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Abstract

Using the analogy method the frequencies of new modes of electromagnetic planetary-

scale waves (with wavelength 103 km and more) having weather forming nature are

found at different ionospheric altitudes. This method gives a possibility to deter-

mine a spectra of ionospheric electromagnetic perturbations directly from the dynamic

equations without solving the general dispersion equation. It is shown, that the per-

manently acting factor - latitude variation of the geomagnetic field - generates fast

and slow weakly damping planetary electromagnetic waves in both E and F layers

of the ionosphere. The waves propagate eastward and westward along the parallels.

The fast waves have phase velocities (1 − 5)km/s and frequencies 10−1 − 10−4s−1.

The slow waves propagate with the velocities of local winds and have frequencies

10−4 − 10−6s−1. The waves generate geomagnetic pulsations of magnitude of order

of hundred nanoTesla. The properties and parameters of the theoretically studied

electromagnetic waves are in agreement with those of large-scale ultra-low frequency

perturbations observed experimentally in the ionosphere.

Key words and phrases: Ionospheric plasma; planetary waves; inhomogeneous

geomagnetic field.On the new modes of planetary-scale electromagnetic waves in the

ionosphere.
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1. Introduction

Numerous ground-based and satellite observations show that the back-
ground global planetary-scale electromagnetic wavy perturbations (≥ 103km)
regularly exist in the ionosphere at any season of the year. The observa-
tions verify [5,17] the presence of slow (with phase velocities equal to local
winds velocities), long-period (a few days and more) and large-scale waves
(with wavelength λ ∼ 103 − 104km) in the E-layer of the ionosphere. At
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difference from usual weather forming planetary Rossby waves, these waves
cause substantial disturbances of the geomagnetic field (up to ten nanotesla
(nT)). Ionospheric observations at the middle latitudes of E-layer verify the
existence of fast large-scale electromagnetic perturbations too [3,16]. They
propagate along the latitude circles of the Earth with velocities from a few
hundreds m/s to a few tens km/s. Their periods vary in the range from
a few minutes to a few hours, wavelength is of order of 103km and more,
amplitude is tens hundreds nT. The phase velocities of these perturbations
differ by magnitude at daily and nightly conditions in E-layer of the iono-
sphere.

These waves have mainly zonal character and are revealed especially
during magnetic storms and sub-storms [10], earthquakes [11], artificial
explosions [2] and so on. They play an important role in the large-scale
synoptic processes and give the possibility to get the valuable information
about external sources and dynamical processes taking place in the iono-
sphere during this period.

Thus, the main problem is to find the factors, generating the background
planetary-scale electromagnetic waves in different layers of the ionosphere.
It will be shown bellow, that the weather forming planetary electromagnetic
waves exist due to the latitude inhomogeneity of the geomagnetic field in
the ionosphere.

2. Formulation of the problem and basic equations

Ionosphere represents a partially ionized triple component plasma. To de-
scribe it we use quasi-hydrodynamic equations, which differ from hydrody-
namic equations by the presence of friction force, caused by the collision
of different particles [1,4,20]. Quasi-hydrodynamic equations describe the
flows, electromagnetic currents and all diffusive processes in the ionospheric
plasma. However, the diffusive processes, compressibility and inhomogene-
ity of the atmosphere play a secondary role for considered large-scale iono-
spheric perturbations (wavelength λ ≥ 103km). Thus, we can substan-
tially simplify these equations and obtain the following system of equations
[4,7,14,20]:

ρn
∂
−→
Vn

∂t
= −→

Fn − ρnνin(−→Vn −−→Vi )− ρeνen(−→Vn −−→Ve), (2.1)

ρe
∂
−→
Ve

∂t
= −→

Fe−ρeνen(−→Ve−−→Vn)−ρeνei(
−→
Ve−−→Vi )−eN

−→
E − eN

c

−→
V e×−→H0, (2.2)
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ρi
∂
−→
Vi

∂t
= −→

Fi −ρiνin(−→Vi −−→Vn)−ρeνei(
−→
Vi −−→Ve)+eN

−→
E +

eN

c

−→
Vi ×−→H0, (2.3)

∇−→Vn = 0, ∇−→Ve = 0, ∇−→Vi = 0. (2.4)

Here, indices n, e and i denote molecules (neutral particles), electrons
and ions; −→V is a velocity; ρn = NnM , ρe = Nm, ρi = NM are densities;
m and M are masses of electrons and ions (molecule), respectively; Nn

and N denote concentrations of the neutral particles and plasma; c is light
speed; νei, νen, νin - denote frequencies of collision of electron with ions and
molecules and of ions with molecules, respectively; −→E is a strength of the
induced electric field; −→H0 is a strength of the geomagnetic field; −→Fn,−→Fe,

−→
Fi

denote nonelectromagnetic forces, in general case containing gradients of
pulse flow density tensor; ∇ (∂/∂x, ∂/∂y, ∂/∂z)is a nabla operator.

Equations (2.1)-(2.4), state and heat equations and Maxwell equations
form close system of equations for each component. For simplification of
these equations we take into account the results of experimental observa-
tions of the dynamical processes.

In the ionosphere at the heights of 80 − 500km (η = N/Nn˜10−9 −
10−4 << 1 ) non-electromagnetic forces −→Fn,−→Fe,

−→
Fi are proportional to the

densities of medium components and, hence, η << 1,
∣∣∣−→Fi

∣∣∣ ≤
∣∣∣−→Fe

∣∣∣ <<
∣∣∣−→Fn

∣∣∣.
So, −→Fe and −→

Fi cannot induce big currents. The inertia of electrons and
ions can be neglected comparing with the inertia of the neutral particles.
Taking into account all these circumstances in Eqs. (2.1)-(2.4), we obtain
equation of motion of ionospheric medium:

ρn
∂
−→
Vn

∂t
= −→

Fn +
1
c

−→
J ×−→H0 (2.5)

where −→J = eN(−→Vi − −→Ve) is the density of current. Eqs. (2.2) and (2.3)
may be rewritten as

−νen

ωe
(−→Ve −−→Vn)− νei

ωe
(−→Ve −−→Vi ) +−→

VD ×−→h0 = −→
Ve ×−→h0 , (2.6)

−νin

ωi
(−→Vi −−→Vn)− νei

ωe
(−→Vi −−→Ve) +−→

Vi ×−→h0 = −→
VD ×−→h0 , (2.7)

where ωe = eH0/mc and ωi = eH0/Mc denote cyclotron frequencies of
electrons and ions, respectively, −→VD = c

−→
E × −→

H0/H2
0 is the electron drift

velocity; −→h0 = −→
H0/H0 is the unit vector along the strength of the geo-

magnetic field. Taking into account, that in the ionosphere ωe ≈ 107s−1,
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ωi ≈ (1.5 − 3) · 102s−1, the collision frequency reaches its maximal value
νei ≈ 104s−1, νin ≈ 104s−1, νen ≈ 105s−1 at heights 80 − 500km in the
lower layer of the ionosphere and quickly decreases in proportion to height,
we can conclude, that νei/ωe << 1, νen/ωe << 1 in E and F layers of the
ionosphere. It means, that electron component of the ionospheric plasma
is always magnetized in this region of the upper atmosphere. Taking into
account these inequalities, Eqs. (2.6) and (2.7) can be reduced to the fol-
lowing form:

−→
VD ×−→h0 = −→

Ve ×−→h0 =⇒ −→
Ve = −→

VD =⇒ −→
E = −1

c

−→
Ve ×−→H0, (2.8)

−→
Vi = −→

Vn +−→
J ×−→H0/(ρcνi), νi = Nνin/Nn. (2.9)

Therefore, in E and F layers of the ionosphere electrons move with
electron drift velocity (−→Ve = −→

VD ) and the geomagnetic field −→H0 is always
frozen in electron component (∂−→h /∂t = ∇ × −→

Ve × −→
H0 ), −→h denotes the

perturbation of geomagnetic field.
Multiplying Eq. (2.8) on −→H0, we obtain important equality −→E ·−→H0 = 0,

i.e. the internal electric field, generated in E and F layers of the ionosphere,
is always perpendicular to the geomagnetic field −→H0.

Using Maxwell equations, we get a closure of the system of equations
(2.5), (2.8), (2.9):

∂
−→
h

∂t
= −c∇−→E ,

−→
J =

c

4π
∇×−→h . (2.10)

Excluding −→E and −→J , using Eq. (10) and dropping index n for veloc-
ity and density of the neutral particles, we obtain a system of magneto-
hydrodynamic equations for E and F layers of the ionosphere:

∂
−→
V

∂t
= −1

ρ
∇P ′ +

ρ′

ρ
−→g +−→

V × 2−→ω 0 +
−→
FA

ρ
, (2.11)

∂
−→
h

∂t
= ∇×−→Ve ×−→Ho = ∇×−→V ×−→H0−αρ∇×

−→
FA

ρ
+∇× 1

νi

−→
FA

ρ
×−→H0, (2.12)

where:

−→
FA

ρ
=

1
ρc

−→
J ×−→H0 =

1
4πρ

∇×−→h ×−→H0 ≈ −→
V × 2−→Ωi ×−−→VD× 2Ωi = −→u × 2−→Ωi ;

(2.13)

4



+ The Propagation of the Planetary ... AMI Vol.7 No.2, 2002

σH = e2N
[
ωe/m(ω2

e + ν2
e )− ωi/M(ω2

i + ν2
in)

]
is the Hall conductivity; Hall

parameter α in general case is α = c2/
−→
H0σH ; P ′ and ρ′ are perturbations

of gas-kinetic pressure and density of neutral particles, accordingly; −→g is a
gravity acceleration; −→ω0 is an angular velocity of the Earth rotation; −→u =−→
V −−→VD. In E-region of the ionosphere we have ωe >> νen, ωi << νin and
α = c/(eN) (Hall’s conductivity disappear higher than 150km σH = 0).

From Eq. (2.13) follows that Ampere electromagnetic force −→FA, acting
on a unite mass of medium −→

FA/ρ = −→u × 2−→Ω i, has the same structure as
the Coriolis acceleration −→

V × 2−→ω0. Therefore, Amper force must act on
atmospheric - ionospheric medium similarly to Coriolis force. Similarity
of Amper and Coriolis forces means, that new modes of large-scale elec-
tromagnetic oscillations must be generated due to inhomogeneity of the
geomagnetic field −→H as well as Rossby-type usual planetary waves are gen-
erated due to inhomogeneity of angular velocity of the Earth rotation −→ω0.
In this case, as it will be shown bellow, the first term of the electromag-
netic force −→FA, caused by the velocity of the medium motion (dynamo field−→
E d = −→

V × −→H0/c), generates slow Rossby-type electromagnetic wave; sec-
ond term of electromagnetic force, appearing due to vortex electric field−→
EV = −−→VD ×−→H0/c, generates fast electromagnetic wave.

Estimations show, that for planetary scale perturbations (L ∼ 103 −
104km, further we shall be interested in these perturbations) in E-region of
the ionosphere magnetic Reynolds number Rem = ωL2/νH ∼ 1/α, where L
and ω are characteristic linear scale and frequency of perturbations, νH =
c2/(4πσH) reaches the value (Rem ∼ 20 ) sufficiently small. Therefore, it
is necessary to keep Hall term (α ) of induction equation, but the last term
of Eq. (2.12) can be neglected due to condition σH >> σ⊥ ≈ σHωi/νin

(where σ⊥ is the transversal conductivity). In F-region of the ionosphere,
where Hall effect is not important, the last term of Eq. (2.12) also can be
neglected for planetary-scale perturbations in the first approximation as far
as Reynolds number Re⊥ = ωL2/ν⊥ (ν⊥ = (c2/(4πσ⊥))) is of order of 102.
Observations show, that the planetary waves propagate over great distances
in the ionosphere without substantial changes [3,6,16,17]. For planetary
scale waves the latitude variations of angular velocity of the Earth rotation
−→ω0(θ) and the geomagnetic field −→H0 (where θ and θ′ are geographical and
geomagnetic latitudes) can not be neglected. Therefore, for such large-
scale perturbations we must use Helmholtz equation of velocity vortex,
which takes into account latitude effects of vectors −→ω 0 and −→H 0, instead of
equation of motion (2.11), as well as in dynamical meteorology [9,12,14].
Helmholtz equation is obtained from Eq. (2.11) by using on its both sides
an operator curl = ∇×. Compressibility and temperature stratification
of the atmosphere, as we mentioned above, play a secondary role for such
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disturbances [9,14,15].
Hence, for E and F layers of the ionosphere magneto - hydrodynamic

Eqs. (2.11)-(2.13) may be written in the following form:

∂∇×−→V
∂t

= ∇×−→V × 2−→ω0 +
1

4πρ
∇×∇×−→h ×−→H0, (2.14)

∂
−→
h

∂t
= ∇×−→V ×−→H0 − α

4π
∇×∇×−→h ×−→H0, (2.15)

∇ · −→V = 0, ∇−→h = 0 (2.16)

Here −→H0 = H0y
−→ez + H0z

−→ez , H0y = −Hp sin θ′, H0z = −2Hp cos θ′,
Hp = 3.2 · 10−5T ; 2−→ω0 = 2ω0y

−→ey + 2ω0z
−→ez , 2ω0y = 2ω0 sin θ, 2ω0z =

2ω0 cos θ, ω0 = 7.3 · 10−5s−1 (−→H0 always has a north-south direction, −→ω0 is
directed opposite to −→H0); −→ex , −→ey , −→ez denote unite vectors along x, y, z axes,
respectively; θ′ is geomagnetic colatotude and θ - geographical colatitude.

Close system of Eqs. (2.14) and (2.15) contains six scalar equations
and gives a possibility to calculate six unknown quantities: −→Vx, −→Vy , −→Vz ,−→
hx, −→hy , −→hz . After determining the values of −→V and −→

h , pressure P ′ will
be determined from Eq. (2.11) in quadrature (as far as ρ′ = 0); current
density −→J and electric field −→E are calculated from Maxwell Eqs. (2.10);
electron velocity is determined from the expression −→Ve = −→

VD, ion velocity
is determined from the formula (2.9). Thus, the initial - boundary problem
of large-scale dynamics of triple component plasma for E and F layers of
the ionosphere in linear approximation is solved completely.

3. Large-scale wavy perturbations

The discussed planetary waves have wavelength of order of the Earth ra-
dius. Therefore, it is natural to consider a creation of large-scale pertur-
bations in the Earth atmosphere in spherical coordinate system. However,
the mathematical difficulties, raised by theoretical investigation of obtained
equations, oblige us to consider the problem in standard coordinate system
[8,15,14,15]. In this system x-axis is directed to the east towards the par-
allels, y-axis - to the north along meridian, z-axis is directed vertically up
(local Cartesian coordinate system). Length elements dx, dy, dz are con-
nected with the parameters of the spherical coordinate system λ, θ, r by
the following approached formulas: dx = r0 sin θdλ, dy = −r0dθ, dz = dr.
Velocities are equal: Vx = Vλ, −Vy = Vθ, Vz = Vr. Here, θ is an adjunc-
tion to the geographical latitude (co-latitude), λ is a longitude,r0 is the
Earth radius, r is a distance from the center of the Earth along the Earth

6
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radius. This system is not equivalent to the ordinary Cartesian system of
reference as far as directions of the axes vary with the atmospheric particle
motion from one point to another. However, for large-scale processes in
thermo-hydrodynamic equations of atmosphere the terms, connected with
spatial variations of coordinate axes, may be dropped in the first approxi-
mation [12,15,18]. Therefore, the equation of motion in spherical coordinate
system (taking into account connections between coordinates, mentioned
above) has the same form as in the Cartesian system of reference. This pro-
cedure simplifies the problem and investigation of dynamics of large-scale
processes in the atmosphere [12,15,18] and therefore, it will be used also
for magnetoactive ionospheric medium.

The method of frozen-in coefficients in dynamic equations will be also
used below. This method is known as approximation [8,9,12,15] in spheri-
cal hydrodynamics and meteorology. In this approximation the parameters
ω0(θ), ∇ω0(θ), H0(θ′), ∇H0(θ′) are constant at integration of dynamical
equations taking into account θ = θ0, θ′.=θ′0. Medium motion is consid-
ered near θ0 and θ′0, i.e. average values of adjunction of geographical ϕ0 and
geomagnetic ϕ′0 latitudes, respectively. In this case, dynamical equations
transform into equations with constant coefficients, which may be investi-
gated by plane wave method. Application of β- approximation (or β-plane)
leads to simple results, which gives a possibility to reveal more important
features of motion on a rotating sphere, which differs from the motion on
a rotating plane. Further we guess, that geographical latitude ϕ coincides
with the geomagnetic latitude ϕ′ i.e. θ = θ′, θ0 = θ′0.

Now we introduce vectorial potential −→h /(αρ) = ∇×−→U , then we find:

∇×
−→
h

αρ
= ∇×∇×−→U = ∇

(
∇ · −→U

)
−4−→U . (3.1)

Without loss of generality, we can assume, that ∇ · −→U = 0. This is
Lorenz calibration condition, which guarantees a uniqueness of the solution
for the vectorial potential −→U . Seeking the solution of Eqs. (2.14) and (2.15)
as a plane wave V, h ∼ exp

{
i(−→k −→r − ωt)

}
, where −→k is the wave vector, ω

is the frequency of perturbation, from Eq. (3.1) we obtain ∇×−→h /(αρ) =
k2−→U . Taking it into account, Eqs. (2.14) and (2.15) may be written in the
form:

∂

∂t
∇×−→V = ∇×−→V × 2−→ω0 −∇×−→U × 2−→ΩH , (3.2)

∂

∂t
∇×−→U = ∇×−→V × 2−→Ω0 +∇×−→U × 2−→ΩH , (3.3)

7
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where 2−→ΩH = − ck2

4πeN

−→
H0, 2−→Ω0 = Ne

NnMc

−→
H0.

Eqs. (3.1) and (3.2) show, that electromagnetic waves must be gener-
ated by hydrodynamic and electromagnetic interaction on triple-component
ionospheric plasma. From these equations follow, that changing of velocity
vortex ∇×−→V and vectorial potential vortex ∇×−→U occurs under the action
of Coriolis Fc = ρ

−→
V ×2−→ω0 and electromagnetic gyroscopic −→FH = ρ

−→
V ×2−→ΩH ,−→

F0 = ρ
−→
V × 2−→Ω0 forces. Solenoidal character automatically is taken into

account by −→U and −→V vectors. Eqs. (18) and (19) represent close system of
equations, describing interaction of two incompressible fluids, moving with
velocities −→V and −→U under the action of three gyroscopic forces mentioned
above. In general case Eqs. (3.2) and (3.3) are of the sixth order with
respect to time and corresponding dispersion equation have four nonzero
roots for frequency. Two zero frequencies (∂/∂t ∼ ω = 0 ) correspond to
hydrodynamic and electromagnetic equilibrium in the unperturbed state.

As far as −→U has velocity dimension m/s, −→ΩH and −→Ω0 have dimensions
s−1, differential Eq. (3.2) coincides with Eq. (3.3) replacing −→V by −→U and
−→ω0 by −→Ω0 + 2−→ΩH . Coincidence of these differential equations means that
they must describe similar physical phenomena. It must be mentioned, that
the analogy method reveals fundamental discoveries in quantum mechanics
and in different areas of theoretical physics.

It will be shown, that application of analogy method in general case
gives a possibility to seek an electromagnetic analog of atmospheric waves
in E and F layers of the ionosphere without solving Eqs. (3.2) and (3.3).
For illustration we consider a few particular cases for the system of Eqs.
(3.2) and (3.3).

1) For E-region of the ionosphere, Ω0 << ω0, in the right side of Eq.
(3.2) first term exceeds second one, vice versa in Eq. (3.3). In this case
formulas (3.2) and (3.3) give a close system of equations for −→V and −→U :

∂

∂t
∇×−→V = ∇×−→V × 2−→ω0, (3.4)

∂

∂t
∇×−→U = ∇×−→U × 2−→ΩH (3.5)

Eqs. (3.4) and (3.5) show, that 2−→ω0 and 2−→ΩH are frozen in the field of−→
V and −→U vectors.

It is well known in dynamical meteorology, that for small-scale (L <<
103km) processes Eq. (3.4) has the general solution - three-dimensional
inertial waves, satisfying the dispersion equation [8,12,15]:

ω = ωI =
(2−→ω0 · −→k )

k
, (3.6)

8
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where k =
√

k2
x + k2

y + k2
z . For large scale (L ∼ 103 − 104km) processes

equation (3.4) has an exact solution - slow planetary Rossby waves, satis-
fying dispersion equation [9,14,15]:

ω = ωR = −β
kx

k2
x + ky2

, (3.7)

where: β = ∂2ω0z/∂y = 2ω0 sin θ0/R is the Rossby parameter, ∂/∂y =
−r−1

0 ∂/∂θ. Eq. (3.4) does not contain any new information about atmo-
spheric waves. It is a cubic equation with respect to time and has nonzero
proper frequencies ωI and ωR. The third root - zero frequency, as it is
mentioned above, corresponds to quasi-static and quasi-geostrophic equi-
librium (−→Vg = 2−→ω0 ×∇−→P0/(4ω2

0ρ) is geostrophic wind velocity) state of the
atmosphere; −→P0 is the equilibrium pressure.

Using the analogy method, without solving Eq. (3.5) and utilizing only
expression (3.6), we can conclude, that in electromagnetic approximation
the analogy of the small-scale inertial waves in the ionosphere is the well
known atmospheric whistle (helicons) modes:

ω = ωh = −(2−→ΩH · −→k )
k

=
ck(−→k · −→H0)

4πeN
(3.8)

Sign ”−” denotes opposite directions of −→ω0 and −→H0 vectors .
For large-scale processes (L ∼ 103 ∼ 104km), when latitude variation of

the geomagnetic field −→H0 is negligible, electromagnetic analogy of Rossby
waves (3.8) must exist in E-region of the ionosphere

ω = ωH = −βH
kx

k2
x + k2

y

=
cβ1

4πeN
kx, (3.9)

where βH = ∂2ΩHz/∂y = −(ck2/4πeN)·∂H0z/∂y = −c(k2
x+k2

y)/(4πeNvβ1);
β1 = ∂H0z/∂y − 2Hp sin θ0/r0. Taking into account the both components
of the geomagnetic field, we get:

ωH =
α

4π

√
β2

1 + β2
2kx =

cHp

4πeN

√
1 + 3 sin2 θ

r0
kx, (3.10)

where β2 = ∂H0y/∂y. This is a new mode of proper oscillations in E-region
of the ionosphere.

Numerical calculations of planetary wave parameters were carried out
using (3.10) models of the ionosphere and the neutral atmosphere [19] for
low and high sun activity. Numerical calculations show, that at θ = 450,
at a heights of 90 − 150 km, phase velocity of waves CH = ωH/kx vary
from 4 to 1, 4 km/s at night, and from 400 to 800 m/s in the daytime.
Periods TH = λ/CH at λ = 2 · 103km vary in the interval of (1, 5 − 6)

9
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hours in the daytime and (4 − 12) minutes at night. Perturbation of the
geomagnetic field of these waves hH = Hp

√
1 + 3 sin2 θξe/r0 (where ξe is

electron displacement) is 8 and 80 nT at ξe = 0, 1km and ξe = 1km. The
influence of exospheric temperature on CH and TH is insignificant, but is
important for magnetic field perturbations. CH and TH values substantially
differ in the daytime and at night as far as electron concentration in E-
region of the ionosphere varies with an order by magnitude during a day.

These oscillations were observed experimentally [3,16] at middle lati-
tudes of E-region of the ionosphere and were extracted as middle-latitude
long-period oscillations. Eq. (3.10) does not pose any restrictions for the
existence of these perturbations at both high and low latitudes. They are
observed especially by the world-wide network of the ionospheric and mag-
netospheric observatories during the earthquakes, the magnetic storms and
artificial explosions [2,10,11].

Eq. (3.5) does not contain any additional information. Now we demon-
strate this in general case for high and moderate latitudes ( −→H0 ≈ H0z

−→ez ).
Let us write the equation (3.5) in the following form:

ω
−→
k ×−→U = i2ΩHzkz

−→
U − βHUy

−→ez , (3.11)

−→
k · −→U = 0 (3.12)

Multiplying Eq. (3.11) by −→k vectorially and utilizing Eq. (3.12) we
obtain:

−→
U = −i

2ΩHz

ωk2
kz
−→
k ×−→U +

βH

ωk2
Uy
−→
k ×−→ez (3.13)

Excluding the expression −→k · −→U using (3.12) and taking into account
(−→k × −→ez )x = ky, (−→k × −→ez )y = −kx, (−→k × −→ez )z = 0, from Eq. (3.13) we
obtain the system of equations for Ux, Uy and Uz components:

(
1− ω2

h

ω2

)
Ux =

βH

ωk2
kyUy, (3.14)

(
1− ω2

h

ω2

)
Uy = − βH

ωk2
kxUy, (3.15)

(
1− ω2

h

ω2

)
Uz = i

2ΩHzkz

ωk2
βHUy. (3.16)

From the expression (3.15) it follows, that

10



+ The Propagation of the Planetary ... AMI Vol.7 No.2, 2002

(
1− ω2

h

ω2
+

βHkx

ωk2

)
Uy = 0, (3.17)

where ωh = ckkzH0z/(4πeN). So, we have two cases Uy 6= 0 or Uy = 0.
a) At Uy 6= 0, in Eq. (3.17) the expression in the round brackets tends

to zero
(

1− ω2
h

ω2
+

βHkx

ωk2

)
= 0 or

(
1− ω2

h

ω2

)
= −βHkx

ωk2
(3.18)

Substituting this expression into (3.14) we obtain:

− βH

ωk2
kxUx =

βH

ωk2
kyUy.

From this it follows, that kxUx + kyUy = 0. Taking into account Eq.
(3.12) kxUx + kyUy + kzUz = 0, we get kzUz = 0. Therefore, if kz =
0, from formula (3.16) we obtain Uz = 0. Thus, kz, Uz and ωh vanish
simultaneously at Uy 6= 0. If Ux and Uy are nonzero, then the dispersion
equation (3.18) gives only an analogy of Rossby wave

ω = ωH = −βH
kx

k2
x + k2

y

=
cβ1

4πeN
kx.

b) Left-hand sides of Eqs. (3.14) and (3.16) tend to zero at Uy = 0.
(

1− ω2
h

ω2

)
Ux = 0;

(
1− ω2

h

ω2

)
Uz = 0.

If Ux = 0, Uz = 0, we have trivial zero solution, which corresponds to
equilibrium state, when electric drift velocity and geostrophic wind velocity
are equal [7]. At Ux 6= 0 and Uz 6= 0, we obtain dispersion equation for
helicons ω = ωh = ckkzH0z/(4πeN).

Analysis shows, that electromagnetic planetary CH = ωH/kx wave is a
unique solution of Eq. (3.5) at Uy 6= 0 and helicons automatically are ex-
cluded. Helicon waves are unique solution at Uy = 0, CH waves are filtered
out. Using the analogy method this proof may be carried out directly for
inertial and planetary Rossby waves, i.e. for Fridman equation (3.4).

2) In F-region of the ionosphere, Ω0 >> ω0, we can neglect the first
term in comparison with the second one in the right-hand side of Eq. (3.2)
and vice versa in Eq. (3.3):

∂

∂t
∇×−→V = −∇×−→U × 2−→ΩH , (3.19)

11
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∂

∂t
∇×−→U = ∇×−→V × 2−→Ω0 (3.20)

It is easy to show, that the system of Eqs. (3.19) and (3.20) does
not contain Hall parameter and therefore, this system can be applied for
investigation of electromagnetic processes in F-region of the ionosphere.

For small-scale processes, when latitude variations of the geomagnetic
field −→H0 is negligible, parameters 2Ω0 and 2ΩH become constant and the
system of Eqs. (35) and (36) can be solved in general case. Indeed, using
transversal condition of the waves (−→k · −→U ) = 0, (−→k · −→V ) = 0 from Eqs.
(3.19) and (3.20) we get:

ω
−→
k ×−→V = −i(−→k · 2−→ΩH)−→U ; ω

−→
k ×−→U = i(−→k · 2−→Ω0)

−→
V . (3.21)

In F-region of the ionosphere eliminating −→U and −→V , we obtain disper-
sion equation for modified Alfven waves:

ω2 = −(−→k · 2−→Ω0)
k

(−→k · 2−→ΩH)
k

,

from which it follows, that

ω1,2 = ±√η
(−→k · −→H0)√

4πMN
= ±√ηωA. (3.22)

Non-dimensional parameter η = N/Nn denotes a degree of ioniza-
tion of plasma , ωA = (−→k · −→H0)/

√
4πMN is Alfven frequency. Modified

Alfven waves are slow waves as far as parameter varies in the interval of
(10−7 − 10−3) for F-region of the ionosphere (200 − 500)km. Dispersion
equation (3.22) has two roots for positive and negative propagation direc-
tions. Group velocity of these perturbations is directed along the force lines
of the geomagnetic field −→H0.

Similarly to (3.22), from Eqs. (3.19) and (3.20) we obtain only one
root of dispersion equation, describing propagation of zonal perturbations
along latitude circles (along x-axis, directed along parallel) for large-scale
processes, when latitude variations of the geomagnetic field −→

H0 are not
negligible:

ω = ωn =
√

η
Hp√

4πMN

√
1 + 3 sin2 θ

r0
(3.23)

Calculations show, that the phase velocity of waves Cn = ωn/kx are in
the range of (20−1400)km/s at the heights of 200−500km, λ = 2 ·103km,
θ = 450, exosphere temperature is Texos = 6000K; and in the range of

12
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(10− 50)km/s at Texos = 26000K. Period of these waves Tn = 2π/ωn does
not depend on wavelength and varies in the interval of (105−3)s at Texos =
6000K and (210 − 40)s at Texos = 26000K. Magnetic pulsations, induced
by these waves have the same order of magnitude as CH waves, hn = hH .
Existence of Coriolis force and the ordinary Rossby waves in F-region of the
ionosphere leads to dispersion relation (ω/kx)2 = C2

n(1−ωR/ω)−1. Periods,
phase velocities and amplitudes of geomagnetic pulsations for Cn waves in
the middle-latitude ionosphere are in agreement with observation data of
both middle-latitude and large-scale electromagnetic perturbations, gener-
ated in F-region of the ionosphere at powerful earthquakes and magnetic
storms [3,10,11].

3) Now we consider frequency band ω << 2ΩH0. In Eq. (3.3) the left-
hand side can be neglected in comparison with free terms (which is fulfilled
for potential electric fields):

∂

∂t
∇×−→V = ∇×−→V × 2−→ω0 −∇×−→U × 2−→ΩH , (3.24)

0 = ∇×−→V × 2−→Ω0 +∇×−→U × 2−→ΩH (3.25)

Eliminating ∇×−→U ×2−→ΩH , we obtain generalized Fridman equation for
vorticity:

∂

∂t
∇×−→V = ∇×−→V × (2−→ω0 + 2−→Ω0)−∇×−→V × 2(−→ω0 + ηωi), (3.26)

where ωi is an ion gyrofrequency.
From Eq. (3.26), as in case 1), it follows, that there must exist two

classes of solutions:
1) small-scale modified inertial waves, having frequency

ω = ω
′
i =

(2
−→
ω
′
0 · −→k )
k

, (3.27)

where 2ω
′
0 = 2(ω0 + ηωi),

2) large-scale planetary Rossby-type waves, having both hydrodynamic
and electromagnetic nature (compare with [19]):

ω = ω
′
R = −β

′ kx

k2
x + k2

y

(3.28)

Here β
′

= β + βi , βi = η∂ωiz/∂y. Calculations show, that phase
velocities of C

′
R = ω

′
R/kx = −β

′
λ2/(4π2) - waves are in the range of (−2 +

80)m/s in the daytime, Texos = 6000K at the heights of (90− 150)km and

13
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λ = 2 · 103km. For λ = 2 · 104km phase velocities change from (−41)m/s
to (+1, 8)m/s in the daytime and in the range (−41 ÷ 11)m/s at night.
Velocities change from −3m/s to +60m/s in the daytime and from −2m/s
to −1, 3m/s at night, λ = 2 · 103 km, Texos = 26000K. In this case sign
”-” points to the direction of phase velocity from the east to the west, sign
”+” from the west to the east. Calculations show, that β

′
= (Nωiz/Nn −

Ω0)2 sin θ/r0 tends to zero and C
′
R = 0 in the daytime at a height of 115km.

Parameter β
′
tends to zero at a height of 150km at the nightly ionosphere.

Hence, ordinary slow planetary Rossby waves, moving from the west to the
east direction in the daytime, will be revealed in the lower E-region at the
heights of 90 − 115km; the fast planetary waves, having electromagnetic
nature and moving from the west to the east direction, will be revealed
at and higher than critical altitudes. Hall region completely is occupied
by the slow Rossby waves at the nightly ionosphere. Hence, magnetic
control of planetary waves in the ionosphere depends on critical altitude,
where the condition β

′
= β + βi = 0 is fulfilled. These altitudes may

be revealed experimentally at registration of the planetary waves jointly
by both ionospheric and magnetospheric observatories. Calculation shows,
that periods T

′
R = 2π/ω

′
R are in the interval from 14 day to 8 hours at the

heights of 90 − 150km , Texos = 6000K, λ = 2 · 103km. T
′
R varies from 14

day to 2 hours at Texos = 26000K. Perturbation of the geomagnetic field
runs up to a few tens nT . Parameters of C

′
R waves are in a good agreement

with observed parameters of planetary electromagnetic waves in E-region
of the ionosphere at moderate latitudes in any season of the year [5,6,17].

4. Conclusion

The analogy method yields simple and important physical results. Partic-
ularly, the investigation of equations (3.2) and (3.3) show, that four nor-
mal modes: the small-scale inertial waves, the atmospheric whistles (he-
licons), the fast large-scale electromagnetic planetary CH -waves and the
slow Rossby-type waves must exist in E-region of the ionosphere. Mod-
ified small-scale slow Alfven waves with ω+ and ω− frequencies, the fast
large-scale electromagnetic planetary waves Cn = ω/kx and ordinary slow
planetary Rossby waves must exist in F-region of the ionosphere. Two
eigen-frequencies and ω = 0 correspond to hydrodynamic and electromag-
netic equilibrium state of the ionospheric medium in a background state,
where the geostrophic wind velocity coincides with the electric drift veloc-
ity.

Existence of the large-scale fast waves CH (in E-region), Cn (in F-
region) and slow Rossby-type planetary waves C

′
R (in both E and F-regions)

14
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are caused by inhomogeneity of the geomagnetic field −→H0. The slow waves
are generated by polarized electrostatic dynamo field of polarization −→Ed =−→
V × −→

H0/c, the fast waves - by vortical electric field −→
EV = −→

VD × −→
H0/c.

The frequencies of these waves vary in the range ω ∼ 1 − 10−6s−1and
occupy both infrasound and ultralow frequency (ULF) bands. Wavelength
λ ∼ 103 − 104km, and period of oscillation T ∼ 1s − 14 days. This waves
generate pulsations of the geomagnetic field 1− 102nT .

In the ionosphere the dynamics of the slow planetary electromagnetic
waves are more or less studied experimentally. Experimental investigation
of features of the fast large-scale electromagnetic waves must be realized.
Formulae (3.11) and (3.24) show, that the fast electromagnetic large-scale
( L ∼ 103 − 104km) atmospheric waves in both E and F - regions of the
ionosphere have general-planetary character and occupy latitudes from the
pole (θ = 0 ) to the equator (θ = π/2 ).

Fast electromagnetic atmospheric waves at ionospheric altitudes can be
revealed experimentally and registered using their specific features:

1) phase velocity - latitude relation has a wide range (phase velocities
of these waves are increased from the pole to the equator; they are doubled
at the equator).

2) high variation (by magnitude) of electron concentration N substan-
tially increases the phase velocity of waves CH = ωH/kx in E-region of the
ionosphere at nightly conditions (from a few hundred m/s in the daytime
to a few tens km/s at night).

3) application of well-known profiles N(h) allows us to calculate uniquely
a height distribution of CH waves in E - region of the ionosphere and, vice
versa, from a height distribution of CH(h) waves we can get the dependence
of concentration N(h) on the altitude.

4) altitude variation of the neutral component concentration Nn(h)
leads to strong increase of phase velocity of Cn waves (phase velocity of Cn

waves increases from a few km/s to 1000km/s at the heights of 200−500km)
in F-region of the ionosphere.

5) CH and Cn waves give response to the earthquake, magnetic storms,
artificial explosions and magnetic activity of the sun.

6) electromagnetic and large-scale (103 − 104km) character of both CH

and Cn waves allows their registration by the world-wide network of the
ionospheric and magnetospheric observatories.

In conclusion we can say, that the planetary waves in the ionosphere,
unlike to the troposphere, generate highly temporal - varying ”weather”.
The waves occupy large temporal interval from two days and more (slow
planetary ω

′
R waves) and from a few hours to a few minutes and less (fast

planetary ωH and ωn- waves).
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