 0, a1·B−1a2= a2 · EB−1a1 = 0. (4.13)

Considering now time-periodic waves propagating with speed +v, thus
solutions of (4.7) of the type f = F (η−vt), where F is any periodic function,
we introduce the energy flux velocity g defined as the mean energy flux
vector divided by the mean energy density (see details in [6],[13]). For the
waves with amplitudes a1,a2, the energy flux velocities are g1,g2 given by

v1g1 =
B−1a1 × EB−1a2

|a1 × a2| , v2g2 =
EB−1a1 × B−1a2

|a1 × a2| . (4.14)

Of course, here, a1 · a2 = 0 so that |a1 × a2| = |a1||a2|.

5. Acoustic axes

Let vi, (i = 1, 2, 3), be unit vectors along the principal axes of the basic
static deformation. Thus, in the orthonormal basis vi, the left Cauchy-
Green strain tensor B of this deformation is diagonal. The diagonal ele-
ments are the squared principal stretches b1 = λ2

1, b2 = λ2
2, b3 = λ2

3 (the no-
tation λi is usual in elasticity for the principal stretches, but it has already
been used with another meaning in §3, so we shall here use the notation
bi for the squared principal stretches). Because of the incompressibility
constraint they are such that b1b2b3 = 1. The tensors B−1 and EB−1, with
E defined by (4.9), are also diagonal in this basis:

vi · B−1vj = vi · EB−1vj = 0 , (i 6= j) (5.1)

and

vi · B−1vi = b−1
i , vi · EB−1vi = Eib

−1
i , (no sum) (5.2)

where Ei are the eigenvalues of E, given by ρEi = C + Dbi.
Here we consider the general case when the static deformation is tri-

axial so that the three squared principal stretches are all different, and we
order them b1 > b2 > b3. Then, there are two “acoustic axes” [5] for the
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propagation of elastic waves in the deformed material. The unit vectors
along the acoustic axes are n±A given by

n±A =
{

b−1
2 − b−1

1

b−1
3 − b−1

1

}1/2

v1 ±
{

b−1
3 − b−1

2

b−1
3 − b−1

1

}1/2

v3 . (5.3)

They are normal to the planes of central circular section of the ellipsoid
x · B−1x=1. Equivalently (see [6]), we have

n±A =
{

b3(E1 − E2)
b2(E1 − E3)

}1/2

v1 ±
{

b1(E2 − E3)
b2(E1 − E3)

}1/2

v3 . (5.4)

We note the identities [6]

B−1 = b−1
2 1− 1

2
(b−1

3 − b−1
1 )(n+

A⊗n−A+n−A⊗n+
A) , (5.5)

and

EB−1 = E2B−1 +
b2(E1 − E3)

2b1b3
(n+

A⊗n−A+n−A⊗n+
A) . (5.6)

The acoustic axes are the only propagation directions for which the two
phase speeds v1, v2 are equal.

Referring an arbitrary propagation direction n to the basis vi, we write
n = nivi and the secular equation (4.10) may be put in the form [6]

3∑

i=1

bin
2
i

Ei(n · Bn)− v2
= 0. (5.7)

We call this the ”Fresnel form” of the secular equation for elastic waves in
deformed Mooney-Rivlin materials. Also, the amplitudes D1,D2 may be
expressed in terms of the propagation direction n, using the acoustic axes
n±A. We have [6] [7]

a1,2 = (n× n+
A)/δ+ ± (n× n−A)/δ−, (5.8)

where δ± are given by

δ2
± = b2(n× n±A) · B−1(n× n±A) = E−1

2 b2(n× n±A) · EB−1(n× n±A)
= (n× n±A) · (n× n±A). (5.9)

We note that here δ± = sin ϕ±, where ϕ± denote the angles that the prop-
agation direction n makes with the acoustic axes n±A. The corresponding
phase speeds are given by [6] [7]
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v2
1,2 =

1
2
(E1 + E3)(n · Bn)− E1 − E3

2b1b3

{
b2(n · Bn+

A)(n · Bn−A)∓ δ+δ−
}

.

(5.10)
These expressions yield results for the squared wave speeds as functions
of the angles ϕ+ and ϕ− that the propagation direction n makes with the
acoustic axes n+

A and n−A (see [5] for these results).

6. An electromagnetic-elastic analogy

Here we show that elastic (finite-amplitude) waves in deformed Mooney-
Rivlin materials formally behave as electromagnetic waves in crystals with
appropriate electric permittivity and magnetic permeability tensors. Thus,
the results of §4–5 for elastic waves in deformed Mooney-Rivlin materials
formally appear as a special case of the results of §2–3 for electromagnetic
waves in electrically and magnetically anisotropic crystals.

Indeed, a comparison of the results of §2–3 on the one hand and of §4–5
on the other hand suggests that the properties of elastic waves in deformed
Mooney-Rivlin materials may be obtained from corresponding properties
of electromagnetic waves in electrically and magnetically anisotropic media
by the formal substitutions

κ−1 = B−1, µ−1 = EB−1 , (6.1)

the amplitude D of the electric displacement field being replaced by the
vector a along the polarization direction of the elastic waves (amplitude
of the elastic displacement field for time-harmonic plane waves). This will
now be checked in detail. Prior to that, we note that κ−1 and µ−1 given
by (6.1) have the same principal axes, the principal axes of the basic static
deformation. This was not assumed in §2–3, so that the results of §4–5 will
formally appear as a specialization of the results of §2–3.

Consider first the conditions (4.6) characterizing the two polarization
directions a1,a2 of the elastic waves for a given propagation direction n.
As we have noted, they are equivalent to the conditions (4.13). Clearly,
they may be obtained from the conditions (2.11) for electromagnetic waves
by the substitutions κ−1 = B−1, µ−1 = EB−1, and D1= a1, D2= a2. Con-
sider next the secular equation (4.10) for elastic waves. It may be obtained
from the secular equation (2.9) for electromagnetic waves by the substitu-
tions κ−1 = B−1, µ−1 = EB−1, on using the first expression (2.10) of Φ
and recalling that detB = 1. The expressions (4.11) of the squared wave
speeds v2

1, v2
2 for the elastic waves are obtained from the corresponding ex-

pressions (2.12) for the squared wave speeds of the electromagnetic waves
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by the substitutions κ−1 = B−1, µ−1 = EB−1, and D1= a1, D2= a2 (the
same is valid for (4.12) which is the counterpart of (2.13)). Also, the ex-
pressions (4.14) of the energy flux velocities g1,g2 for the elastic waves
are obtained from the corresponding expressions (2.15) for electromagnetic
waves by the same substitutions.

Considering the results of §3 and §5, using the generalized optic axes
and the acoustic axes, respectively, the analogy goes through. Indeed,
substituting (6.1) into (3.1), we conclude that then B−1Vi, (i = 1, 2, 3),
are along the principal axes of the tensor E defined by (4.9), thus along
the principal axes of B (principal axes of the basic static deformation of
the Mooney-Rivlin material). Hence, with the substitutions (6.1), Vi, (i =
1, 2, 3), may be taken to be unit vectors along the principal axes of B, and
using also (3.3) or (3.7), we have the corresponding substitutions

Vi = Vi
∗ = vi, λi = Ei , (6.2)

and
ki = bi, mi = biE−1

i . (6.3)

Using these substitutions, the acoustic axes n±A given by (5.4) may clearly
be obtained from the generalized optic axes n±O given by (3.8), and the
identity (5.6) is the counterpart of the identity (3.9). Moreover, with the
substitutions (6.1)–(6.3), the Fresnel form (5.7) of the secular equation for
elastic waves in deformed Mooney-Rivlin materials is obtained from the
Fresnel form (3.11) of the secular equation for electromagnetic waves in
crystals. Also, the results (5.8) and (5.10) are the counterparts of (3.12)
and (3.15) because, with the substitutions (6.1)–(6.3), we have n±O = n±A
and σ± = δ±.

Considering now Maxwell’s equations (2.1) (2.2) for the amplitudes of
the electromagnetic field, it first seems that there is no counterpart of these
equations for elastic waves in deformed Mooney-Rivlin materials, because
electromagnetic waves involve four amplitudes D, E, B, H and elastic
waves involve just one amplitude a. However, a counterpart of equations
(2.1)–(2.3) may be constructed for elastic waves in deformed Mooney-Rivlin
materials. Indeed, consider the elastic wave propagating in the direction n
with speed v(=v1 or v2) and polarization vector a(=a1 or a2), and define
the vectors e, c,h as

e =B−1a, c =v−1n× e, h =EB−1c. (6.4)

Because n =
ˆ
a1 × ˆ

a2 = (a1×a2)/ |a1×a2| , we have, for the elastic wave
propagating with speed v1 and polarization vector a1,
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c1 =
(

a1×a2

v1 |a1×a2|
)
× B−1a1 =

(
a1 · B−1a1

a2 · EB−1a2

)1/2

a2, (6.5)

on using (4.12) and (4.13), and hence,

h1 =
(

a1 · B−1a1

a2 · EB−1a2

)1/2

EB−1a2. (6.6)

Calculating now n× h1, we obtain

n× h1 =
(

a1 · B−1a1

a2 · EB−1a2

)1/2 (
a1×a2

|a1×a2|
)
× EB−1a2

=−
(
a1 · B−1a1

)1/2 (
a2 · EB−1a2

)1/2

|a1×a2| a1 = −v1a1, (6.7)

on using again (4.12) and (4.13). A similar calculation for the elastic wave
propagating with speed v2 and polarization vector a2 yields n× h2= −v2a2.
Hence, the vectors a(=a1 or a2) and h(=h1 or h2) satisfy

n× h = −va. (6.8)

Collecting now the definitions (6.4) and the result (6.8), and noting that a
and c are orthogonal to the propagation direction n, we write

n · a = 0, n · c = 0, (6.9)

n× e =vc, n× h = −va, (6.10)

and

a = Be, c =BE−1h. (6.11)

These may be obtained from Maxwell’s equations (2.1), (2.2) and constitu-
tive equations (2.3) by the formal substitutions κ−1 = B−1, µ−1 = EB−1,
D = a,E = e,B = c,H = h.

The analogy between equations (2.1)–(2.3) and equations (6.9)–(6.11)
may then be used to find counterparts to the propagation condition in
the form (2.5) or (2.7) for finite-amplitude elastic waves propagating in
deformed Mooney-Rivlin materials. With the formal substitutions (6.1)
and E = e = B−1a, D = a, equations (2.5) and (2.7) read

(ΓEB−1ΓB−1 + v21)a = 0 , (6.12)
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and

{ΠB−1Π− v2(detE−1)(n · BE−1n)−1ΠEB−1Π}a = 0 . (6.13)

Similarly, counterparts to the propagation condition in the form (2.6) or
(2.8) may be obtained using (6.1) and H = h = EB−1c, B = c. They read

(ΓB−1ΓEB−1 + v21)c = 0 , (6.14)

and
{ΠEB−1Π− v2(n · Bn)−1ΠB−1Π}c = 0 , (6.15)

where, as defined by (6.4), c = v−1ΓB−1a. Hence, for elastic waves propa-
gating in deformed Mooney-Rivlin materials, the two squared phase speeds
and the corresponding polarization directions may be obtained by solving
any of the eigenvalue problems (6.12)–(6.15). Of course, if (6.14) or (6.15)
is used, then after obtaining the directions of the eigenvectors c, the corre-
sponding directions of a must be determined. This is easily done because,
from (6.10)2 and (6.11)2, we have a = −v−1ΓEB−1c.

Remark. The two tensors κ−1 and µ−1 given by (6.1) are both ex-
pressed in terms of one tensor, the left Cauchy-Green strain tensor B. Thus,
recalling the definition (4.9) of the tensor E, we note that κ−1 and µ−1 given
by (6.1) satisfy

ρµ−1 − Cκ−1 = D1 . (6.16)

As noticed previously, the results for elastic waves in deformed Mooney-
Rivlin materials appear as formally analogous to a special case of the results
for electromagnetic waves in crystals. We note here that the condition for
existence of three constants ρ, C, D (not all zero) such that the two positive
definite tensors κ−1 and µ−1 satisfy (6.16) is that the ellipsoids x·κ−1x = 1
and x ·µ−1x = 1 have the same planes of central circular section (see [12]).
This implies in particular that the two ellipsoids have the same principal
axes, with the same intermediate axis. The condition for C to be positive
(ρ > 0 being given) is then that the two ellipsoids have the same major and
minor principal axes (k1, k2, k3 ordered as m1,m2, m3). The condition for
D to be positive is then that the ellipsoid x ·κµ−1x = 1 has the same major
and minor axes as the ellipsoid x · κx = 1 (λ1, λ2, λ3 ordered as k1, k2, k3

and m1,m2,m3, thus, recalling the order chosen in §3, k1 > k2 > k3 and
m1 > m2 > m3).

7. Conclusion

The results for electromagnetic plane waves in electrically and magnetically
anisotropic crystals (§2–3) have been compared with the results for finite-
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amplitude elastic plane waves in deformed Mooney-Rivlin materials (§4–
5). Although the theory of electromagnetic waves considered here is linear
whilst the theory of elastic waves in Mooney-Rivlin is nonlinear, an analogy
has been exhibited. This was possible because finite-amplitude waves in
Mooney-Rivlin materials behave essentially as linear waves (constant wave
speeds).

More precisely, it has been shown that the results for elastic waves in
deformed Mooney-Rivlin materials may be obtained as a special case of the
results for electromagnetic waves in crystals by appropriate formal substi-
tutions. We here list these substitutions (Table 1): the basic substitutions
are κ−1 = B−1, µ−1 = EB−1, D = a, the others being consequences of
these three.

electromagnetic waves in crystals 99K elastic waves in Mooney-Rivlin materials

κ−1 B−1

(inverse electric permittivity) (inverse left Cauchy-Green strain tensor)
µ−1 EB−1

(inverse magnetic permeability) (with ρE ≡ C1 + DB)
D a

(electric displacement amplitude) (elastic displacement amplitude)
Vi , Vi∗ vi , vi

(eigenvectors of µ−1 with respect to κ−1 (eigenvectors of B and B−1)
and of κ with respect to µ)

ki = Vi∗ · κVi∗ , mi = Vi∗ · µVi∗ bi = vi · Bvi , biE−1
i = vi · BE−1vi

λi = ki/mi Ei = bi/(biE−1
i )

n±O n±A
(generalized optic axes) (acoustic axes)

E e ≡ B−1a
(electric field amplitude)

B c ≡ v−1n× B−1a
(magnetic induction amplitude)

H h ≡ v−1EB−1(n× B−1a)
(magnetic field amplitude)

Table 1 Formal substitutions to be done in order to read off results for elastic
waves in deformed Mooney-Rivlin materials from corresponding results for elec-
tromagnetic waves in crystals.

Of course, it should be kept in mind that the theory of finite-amplitude
waves in deformed Mooney-Rivlin materials is basically nonlinear, so that,
for instance, a superposition of two waves propagating in different directions
is, in general, no longer a solution. However, if we consider small-amplitude
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waves in finitely deformed Mooney-Rivlin materials (linearized theory), the
analogy extends also to the superposition of these waves.
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