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Abstract

In the present paper static boundary value problems for nonhomogeneous anisotro-

pic elastic prismatic shells are considered and corresponding two-dimensional hierarchic

models are constructed. The existence and uniqueness of solutions to the obtained

boundary value problems are proved and the relation of the models to the original

three-dimensional problems is studied.
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The lower-dimensional hierarchic models are widely used while investi-
gating various objects in the theory of elasticity and mathematical physics,
since they have simpler mathematical structure than three-dimensional
models and an increase of the model order within the hierarchy always
leads to a reduction of the modelling error. In the paper [1] I. Vekua sug-
gested a new method of constructing hierarchic models for elastic plates
with variable thickness (i.e., for prismatic shells). The mentioned method
consists in expanding of fields of displacement vectors, strain and stress
tensors of the three-dimensional model of the prismatic shell into Fourier-
Legendre series with respect to the thickness variable and leaving then only
the first N +1, N ∈ N∪{0}, terms of the expansion. Applying this method
in the paper [2], mathematical model for thin shallow shells was obtained.

It must be pointed out, that in [1, 2] initial boundary-value problems
were considered in Ck spaces and convergence of the sequence of approxi-
mate solutions to the exact solution of three-dimensional problem was not
investigated. For static boundary value problem the existence and unique-
ness of the solution to reduced two-dimensional problem obtained from the
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linear system in the theory of elasticity by I. Vekua’s method in Sobolev
spaces first were investigated in [3]. The rate of approximation of the ex-
act solution to the original problem by vector-functions restored from the
solution of the reduced problem in classical spaces of regular functions was
estimated in [4]. The hierarchic models constructed by I. Velua’s method
and its generalizations and various aspects of hierarchic modelling are stud-
ied in [5-15].

The present work is devoted to the construction and investigation of
two-dimensional models of static boundary value problems for nonhomoge-
neous anisotropic linearly elastic prismatic shells. We consider boundary
value problems with Dirichlet and Neumann type conditions on the upper
and lower faces of the prismatic shell and generalizing I. Vekua’s reduc-
tion method, we construct their two-dimensional models. For the obtained
boundary value problems we prove the existence and uniqueness of their
solutions, show convergence of the sequence of approximate solutions con-
structed by means of the solutions to reduced problems and obtain a priori
estimates of the modelling error.

Let us consider an elastic body with initial configuration Ω, where Ω ⊂
R3 is a Lipschitz domain ([16]) with boundary Γ = ∂Ω. We assume that
the body consists of arbitrary (i.e. of nonhomogeneous and anisotropic)
linearly elastic material for which the stress tensor (σij) linearly depends
on the strain tensor (epq(u)), σij = aijpqepq(u), where the indices i, j, p, q
take their values in the set {1, 2, 3} and summation convention with respect
to the repeated indices is used, epq(u) = 1/2(∂puq + ∂qup), u = (ui) is a
displacement vector field, ∂p denotes the partial derivative ∂/∂xp, aijpq are
elastic coefficients depending on x = (x1, x2, x3) ∈ Ω.

Assume that the elastic body Ω is clamped on Γ0 ⊂ Γ, i.e. u = 0
on Γ0, and on the rest part of the boundary the following Neumann type

conditions are given:
3∑

j=1

(σijνj + bijuj) = gi on Γ1 = Γ\Γ0, where bij ,

gi are given functions (i, j = 1, 3), ν = (νj) is the outward unit normal
vector to Γ1, Γ = Γ0 ∪ Γ01 ∪ Γ1 is a Lipschitz dissection of Γ and Γ0 6=
∅ ([16]). The variational formulation of the corresponding static three-
dimensional problem of linearized elasticity is the following: find a vector-
function u = (ui) ∈ V (Ω) = {v = (vi) ∈ H1(Ω); v = 0 on Γ0}, which for
all v =(vi) ∈ V (Ω) satisfies equation

3∑

i,j,p,q=1

∫

Ω

aijpq(x)epq(u)eij(v)dx +
3∑

i,j=1

∫

Γ1

bij(x)ujvidΓ1 =

6
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=
3∑

i=1

∫

Ω

fividx +
3∑

i=1

∫

Γ1

gividΓ1, (1)

where f = (fi) ∈ L6/5(Ω) is a density of the applied body forces, acting
on the body Ω, g = (gi) ∈ L4/3(Γ1). In the paper we denote by Hs(D) the
usual Sobolev space of order s ∈ R, s ≥ 0, on Lipschitz domain D or on
part of Lipschitz dissection of the boundary of Lipschitz domain, based on
L2(D), Hs(D) = [Hs(D)]3, Ls(D) = [Ls(D)]3. Let us denote the bilinear
form in the left part of the equation (1) by A(u, v).

The three-dimensional problem (1) has a unique solution if aijpq ∈
L∞(Ω), bij ∈ L∞(Γ1), i, j, p, q = 1, 3, and the elasticity tensor (aijpq),
matrix (bij) satisfy the following coercivity, positive definiteness, and sym-
metry conditions for positive constants α ∈ R, for almost all x ∈ Ω, y ∈ Γ1,
and for all εij , εi ∈ R,

3∑

i,j,p,q=1

aijpq(x)εijεpq ≥ α
3∑

i,j=1

εijεij ,
3∑

i,j=1

bij(y)εiεj ≥ 0,

aijpq(x) = ajipq(x) = apqij(x), bij(y) = bji(y), i, j, p, q = 1, 3.

(2)

Moreover, the solution u of the problem (1) is also a unique solution to
the following minimization problem: find u ∈ V (Ω) such that I(u) =

inf
v∈V (Ω)

I(v),

I(v) =
1
2
A(v,v)−

3∑

i=1

∫

Ω

fividx−
3∑

i=1

∫

Γ1

gividΓ1, ∀v ∈ V (Ω).

Let us consider now the particular cases of the three-dimensional prob-
lem (1), when Ω is a prismatic shell

Ω = {(x1, x2, x3) ∈ R3; h−(x1, x2) < x3 < h+(x1, x2), (x1, x2) ∈ ω},

where ω ⊂ R2 is a two-dimensional Lipschitz domain with boundary γ =
∂ω, h± ∈ C1(ω̄), h+(x1, x2) > h−(x1, x2), for (x1, x2) ∈ ω̄. The upper and
lower faces of the shell Ω, which are given by the equations x3 = h+(x1, x2)
and x3 = h−(x1, x2), (x1, x2) ∈ ω, denote by Γ+ and Γ−, respectively, and
the lateral surface denote by Γ̃ = Γ\(Γ+ ∪ Γ−).

We study the problem (1) in three cases: when the shell is clamped on
both surfaces Γ+ and Γ−, the shell is clamped only on one of the upper or
lower faces, and the shell is not clamped on Γ+ and Γ−. The clamped part of
the lateral surface we denote by Γ̃0 = {(x1, x2, x3) ∈ Γ̃; (x1, x2) ∈ γ0 ⊂ γ},

7
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γ0 is a Lipschitz curve with positive length if Γ̃0 is a non-empty set. In the
second case, without loss of generality, we consider the shell clamped on
Γ+ and Γ̃0. In order to construct the two-dimensional models of the shell
let us introduce the subspaces V k

N(Ω) (k = 1, 2, 3) of V (Ω) of polynomials
with respect to the thickness variable x3, i.e.

V k
N(Ω) = {vk

N = (vk
Ni); vk

Ni =
Ni∑

ri=0

1
h

(ri +
1
2
)

ri
v i Pri(z)− 3− k

4

[
k

Ni∑

ri=0

1
h

(1 + (−1)k(ri+Ni+1))(ri +
1
2
)

ri
v i PNi+1(z)− (2− k)

Ni∑

ri=0

1
h

(1 + (−1)ri+Ni)

(ri +
1
2
)

ri
v i PNi+2(z)

]
,
ri
v i∈ H1(ω),

ri
v i= 0 on γ0, 0 ≤ ri ≤ Ni, i = 1, 3},

where z = (x3−h̄)/h, h = (h+−h−)/2, h = (h++h−)/2 and Pr is Legendre
polynomial of degree r ∈ N∪{0}. In the case of k = 1, the vector-functions
of the space V 1

N(Ω) vanish on the surface Γ+ ∪ Γ− ∪ Γ̃0 and hence, V 1
N(Ω)

is a subspace of V (Ω), when the shell is clamped on both upper and lower
faces. Similarly, the case of k = 2 corresponds to the shell clamped on
the upper and on the part of the lateral surface, and the case of k = 3
corresponds to shell, which is not clamped on the faces Γ+ and Γ−.

On the subspace V k
N(Ω) (k = 1, 3) from the problem (1) we obtain

the following reduced problem: the unknown is the vector-function wk
N =

(wk
Ni) ∈ V k

N(Ω), which for all vk
N ∈ V k

N(Ω) satisfies equation

3∑

i,j,p,q=1

∫

Ω

aijpq(x)epq(wk
N)eij(vk

N)dx +
3∑

i,j=1

∫

Γ1

bij(x)wk
Njv

k
NidΓ1 =

=
3∑

i=1

∫

Ω

fiv
k
Nidx +

3∑

i=1

∫

Γ1

giv
k
NidΓ1. (3)

The obtained problem (3) is equivalent to the following one: find ~wk
N ∈

~VN(ω) = {~vN ∈ [H1(ω)]N1+N2+N3+3; ~vN = (
ri
v i),

ri
v i= 0 on γ0, 0 ≤ ri ≤

Ni, i = 1, 3}, such that

Ak
N(~wk

N, ~vN) = Lk
N(~vN), ∀~vN ∈ ~VN(ω) (k = 1, 2, 3), (4)

where Ak
N(~wk

N, ~vN) is the bilinear form A(wk
N, vN) rewritten in terms of

~wk
N and ~vN, the linear form Lk

N is given by

Lk
N(~vN) =

3∑

i=1

Ni∑

ri=0

(ri +
1
2
)




∫

ω

1
h

ri
v i

(
ri

f i −
2∑

α=1

(3− k)(2(α− 1)− (−1)αk)
4

8
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(1 + (−1)k2−α(ri+Ni+α))
Ni+α

fi +
k − 1

2
((k − 2) gi|Γ+ λ+ + (4− k) gi|Γ− λ−

((−1)ri + (3− k)(−1)Ni)
))

dω+
∫

γ1

1
h

ri
v i

(
ri
g i −

2∑

α=1

(1 + (−1)k2−α(ri+Ni+α))

(3− k)(2(α− 1)− (−1)αk)
4

Ni+α
gi

)
dγ1

]
, γ1 = γ\γ0,

where gi|Γ± (x1, x2) = gi(x1, x2, h
±(x1, x2)), λ± =

√
1 + (∂1h±)2 + (∂2h±)2,

ri

f i=

h+∫

h−

fi(x)Pri(z)dx3,
ri
g i=

h+∫

h−

gi(x)Pri(z)dx3, ri = 0, Ni, i = 1, 3.

So, for the three-dimensional static problem (1) with various boundary
conditions on the upper and lower faces of elastic prismatic shell, which
correspond to k = 1, 2, 3, we have constructed the hierarchies of two-
dimensional models. In the following theorem we prove the well-posedness
of the corresponding boundary value problem (4).

Theorem 1. If the elasticity tensor (aijpq) and matrix (bij) satisfy
conditions (2), aijpq ∈ L∞(Ω), bij ∈ L∞(Γ1) and for all ri = 0, Ni, i, j, p,

q, k = 1, 2, 3, k̃ = 3− k,

ri

f i −
k̃

4

[
k(1 + (−1)k(ri+Ni+1))

Ni+1

fi −(2− k)(1 + (−1)ri+Ni)
Ni+2

fi

]
+

+
k − 1

2

[
(4− k) gi|Γ− λ−((−1)ri + k̃(−1)Ni) + (k − 2) gi|Γ+ λ+

]
∈ L6/5(ω),

ri
g i −

2∑

α=1

k̃(2(α− 1)− (−1)αk)
4

(1 + (−1)k2−α(ri+Ni+α))
Ni+α
gi ∈ L4/3(γ1),

then the two-dimensional problem (4) has a unique solution ~wk
N ∈ ~VN(ω),

which also is a solution to the minimization problem: find ~wk
N ∈ ~VN(ω)

such that

Ik
N(~wk

N) = inf
~vN∈~VN(ω)

Ik
N(~vN), Ik

N(~vN) =
1
2
Ak

N(~vN, ~vN)− Lk
N(~vN).

Proof. Note, that from the conditions of the theorem, embedding and
trace theorems for Sobolev spaces we infer that Lk

N is a linear continuous
form on ~VN(ω). Furthermore, applying the formulas for derivatives of Le-

9
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gendre polynomials ([1])

P ′
r(t) =

r−1∑

s=0

(
s +

1
2

)
(1− (−1)r+s)Ps(t),

tP ′
r(t) = rPr(t) +

r−1∑

s=0

(
s +

1
2

)
(1 + (−1)r+s)Ps(t),

r ∈ N, (5)

for any vk
N ∈ V k

N(Ω), we obtain
∥∥∥vk

N

∥∥∥
2

H1(Ω)
=

3∑

i=1

Ni+2∑

ri=0

(ri +
1
2
)

[∥∥∥h−1/2 ri
v
∗
i

∥∥∥
2

L2(ω)
+

∥∥∥∥∥
Ni+2∑
si=ri

(si +
1
2
)(1−

−(−1)ri+si)h−3/2 si
v
∗
i

∥∥∥
2

L2(ω)
+

2∑

α=1

∥∥∥h−1/2∂α
ri
v
∗
i −(ri + 1)h−3/2∂αh

ri
v
∗
i −

−
Ni+2∑

si=ri+1

(si +
1
2
) (∂αh+ − (−1)ri+si∂αh−)h−3/2 si

v
∗
i

∥∥∥
2

L2(ω)

]
< ∞,

where
ri
v
∗
i =

ri
v i, for 0 ≤ ri ≤ Ni,

Ni+1
vi

∗
= − k(3− k)

2(2Ni + 3)

Ni∑

si=0

(1+(−1)k(si+Ni+1))

(si+
1
2
)

si
v i,

Ni+2
vi

∗
= −(3− k)(2− k)

2(2Ni + 5)

Ni∑

si=0

(1+(−1)si+Ni)(si+
1
2
)

si
v i, i, k = 1, 3

and we assume that the sum with lower limit greater, than the upper one
is equal to zero.

Consequently, identity mappings from the space ~V 0
N(ω) onto ~V k

N(ω),
k = 1, 2, 3, which coincide with ~VN(ω) and are equipped with the norms
‖~vN‖0 = ‖~vN‖[H1(ω)]N1+N2+N3+3 , ‖~vN‖k =

∥∥vk
N

∥∥
H1(Ω)

, ~vN ∈ ~VN(ω), respec-
tively, are continuous and according to the closed graph theorem we have
that these spaces are isomorphic and, hence, the norms ‖.‖0 , ‖.‖k (k = 1, 3)
are equivalent.

Since the bilinear form A is continuous and coercive on V (Ω), then it
is coercive on the subspace V k

N(Ω) ⊂ V (Ω), and, therefore, the equivalence
of the norms ‖.‖0 and ‖.‖k implies that the bilinear form Ak

N (k = 1, 2, 3)
is coercive on the space ~VN(ω),

Ak
N(~vN, ~vN) = A(vk

N, vk
N) ≥ α

∥∥∥vk
N

∥∥∥
2

H1(Ω)
≥

≥ α̃ ‖~vN‖2
~VN(ω)

= α̃ ‖~vN‖2
[H1(ω)]N1+N2+N3+3 , ∀~vN ∈ ~VN(ω).

Thus, for each k = 1, 2, 3, the existence and uniqueness of the solution to the
problem (4) and equivalence to the minimization problem is a consequence
of Lax-Milgram lemma. 2

10
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It must be pointed out, that one of the most important questions that
arise while investigating the hierarchic models is convergence of the se-
quence of approximate solutions to the exact solution of original problem,
as the model order tends to infinity. The following theorem gives the result
on the relation of the obtained hierarchies of two-dimensional models and
corresponding three-dimensional problems.

Theorem 2. Assume that components of the elasticity tensor aijpq ∈
L∞(Ω), the given functions bij ∈ L∞(Γ1) and conditions (2) are fulfilled
(i, j, p, q = 1, 3). If fi ∈ L6/5(Ω), gi ∈ L4/3(Γ1), then the vector-function

wk
N = (wk

Ni), i, k = 1, 2, 3, restored from the solution ~wk
N = (

0

wk
1 , ...,

N1

wk
1

, ...,
0

wk
3 , ...,

N3

wk
3)T of the two-dimensional problem (4) tends to the solution

u of the three-dimensional problem (1) in the space H1(Ω), as N1, N2, N3 →
∞. Moreover, if ∂n

3 u ∈ H1(Ω), 0 ≤ n ≤ s− 1, s ∈ N, s ≥ 2, then

‖u−wk
N‖2

H1(Ω) ≤
1

N2(s−1)
δk(Ω,Γ0, h

±,N), N = min
1≤i≤3

{Ni},

where δk(Ω, Γ0, h
±,N) → 0, as Ni → ∞, i, k = 1, 2, 3. If additionally

s−1∑

n=1

‖∂n
3 u‖H1(Ω) ≤ c, c is independent from hmax = max

(x1,x2)∈ω
h(x1, x2), then

∥∥∥u−wk
N

∥∥∥
2

E(Ω)
≤ h

2(s−1)
max

N2(s−1)
δk(N), δk(N) → 0, as N →∞,

where k = 1, 2, 3, ‖v‖2
E(Ω) = A(v,v), for all v ∈ V (Ω).

Proof. By our assumptions on the functions fi, gi (i = 1, 3) we get that
ri

f i∈ L6/5(ω),
ri
g i∈ L4/3(γ1), gi|Γ± ∈ L4/3(ω) ⊂ L6/5(ω), and consequently,

all the conditions of Theorem 1 are fulfilled. Hence, a unique solution ~wk
N

of the two-dimensional problem (4) minimizes the energy functional Ik
N on

the space ~VN(ω), i.e.,

1
2
Ak

N(~wk
N, ~wk

N)− Lk
N(~wk

N) ≤ 1
2
Ak

N(~vN, ~vN)− Lk
N(~vN), ∀~vN ∈ ~VN(ω). (6)

Taking into account that Ak
N(~wN, ~vN) = A(wk

N,vk
N), for all ~vN ∈ ~VN(ω),

where vk
N = (vk

Ni) ∈ V k
N(Ω) corresponds to ~vN, vk

Ni, are defined in the
definition of the space V k

N(Ω), k = 1, 2, 3, then from (6) and (1), (3) we
obtain

A(u−wk
N, u−wk

N) ≤ A(u− vk
N, u− vk

N), ∀vk
N ∈ V k

N(Ω). (7)

11
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According to the trace theorems for Sobolev spaces ([16]), for any v ∈
H1(Ω), v = 0 on Γ0, there exists continuation ṽ ∈ H1

0 (Ω1) of v, where Ω1

is a Lipschitz domain such that Ω1 ⊃ Ω, ∂Ω1 ⊃ Γ0. From the density of
the set of infinitely differentiable functions D (Ω1) with compact support
in Ω1 in H1

0 (Ω1) we obtain, that the set of infinitely differentiable vector-
functions [C∞

Γ0
(Ω)]3 on Ω, which are equal to zero on Γ0, is dense in the space

V k
N(Ω). From the estimates obtained below it follows, that the union of the

spaces [C∞(Ω)]3 ∩ V k
N(Ω), for all Ni ≥ 0, i = 1, 3, is dense in V (Ω). Hence,

due to coerciveness of the bilinear form A and density of [C∞
Γ0

(Ω)]3 in V k
N(Ω)

from (7) we get that wk
N → u in the space H1(Ω), as N1, N2, N3 →∞, for

each hierarchy of two-dimensional problems corresponding to k = 1, 2, 3.
Let us now estimate the rate of approximation of u by wk

N, when u
satisfies additional regularity conditions stated in the theorem. In order to
obtain the estimates of the theorem for each k = 1, 2, 3, by means of the
solution u we construct the vector-function uk

N, which is an element of the
space V k

N(Ω) and we can estimate the norm of the difference u − uk
N. Let

us consider uk
N = (uk

Ni),

uk
Ni =

Nk
i∑

ri=0

1
h

(
ri +

1
2

)
ri
ui Pri(z) +

Nk
i +1∑

ri=Nk
i

1
2

ri

∂3ui Pri−1(z),

where Nk
i = Ni + 3 − k,

ri

∂β
3 ui=

h+∫

h−

∂β
3 uiPri(z)dx3, β = 0, 1, i, k = 1, 2, 3.

Due to the conditions of the theorem we have that uk
N ∈ H1(Ω). Hence,

from the construction of uk
N it follows, that uk

N ∈ V k
N(Ω) if and only if uk

N

vanishes on both upper and lower faces of the shell in the case of k = 1,
or only on Γ+ for k = 2. Note, that the cases of k = 1, 2, correspond to
the problem (1), when the shell is clamped either on both Γ+, Γ− faces or
only on Γ+, i.e. u = 0 on Γ±, for k = 1, and u = 0 on Γ+, for k = 2.
Consequently, we have the following equalities

0
∂3ui= 0,

1
∂3ui +

1
h

0
ui= 0, for k = 1,

0
∂3ui +

1
∂3ui +

1
h

0
ui= 0, for k = 2.

(8)

By the property of Legendre polynomials ([17])

Pr(t) =
1

2r + 1
(P ′

r+1(t)− P ′
r−1(t)), r ≥ 1,

12
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for almost all (x1, x2) ∈ ω,

r
ui (x1, x2) =

h

2r + 1
(

r−1
∂3ui (x1, x2)−

r+1
∂3ui (x1, x2)), r ≥ 1. (9)

Taking into account (8) and applying formula (9), we infer

Nk
i∑

ri=0

1
h

(
ri +

1
2

)
ri
ui +

Nk
i +1∑

ri=Nk
i

1
2

ri

∂3ui= 0, k = 1, 2,

Ni+2∑

ri=0

1
h

(
ri +

1
2

)
ri
ui (−1)ri −

Ni+3∑

ri=Ni+2

1
2

ri

∂3ui (−1)ri = 0, k = 1,

and, therefore, uk
N ∈ V k

N(Ω), k = 1, 2, 3.

Note, that the following equality holds almost everywhere in ω, α = 1, 2,

∂α(
r
ui) =

r
∂αui +

∂αh

h
(r + 1)

r
ui +∂αh̄

r
∂3ui +∂αh

r+1
∂3ui, r ∈ N ∪ {0}.

By virtue of the last formula, applying (5) and (9), we obtain the ex-
pressions for derivatives of uk

N = {uk
Ni}, for i, k = 1, 2, 3,

∂3u
k
Ni =

Nk
i −1∑

ri=0

1
h

(
ri +

1
2

)
ri

∂3ui Pri(z),

∂αuk
Ni =

Nk
i∑

ri=0

1
h

(
ri +

1
2

)
ri

∂αui Pri(z) +
∂αh̄

h

(
Nk

i +
1
2

)
Nk

i

∂3ui PNk
i
(z)+

+
Nk

i +1∑

ri=Nk
i

∂αh

h

(
ri +

1
2

)
ri

∂3ui Pri−1(z) +
Nk

i +1∑

ri=Nk
i

1
2
(

ri

∂α∂3ui +

+∂αh̄
ri

∂3∂3ui +∂αh
ri+1

∂3∂3ui)Pri−1(z).

Therefore, by the orthogonality property of Legendre polynomials and

13
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Parseval equality, for residue εk
N = (εk

Ni), εk
Ni = ui − uk

Ni we have

‖εk
Ni‖2

L2(Ω) =
∞∑

ri=Nk
i +1

∫

ω

1
h

(
ri +

1
2

)
(
ri
ui)2dω +

Nk
i∑

ri=Nk
i −1

∫

ω

h(
ri+1

∂3ui)2

2ri + 1
dω,

∥∥∥∂3ε
k
Ni

∥∥∥
2

L2(Ω)
=

∞∑

ri=Nk
i

∫

ω

1
h

(
ri +

1
2

)
(

ri

∂3ui)2dω,

∥∥∥∂αεk
Ni

∥∥∥
2

L2(Ω)
≤

∞∑

ri=Nk
i +1

∫

ω

1
h

(
ri +

1
2

)
(

ri

∂αui)2dω+

+
9
2

Nk
i +1∑

ri=Nk
i

∫

ω

h

2ri − 1

(
(

ri

∂α∂3ui)2 + (∂αh̄
ri

∂3∂3ui)2 + (∂αh
ri+1

∂3∂3ui)2
)

dω+

+9
Nk

i +1∑

ri=Nk
i

∫

ω

(Nk
i + 1− ri)(∂αh̄)2 + (∂αh)2

h

(
ri +

1
2

)
(

ri

∂3ui)2dω,

where α = 1, 2, i, k = 1, 3. Applying (9), we obtain that

‖
r

∂β
p ui ‖2

L2(ω) ≤
c

r2(s−β)

r+s−β∑

n=r−s+β

‖hs−β
n

(∂s−β
3 ∂β

p ui) ‖2
L2(ω), (10)

where r ≥ s − β, β = 0, 1, i, p = 1, 3, c = const > 0 is independent from
h+, h− and r. Therefore, from the last estimate, for all i, p, k = 1, 2, 3, we
infer

‖εk
Ni‖2

L2(Ω) ≤
1

N2s
i

δk
i (h+, h−, Ni),

∥∥∥∂pε
k
Ni

∥∥∥
2

L2(Ω)
≤ 1

N
2(s−1)
i

δk
i (h+, h−, Ni),

δk
i (h+, h−, Ni) → 0, as Ni →∞.

Hence, the inequality (7) and coerciveness of the bilinear form A imply

‖u−wk
N‖2

H1(Ω) ≤
1

N2(s−1)
δk(Ω, Γ0, h

±,N), N = min
1≤i≤3

Ni,

where δk(Ω,Γ0, h
±,N) → 0, as N →∞.

In addition, by virtue of the conditions of the theorem from (10) we
obtain

‖εk
Ni‖2

L2(Ω) ≤
h2s

max

N2s
i

δ̄k
i (Ni),

∥∥∥∂pε
k
Ni

∥∥∥
2

L2(Ω)
≤ h

2(s−1)
max

N
2(s−1)
i

δ̄k
i (Ni),

δ̄k
i (Ni) → 0, as Ni →∞, i, p, k = 1, 3,

14
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which yields the second estimate of the theorem. 2

References

1. Vekua I.N. On a way of calculating of prismatic shells. Proc. A. Razmadze
Inst. Math. Georgian Acad. Sci. 21 (1955), 191-259 (in Russian).

2. Vekua I.N. The theory of thin shallow shells of variable thickness. Proc. A.
Razmadze Inst. Math. Georgian Acad. Sci. 30 (1965), 5-103 (in Russian).

3. Gordeziani D.G. On the solvability of some boundary value problems for a
variant of the theory of thin shells. Dokl. Akad. Nauk SSSR 215 (1974), 6,
1289-1292 (in Russian).

4. Gordeziani D.G. To the exactness of one variant of the theory of thin shells.
Dokl. Akad. Nauk SSSR 216 (1974), 4, 751-754 (in Russian).
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