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Abstract

It is proved that the algorithmic inequality problem for the class K of partially

ordered semigroups S with a finite number of defining inequalities is decidable with

the space cn, where c = const for S.
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1. Introduction

Let M be an alphabet. In the set WM of all words in the alphabet M
the associative operator of multiplication is introduced: if X ∈ WM and
Y ∈ WM , then XY ∈ WM . Let {(Ai, Bi), i ∈ I} be a system of ordered
pair of graphical distinct words from WM . In the set WM we make two types
of elementary transforms of words: a) tautological transform; b) admissible
change in a word XAiY from WM for any isolated word Ai (is produced
by scheme XAiY → XBiY ). If there is a finite sequence of elementary
transforms which transfers a word W1 into word W2, one writes W1 ≥ W2.
If W1 ≥ W2 and W2 ≥ W1, then one writes W1 = W2. = is an equivalence
relation on WM [1]. The set of all equivalence classes [X] (where X ∈ WM )
with respect to = is a semigroup with respect to included operation of class
product. In this semigroup induce the ordering of classes. Thus partially
ordered (p.o.) semigroup S given in a alphabet M with defining inequalities
Ai ≥ Bi, i ∈ I is defined (see [2] too).

Defining inequality Ai0 ≥ Bi0 is called invertible [2] if in A the inequality
Bi0 ≥ Ai0 holds. Then it is possible to rewrite the invertible defining
inequality Ai0 ≥ Bi0 in the form Ai0 = Bi0.

It is known that a representation of semigroups with defining inequal-
ities is more general than their representation with defining equalities (in
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a semigroup ordering is given too) and represents a topic of much more
interest.

The equality problem for a given semigroup in very general view was
formulated by A. Thue [9]. First A. A. Markov [5] and E. L. Post [7]
proved that there are semigroups with unsolvability of equality problem.
For semigroups S given in a finite alphabet with a finite number of defining
inequalities along with equality problem also arises the inequality problem.

The algorithmic inequality problem for p.o. semigroup S given in a
finite alphabet M with a finite number of defining inequalities consists in
finding an algorithm which decides whether X ≥ Y or not for an arbitrary
pair of words X, Y from WM . Obviously, if the inequality problem for p.o.
semigroup S is decidable, then for S is decidable the equality problem too.
Therefore the inequality problem is more general than equality problem and
naturally p.o. semigroups with decidable inequality problem represents a
subject of particular interest.

Torkalanov [10], basing on the papers [6,8,3], constructed a wide class of
p.o. semigroups with decidable algorithmic inequality problem. This class
includes the Osipova’s class of semigroups with decidable equality problem,
and moreover, these classes of semigroups do not coincide.

Decision theory and computational complexity theory are two very ac-
tive branches of mathematical logic. In decision theory mathematicians
have found a large number of decidable and undecidable problems. In the
area of computational complexity the appearance of Turing machine makes
it possible for mathematicians to compare different kinds of algorithms [4].

The aim of our research is to give an upper bound of the computational
complexity (the storage space) [11] of the inequality problem for the class
from [10]. According to our aim we rather change the decision procedure
from [10].

Let S be p.o. semigroup in a finite alphabet M = {a1, ..., ap} with a
finite number of defining inequalities Ai ≥ Bi, i = 1, ..., q. `(X) denotes the
length of the word X, P – graphic congruence, L = max{`(Ai), `(Bi), i =
1, . . . , q}.

Beginning X [end Y ] of the word XY in M is called the right beginning
[end] for XY , if `(X) ≥ 1/2`(XY ) [`(Y ) ≥ 1/2`(XY )].

Definition 1. [10] The p.o. semigroup S belongs to class K if its
defining inequalities satisfy the following conditions:

1) If a left defining word Ai and a defining word Cj (Aj or Bj) have a
common part which is a right beginning [end] for some of them, then this
common part is the beginning [end] for the other too;

2) If P is a right beginning of a defining word Bi and simultaneously is
a right end for a defining word Bj, then P P Bi P Bj.
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Definition 2. [6] Decomposition E P R1R2 · · ·Rk of the word E ∈ WM

is called the normal decomposition of order k, if
a) every Ri is a part of some defining word;
b) R1 is the right beginning and Bk is the right end of the defining word;
c) for any i < k Ri is a right end of some defining word or if that is

false, then Ri+1 is a right beginning of some defining word.
If a word E has a normal decomposition of order k, then E is called the

normal word of order k.
Lemma 1. There exists an algorithm which for any word E ∈ WM

decides whether E is a normal word or not using the space cx, where x =
`(E), c = const for S.

Proof. We can write out all parts of the defining words. The number
of them ≤ qL2. For writing of these words use the space ≤ qL3 = const
for S. We compose all possible products with the length x of parts above
mentioned. The number of them ≤ (qL2)x. By Definition 2 the given
product Q of parts simply verifies whether Q is a normal word or not. It
is verified whether Q P E or not. If yes, then it is verified whether Q is
a normal word or not. If yes, then E is the normal word. If not we come
to the next product of parts and so on. If we do not meet such a word Q
in this way that Q P E, then the word E cannot be a normal word. The
writing of all products of parts of the defining words with the length x uses
the space x(qL2)x, hence the space cx, where x = `(E), c = const for S.2

Lemma 2. Let X be a normal word with the order k. A number of all
such words Y that X ≥ Y in the p.o. semigroup S ∈ K does not exceed
kL · pkL.

Indeed, by the induction on a length of a sequence, transferring a word
X into a word Y one easily verifies that Y is the normal word of order k
and hence `(Y ) ≤ kL. But the set of all words in the alphabet M whose
length does not exceed kL, has the power pkL. 2

Lemma 3. There exists an algorithm which for any normal words X0

and Y0 from S ∈ K decides whether X0 ≥ Y0 or not using the space kL ·pkL,
where k is the order of X0.

Proof. By Lemma 1 the power of the set of all such words Y that
X0 ≥ Y , does not exceed pkL. Of course, if X0 ≥ Y0, then Y0 is the
member of a sequence (without repetition) of elementary transforms:

X0 → · · · → Y0

with length ≤ pkL. It is necessary to seek the given word Y0 among elements
of the finite set above (exactly, among members of sequences of elementary
transforms with the first member X0 and the length ≤ pkL).

In the normal word X0 we make all possible admissible changes: X0 →
Y0, X2 → Y2, . . . , X0 → Yr (r ≤ q), where Y1, . . . , Yr are normal words of
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order k and X0 ≥ Yi in S , i = 1, . . . , r. The next “step”: as well as with
X0, do with words Y1, . . . , Yr and repeating words obtained on a previous
step are canceled. The length of any member of the sequence does not
exceed kL and etc. For completion of test is required less than pkL “steps”.
The number of words that appears on last “step” is less than pkL. Hence
the length of the writing is less than kLpkL.2

Definition 3. Words W and W ′ in the alphabet M of a p.o. semigroup
S ∈ K are expressed by concordant representation, if

W P F1P1F2P2 · · ·FmPmFm+1, W ′ P F1P
′
1F2P

′
2 · · ·FmP ′

mFm+1, (∗)

where P1 . . . , Pm and P ′
1, . . . , P

′
m are separate non-overlapping normal parts

[10,8].
It is known [10] that inequality W ≥ W ′ holds iff the words W and W ′

have a concordant representation (∗) and the inequalities

Pi ≥ P ′
i , i = 1, . . . , m, (∗∗)

are fulfilled.
Theorem. The algorithmic inequality problem for the class K of p.o.

semigroups S is decidable with the space cn where n is the length of a writing
of the inequality W1 ≥ W2 and c = const for S.

Proof. Let S ∈ K and W1,W2 be the words in M . We put in order
all normal parts of the word W1 according to their beginning and, for the
given beginning, according to their end in it. We represent the word W1

consecutively with one, two, etc. separate non-overlapping normal parts.
Similar action is done for the word W2.

Let `(W1) = w1, `(W2) = w2. By Lemma 1 we decide whether a given
subword E of the word W1 is normal or not. The length of writing for a
detection of all normal subwords E of the word W1 does not exceed w1c

w1

and analogously for the word W2.
Let us write out two sequences of normal subwords of the words W1 and

W2. Then we compose representations of the words W1 and W2 with one,
two, etc. separate non-overlapping normal parts. One easily verifies that a
number of such representations does not exceed 2w1 and 2w2 for W1 and W2,
respectively. Hence the length of the writing of all these representations
are less than w12w1 + w22w2 .

From representations of the words W1 and W2 above we separate the
pairs of concordant representations. If there are not such pairs then the
words W1 and W2 are incomparable. For any pair of concordant represen-
tations we establish whether the inequalities (∗∗) are fulfilled or not. By
Lemma 1 the length of the writing is less than w1Lpw1L + w2Lpw2L. If all
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the inequalities (∗∗) are fulfilled, then W1 ≥ W2. Otherwise, the inequality
W1 ≥ W2 is not fulfilled.

Thus the inequality problem for p.o. semigroup S ∈ K is decided using
the space cn.2
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