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Abstract

The mathematical model of filtration including low-order derivatives towards spa-

tial coordinates is considered. A problem of gas flow control by means of gas flux at

the beginning of the pipe-line is studied.

Relying on the method of variational inequalities, the existence of the solution and

convergence of approximate solutions are established.
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1. Introduction

In consolidation theory of the medium comprising fluid and gas main ob-
jects of research are: hydrotechnical construction, optimal projecting of
pipe-lines, their exploitation and so on.

We consider the problem of gas flow control in the main pipe-line (cylin-
drical area). In particular, to determine the value of flux at the beginning
of the pipe-line that ensures the desired, named beforehand, value of gas
pressure at the end of the pipe-line during a certain period of time. It is
assumed that the value of the flux at the end of the main pipe-line are
known values. Problems of similar type and methods of their numerical
solution are studied in many papers [(4), (5), (7), (8)].

Generally, filtration processes are described by means of nonlinear par-
tial differential equations [(1), (6)]. The study of real processes frequently
requires solving two-phase filtration problems. In corresponding mathe-
matical models, by retaining high-order precision members, a parabolic
equation is received that also includes lower-order derivatives. In this work
a linear mathematical model including such equation is considered.
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Let us introduce the following notations:

Ω is a cylinder in R3, the axis of which coincides with
OX1 coordinate line, left and right surfaces are σ1

and σ2 correspondingly and lateral surface is σ3;
Γ = σ1 ∪ σ2 ∪ σ3;
QT = Ω× (O, T ) is open cylinder;
ΣT = Γ× (O, T ) is lateral surface of cylinder QT .





(1.1)

Consider the following parabolic equation:
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+ A

(
x, t,

∂

∂x

)
y = f(x, t), (1.2)

where x = (x1, x2, x3),

A
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)
= −
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∂

∂xi

(
aij(x, t)

∂
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)
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3∑

i=1

ai(x, t)
∂

∂xi
+ a0(x, t)I,

(1.3)
aij , ai, a0 ∈ L∞(ΩT ) and





sup
i

(supess
(x,t)∈ΩT

| ai(x, t) |) ≤ c1,

supess
(x,t)∈ΩT

| ai(x, t) |≤ c2;
(1.4)

3∑

i,j=1

aijξiξi ≥ α
3∑

i=1

| ξi |2, (1.5)

α > 0, ξi ∈ R, almost everywhere on ΩT and α does not depend on x and
t.

For equation (2) consider the following Cauchy-Neyman problem:

y(x, 0) = y0, (1.6)

∂y

∂νA
|Σ1 = v,

∂y

∂νA
|Σ2 = w,

∂y

∂νA
|Σ3 = 0, (1.7)

where
Σi = σi × (O, T ), i = 1, 2, 3,

∂y

∂νA
=

3∑

i,j=1

aij(x, t)cos(n, xi)
∂y

∂xj

(cos(n, xi) is the cosine of direction i of exterior normal n).
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Assume that ∃v1(x, t) and v2(x, t) such that

v1(x, t) ≤ v(x, t) ≤ v2(x, t).

Below we consider the case when y0 and w are fixed functions, and v is
variable. Therefore we will denote the solution of the problem (2), (6), (7)
in this way: y(x, t) = y(x, t; v).

Suppose p(x2, x3, t) is a given function on
∑

2. Introduce the cost func-
tion

J(v) =
∫

Σ2

(y(v) |Σ2 −p)2dΣ.

Our objective is: to find function u such that

J(u) = inf
v∈U∂

J(v),

where v is called control, U∂ is the set of possible control, y(v) is state
function of the system.

Let us formulate the set problem in variational terms and establish
under what conditions the solution exists.

Consider the following quadratic form:

a(t, u, v) =
3∑

i,j=1

∫

Ω

aij(x, t)
∂u

∂xi
(x)

∂v

∂xj
(x)dx

+
3∑

i=1

∫

Ω

ai(x, t)
∂u

∂xi
(x)v(x)dx +

∫

Ω

a0(x, t)u(x)v(x)dx.

(1.8)

Let us show that the form given by equality (8) is coercive on H1(Ω).
According to conditions (4) and (5):

3∑

i,j=1

∫

Ω

aij(x, t)
∂v

∂xi
(x)

∂v

∂xj
(x)dx ≥ α

3∑

i=1

∫

Ω

(
∂v

∂xi

)2

dx, (1.9)

|
3∑

i=1

∫

Ω

ai(x, t)
∂v

∂xi
(x)v(x)dx| ≤ c1




∫

Ω

3∑

i=1

| ∂v

∂xi
|2dx




1
2

×



∫

Ω

|v(x)|2dx




1
2

≤ α

2
‖gradv‖2

L2(Ω) +
c2
1

2α
‖v‖2

L2(Ω), (1.10)
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|
∫

Ω

a0(x, t)|v(x)|2dx| ≤ c2‖v‖2
L2(Ω). (1.11)

If we select λ so that λ − c2 − c21
2α > 0, from inequalities (9), (10) and

(11) we receive:

a(t, v, v) + λ‖v‖2 ≥ α

2
‖gradv‖2

L2(Ω)

+(λ− c2 − c2
1

2α
)‖v‖2

L2(Ω) ≥ α1‖v‖2
H1(Ω). (1.12)

Problem (2), (6), (7) can be written in the following vector form:

dy(v)
dt

+ A(t)y(v) = F (t) + Bv, (1.13)

y(v)|t=0 = y0, (1.14)

where operator A(t) is determined by form (8),

(F (t), ϕ) =
∫

Ω

f(t)ϕdx +
∫

σ2

wϕdσ,

(Bv, ϕ) =
∫

σ1

vϕdσ.

Find the solution of problem (3), (4) in the following vector space

y(v) ∈ L2(0, T ; H1(Ω))
(

y,
∂y

∂xi
∈ L2(QT )

)
.

If we demand that f ∈ L2(QT ), v ∈ L2(Σ1), ω ∈ L2(Σ2), then

F (t) ∈ L2(0, T ; (H1(Ω))
′
), B ∈ L

(
L2(Σ1), (H1(Ω))

′)
.

The following theorem is widely known (see [3],[7]):
Theorem 1. Let conditions (4) and (5) be fulfilled and let f ∈

L2(QT ), v ∈ L2(Σ1), ω ∈ L2(Σ2), then for arbitrary initial value

y(0) = y0 ∈ L2(Ω)

problem (13), (14) has the unique solution y(v) ∈ L2(0, T ; H1(Ω)) and
this solution is continuously dependent on the initial values. Mapping
f, v, ω, y0 → y : L2(0, T ; H1(Ω)

′
)× L2(Σ1)× L2(Σ2) → L2(0, T ; (H1(Ω))

is continuous.
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Let us move to the solution of the set problem. Suppose v1, v2 ∈ L2(Σ1)
and U∂ =

{
v : v ∈ L2(Σ1), v1 ≤ v ≤ v2

}
, p ∈ L2(Σ2). Consider cost

function
J(v) =

∫

Σ2

(y(v)|Σ2 − p)2 dΣ

on U∂ ⊂ L2(Σ1) convex set.
Let us show that the cost function is a convex functional. Indeed ,

J(αv1 + (1− α)v2) =
∫

Σ2

(y(αv1 + (1− α)v2)− p)2 dΣ =

∫

Σ2

(αy(v1) + (1− α)y(v2)− p)2dΣ =
∫

Σ2

(α2y2(v1) + (1− α)2y2(v2)+

p2 + 2α(α− 1)y(v1)y(v2)− 2αy(v1)p− 2(1− α)y(v2)p)dΣ =
∫

Σ2

(α2y2(v1) + αy2(v1)− αy2(v1) + (1− α)2y2(v2)+

(1− α)y2(v2)− (1− α)y2(v2) + p2+

2α(α− 1)y(v1)y(v2)− 2αy(v1)p− 2(1− α)y(v2)p)dΣ =
∫

Σ2

(−α(1− α)y2(v1)− α(1− α)y2(v2) + 2α(1− α)y(v1)y(v2)+

α(y2(v1)− 2py(v1) + p2) + (1− α)(y2(v2)− 2py(v2) + p2))dΣ =
∫

Σ2

(−α(1− α)(y2(v1)− 2y(v1)y(v2) + y2(v2))+

(1− α)(y2(v2)− 2py(v2) + p2) + α(y2(v1)− 2py(v1) + p2))dΣ =
∫

Σ2

(−α(1− α)(y(v1)− y(v2))2 + α(y(v1)− p)2 + (1− α)(y(v2)− p)2)dΣ ≤

(because 0 ≤ α ≤ 1)

≤
∫

Σ2

(α(y(v1)− p)2 + (1− α)(y(v2)− p)2)dΣ = αJ(v1) + (1− α)J(v2).

Now let us show that the cost function is differentiable in space L2(Σ1)

J(v + h)− J(v) =
∫

Σ2

(y(v + h)− p)2dΣ−
∫

Σ2

(y(v)− p)2dΣ =
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∫

Σ2

(y(v + h)− y(v) + y(v)− p)2dΣ−
∫

Σ2

(y(v)− p)2dΣ =

∫

Σ2

(y(v + h)− y(v))2dΣ + 2
∫

Σ2

(y(v + h)− y(v))(y(v)− p)dΣ+

∫

Σ2

(y(v)− p)2dΣ−
∫

Σ2

(y(v)− p)2dΣ =

2
∫

Σ2

(y(v + h)− y(v))(y(v)− p)dΣ +
∫

Σ2

(y(v + h)− y(v))2dΣ =

2
∫

Σ2

(y(v + h)− y(v))(y(v)− p)dΣ + O(‖h‖2).

Therefore

J
′
(v)h = 2

∫

Σ2

(y(v + h)− y(v))(y(v)− p)dΣ.

So, we have shown that the cost function is convex and differentiable.
It follows that it is weakly semi-continuous in L2(Σ1) (see [2]). That is, if
uk ⇀ u in L2(Σ1) then

J(u) ≤ lim
k→∞

inf
k

J(uk).

So, relying on the results of paper [7] it can be concluded that the
following theorem holds true:

Theorem 2. Let conditions of theorem 1 be fulfilled, then set X of
functions u ∈ U∂ such that

J(u) = inf
v∈U∂

J(v)

is a nonempty convex set. Besides, for u ∈ X it is necessary and enough
that ∫

Σ2

(y(v)− y(u))(y(u)− p)dΣ ≥ 0 ∀v ∈ U∂ . (1.15)

Theorem 2 is not constructive. So, it is important to develop a method
of finding an element of set X.

Consider bilinear form (u, v)L2(Σ1) on X. As X is convex closed set,
there exists the unique u0 ∈ X such that

(u0, v − u0)L2(Σ1) ≥ 0 ∀v ∈ X. (1.16)
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Assume that
Jε(u) = J(u) + ε(u, u)L2(Σ1). (1.17)

Jε(u) is coercive on U∂ . So, there exists the unique uε ∈ U∂ such that

J
′
ε(uε)(v − uε) ≥ 0 ∀v ∈ U∂ . (1.18)

From inequality (18), taking into account condition (15), it follows that
∫

Σ2

(y(v)− y(uε))(y(uε)− p)dΣ + ε(uε, v − uε) ≥ 0 ∀v ∈ U∂ . (1.19)

Let us replace v by u0 in (19), then
∫

Σ2

(y(u0)− y(uε))(y(uε)− p)dΣ + ε(uε, u0 − uε) ≥ 0. (1.20)

In inequality (15) let us replace u by u0 and v by uε. We will receive:
∫

Σ2

(y(uε)− y(u0))(y(u0)− p)dΣ ≥ 0. (1.21)

Sum up inequalities (20) and (21) member by member:
∫

Σ2

(y(uε)− y(u0))(y(u0)− p)dΣ

+
∫

Σ2

(y(u0)− y(uε))(y(uε)− p)dΣ + ε(uε, u0 − uε)L2(Σ1) ≥ 0.

From this we receive:

−
∫

Σ2

(y(u0)− y(uε))(y(u0)− p− y(uε) + p)dΣ + ε(uε, u0 − uε)L2(Σ1) ≥ 0.

that is
−

∫

Σ2

(y(u0)− y(uε))2dΣ + ε(uε, u0 − uε)L2(Σ1) ≥ 0,

so
(uε, u0 − uε)L2(Σ1) ≥ 0. (1.22)

From this we have

(uε, u0)L2(Σ1) ≥ ‖uε‖2
L2(Σ1),
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that is
‖uε‖L2(Σ1) ≤ ‖u0‖L2(Σ1),

‖uε‖L2(Σ1) ≤ c3, c3 = const. (1.23)

From inequality (23) it follows that we can pick out from sequence {uε}
such a subsequence that will be weakly convergent towards an element
w ∈ L2(Σ1). Denote this sequence by uε again. So,

uε ⇀ ω in L2(Σ1) (⇀ means weak convergence).

As U∂ is weakly closed, so w ∈ U∂ .
From inequality (19) it follows that

∫

Σ2

(y(v)− y(uε))(y(uε)− p)dΣ + ε(uε, v)L2(Σ1) ≥ 0. (1.24)

In inequality (24) let us pass to the limit when ε → 0. As we have
already shown, the first summand is weakly lower semi-continuous, and the
second summand tends to 0. So

∫

Σ2

(y(v)− y(ω))(y(ω)− p)dΣ ≥ 0 ∀v ∈ U∂ . (1.25)

From inequality (25) it follows that w ∈ X.
Now, in inequality (22) let us pass to the limit when ε → 0. We receive

(ω, u0 − ω)L2(Σ1) ≥ 0. (1.26)

Replace v by w in inequality (16). We have

(u0, ω − u0)L2(Σ1) ≥ 0. (1.27)

Sum up inequalities (26) and (27). We receive

(u0 − ω, u0 − ω)L2(Σ1) ≤ 0,

that is, u0 = ω.
From this we receive that uε → u0 in space L2(Σ1).
Now let us show that uε → u0 in space L2(Σ1), that is, show that

(uε − u0, uε − u0)L2(Σ1) → 0,

(uε − u0, uε − u0)L2(Σ1) = (uε, uε − u0)L2(Σ1) − (u0, uε − u0)L2(Σ1). (1.28)

According to (22) and (28) we have

(uε − u0, uε − u0)L2(Σ1) ≤ −(u0, uε − u0)L2(Σ1). (1.29)
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As uε ⇀ u0, from inequality (29) it follows that uε → u0 in space L2(Σ1).
So, the following theorem holds true:
Theorem 3. Let conditions of theorem 2 be satisfied and X be a

non-empty set, then

uε → u0 in space L2(Σ1) when ε → 0. (1.30)

Remark: If set U∂ is limited, then X 6= ®.
Indeed, assume that sequence {uε} satisfies condition (13). As uε ∈ U∂ ,

so condition (23) automatically holds true.
From this it follows that X 6= ®.
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