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Abstract

Admissible static and dynamical problems are investigated for a cusped plate.
The setting of boundary conditions at the plates ends depends on the geometry of
sharpenings of plates ends, while the setting of initial conditions is independent of
them. Interaction problem between an elastic cusped plate and ideal incompressible
fluid is studied.
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1 Cylindrical Bending of Cusped Plates

In 1955 L.N. Vekua [10-12] raised the problem of investigation of cusped
elastic plates, i.e., such ones whose thickness vanishes on some part of the
plate boundary or on the whole boundary.

In this chapter we will consider a plate, whose projection on x3 = 0
occupies the domain

Q= {(x1,22,23): —c0o <z <00, 0<xy<, x3=0}.

The equation of the cylindrical bending of plates has the following form
(see, eg., [9])

(D(CEQ)’LU,QQ (.CL'Q)),QQ = q(.CL'Q), 0 <y <, (11)

where w(x3) is a deflection of the plate, g(x2) is an intensity of a lateral
load, D(x2) is a flexural rigidity,

2ER3(x5)

D(z9) := m,

(1.2)
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where E is the Young’s modulus, v is the Poison’s ratio, and 2h(x2) is the
thickness of the shell. Let E =const, ¥ =const, and

D(z9) = Dox§(l — x2)?, Do, a, 8 =const, Dy >0, a,>0. (1.3)

Then
2h(1’2) = hoxg/s(l - xg)’g/g, hg = const > 0.

In the case a?+ 32 > 0 equation (1.1) becomes degenerate one. Such plates
are called cusped plates.

The profile of the plate under consideration has one of the following
forms (see Appendix A).

In the case under consideration (see [9])

MQ(.CL‘Q) = —D(CCQ)’LU,QQ (.CL'Q), (14)
Qa2(x2) = Maya(x2),
where Ms(x2) is a bending moment, Q2(x2) is an intersecting force.

Obviously, if we suppose g(x2) € C([0,1]), w(z2) € C*(]0,1[), for Q2,2(z2),
Ms o (22), w,2 (x2), and w(x2) we have

Qalr) = —/'q<§)d§—cl, (16)
My () = —/(u—ﬁ)g(é)df—clxz—cz, (L.7)
z2 £
w () ¢ = / - / na(m)dn + ez
3
¢ /q(n)dn+01 DNE) Ve es  (18)
T 3
W) = / (x2— )4 | = [ na(mydn + e
¢
" / g(mydn + 1| DY) S de
te3wy +cq, 29 €]0,1]. (1.9)
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At points 0, [ all above quantities are defined as the corresponding limits
when 9 — 04 and x9 — [_.
Obviously,

Q2(x2), Ma(z2) € C([0,1]),
w(zz), wy(r2) € C(]0,1]),

and the behaviour of the w,s (x2) and w(xy) when x9 — 04 and x9 — [
depends, in view of (1.8), (1.9), on « and .
Let us consider the following problems.

Problem 1 Let a < 1, 8 < 1. Find w € C*(]0,1[) N C1([0,1]) satisfying
(1.1) and the following boundary conditions (BCs):

w(0) = g11, w,2(0) =92, w(l)=g12, w2 ()= g22; (1.10)

Problem 2 Let a < 1, 8 < 1. Find w € C*4(]0,1[) N CL([0,1]) satisfying
(1.1) and BCs:

w(0) = g11, w,2(0) = g21, w2 (l) = g22, Q2(l) = hao;

Problem 3 Let 0 <a <1, 0<pg<2. Findw e C*]0,1[)nC([0,1]) N
C(]0,1]) satisfying (1.1) and BCs:

w(0) = g11, w,2(0) = g21, w(l) = g12, Ma(l) = haa;

Problem 4 Let0 < a <1, >0. Findw € C*(]0,1)NC([0,1]) satisfying
(1.1) and the following BCs:

w(0) = g11, w,2(0) =g21, Ma(l) = h12, Q2(l) = haa;

Problem 5 Let 0 < o, 3 < 1. Find w € C*(]0,1[) N CY([0,1]) satisfying
(1.1) and the following BCs:

w,2 (0) = go1 Q2(0) = hor, w(l) = g12, w,2(l) = g2o;

Problem 6 Let 0 < a < 1,0 < < 2. Findw € C*]0,1[) n CL([0,1]) N
C([0,1]) satisfying (1.1) and the following BCs:

w,2 (0) = g21, Q2(0) = ha1, w(l) = gi2, Ma(l) = hia;

Problem 7 Let 0 <a <2, 0<83<1. Findw e C4J0,1[)) N C(]0,1]) N
C([0,1]) satisfying (1.1) and the following BCs:

w(0) = g11, M2(0) = hi1, w(l) = g12, w,2 (1) = goz;
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Problem 8 Let 0 < a < 2,0 < 3 < 1. Findw € C*(]0,1]) N C([0,1]) N
C1(]0,1)) satisfying (1.1) and the following BCs:

w(0) = g11, M2(0) = ha1, wy2(l) = g2, Qa2(1) = hay; (1.11)
Problem 9 Let 0 < o, 8 < 2. Find w € C*(]0,1]) N C([0,1]) satisfying
(1.1) and the following BCs:

w(0) = g11, M2(0) = h11 w(l) = g12, Ma(l) = hia;
Problem 10 Let o > 0, 0 < 3 < 1. Find w € C*(]0,[) N C*(]0,1])
satisfying (1.1) and the following BCs:

M(0) = h11, Q2(0) = hae w(l) = g12, w2 (1) = gao.

In all these problems g; j, hi; (i,j = 1,2) are given constants.

All the problems above are solved in the explicit forms. Let us solve
typical ones. For the sake of simplicity we consider homogeneous BCs.

Solution of Problem 1:

By virtue of (1.8) and homogeneous boundary conditions for w,, we
have

:pg 5

3 = n)dn + co + Ec1 | DL(€)dE, (1.12)
[ |fom
wg 5

w = [|[€-naman+ | D@ (L)
I a9

Taking into account of (1.9) and homogeneous conditions (1.10) for w, we
obtain

0 — -

2o g

cy = —/f /(f—n)q(n)dn—l—Cz +&er | DTY()dE, (1.14)
0 a8 ]
@ T '

g = — /§ /(f—n)q(n)dnJrCz +éer| DTHEdE.  (1.15)
1 a8 ]

Obviously, from (1.12)-(1.15), for ¢; and cowe have the following system

! l
c1/§ df+cz/D1
0 0
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l

1
= —v/q(n)dn (& —m)D(€)d¢

n

=

4 /’qw)dn (€~ DN (E)de = dy, (1.16)

75 n
/ g(n)dy / £(€ — DN E)dE = dy. (117)
0 0

The determinant of this system is equal to

[ 2
A= / D1 (6)de
0

l l
- [ D e [ ep e <o, (1.18)
0 0

The %ast ausser‘cion1 follows from the Holder inequality which is strong since
¢D™2(€) and D™2(€) are positive on ]0,1[, and £€2D~1(¢) and D1(¢) differ
from each other by a nonconstant factor £2.

Further,

l l
v &' -
dlg e — 42 5a<ll—5)ﬁd5

0
C1 - A ’
& wrpd —d | mier
Cy = A ’

After substitution ¢; and ¢y into (1.12) and (1.14) we get expressions for
cs and ¢4. It is obvious, that the last integral of the expression ¢; exists if
and only if a < 1, B < 1.
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Solution of Problem 8: From (1.6), (1.7) and BC we get

0
l Ty

o = — /’q(@da ¢ = — / £q(€)d, (1.19)
a9 0
and hence,
l. z2 l.
Qals) = / g(©)de,  Mows) = /fq<§>ds+x2 / g(€)de,
&9 0 Za

Substituting (1.19) in (1.8) and (1.9) and taking into account BCs, after
using Dirichlet formula we have

c3 = / {/gnq(n)dwrﬁ'/l.q(n)dn

D™H(&)d¢

I l w% I
- / a(6) / (n— €)D" ()dndg + / a(6) / D~ (n)dnde,
29 3 0 9

1 mg mg :pg
4 / a(6) / 2D (n)dndeé + / £q(6) / 0D (n)dnde,
9 0 0 0

and

l
_ [ £
wa o) = | g
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x2 T2 I
2 dn 2 i / dn
. |4
X { CUQ‘/ ?70‘_1(1—77)5+‘/ na_Q(l_n)ﬁ+x2§‘ 7ol — )P §
'3 0 3
o

0

2

_dn
5.6/ ne=(l —n)P

£ ,
. dn : dn
+ b/—na_Q(l_n)ﬁ +:U2§Z no‘(lx)ﬁ} d¢. (1.20)
It is easy to see that w(x2) and w,s (z2) belong to C(]0,1]), since
£
. d
Lo q(©)
=0+ E2(1=8)F gm0t agoTH(1 - )P — BE(l - P!
q(&)

lim .
e=0+ £272[a(l — €)P — BE(l — £)P1]
Solution of Problem 9:

l

l
Qulaa) = [ a(eyie -~ ; / Ea(€)e,

x9
l

Ma(ea) = s [ a6 d§+/£q d&——/ﬁq €)de,

l

L R
/sa GERES | & T

l z9
L fme T me
2/ al—or® O/ ci—gp™

l
xo [ Ryi(§)
7w op®
0

&
o) o
0
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Solution of Problem 10:

T2

Qales) = - [a(@)de,  Ma(es) =

0

T2

- [ - 9uat@rae,

0
€
L bl'(é —n)q(n)dn
w,2 (2) Z/ Wd&
€
L bl'(é —n)q(n)dn
w(zg) = — / (z2 — §)Wdf;

Z2

w,z and w are bounded as xg — 04 if

Hq([a}’z), such that lim q([a]fm (€) # oo,

§—04

lim ¢ =0, i=3, [a], a>3,
=04

is fulfilled, since

3

S ma(n)dn ) 46

. 0 .
a0~ ATl 97 _ pel P 1]

Using finite difference method we can solve the above problems numer-
ically. In Appendix B on Figures 11-14 these results are graphically given.
On figures 15-18 the numerical results are given by means of direct calcu-
lation of the integrals in the corresponding explicit analytical solutions.

Let us make some remarks concerning well-posedness of the BVPs (bound-
ary value problems) above.

Remark 1.1 Problems 1-10 are not correct for the different values of «
and (3 indicated in Problems 1-10. It is evident from the fact that in the
above cases, in general, the limits of w and w3 as xa — 04, [_ do not exist.
the last assertions easily follow from the general representations (1.9) and

(1.8) of w and w,s with (13).

Remark 1.2 Let us consider the cylindrical bending of the cusped plate
under consideration on the basis of the classical geometrically non-linear
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bending theory [3, 9]. In the case of the cylindrical bending some of the
non-linear relations will be linearized and we get the following relations:

1
2
€22 = U2,2 +§(w72) , €12 =U1,2, €11 = e33 = e13 = eg3 = (;

Ny =0Ns, Ny =C1=const, Nio =C5 = const,
My =o0My, My=—Duw,s, Q1=0, Q2= Mo, (1.21)
(=Dw,22 )02 = — (g + Naw,22), (1.22)

where w;, i = 1,2,3 (uz = w), are the components of the displacement
vector; e;;, i = 1,2,3, are components of the deformation tensor, N, v =
1,2, are the normal forces in the middle plane, Nio is the shearing force
parallel to the axis xo. From (1.22), (1.21) we have

My 99 — NoD™ ' My = —q, i.e., DMasg— NoMy= —qD, (1.23)
and
Qo2 = —q+ NoD My, ie., (DQo2),2—NoQa=—(qD)2, (1.24)

Therefore,
DQ222+ D2 Q22 — NoQ2 = —(¢D),2 -

If 8 =0, then we can rewrite (1.23) and (1.24) in the following forms:
2§ Ma 9 — NaDy ' My = —qa$§,

and
22Q2,22 + Q22 — NaDy'ah™*Qa = —(qa%),2 .

Let constant No > 0 be given. Then, according to well-known results, for
Mz and Qo we can prescribe the Dirichlet condition at xo = 0 if 0 <
a < 2 and 0 < a < 1, respectively, while by o > 2 and v > 1 it is
not the case and the Keldish conditions (boundedness of My and Q2 as
xg9 — 04, respectively) are correct. This is a new effect in comparison with
the linear theory when also in the cases a > 2 and a > 1 we can arbitrarily
prescribe the Dirichlet conditions at xo = 0 for My and Q2, respectively (see
Problem 10). It is obvious that this peculiarity of the geometrically non-
linear cylindrical bending will be preserved also in the case of the general
(i.e., non-cylindrical) geometrically non-linear bending.

Remark 1.3 Let 8 = 0. Homogeneous Problem 1 corresponds to the three-
dimensional problem when the upper and lower surfaces are loaded by sur-
face forces, the edge xo =1 (v1 €] — 00,+00|) is fired and the edge x5 = 0
(x1 €] — 00, +00[) is glued to absolutely rigid tangent plane. In the case
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of homogeneous Problem 7 the above mentioned plane is rigid parallel to
the axis x3. Problem 10 corresponds to the three-dimensional problem when
along the edge xo = 0 (x1 €] — 0o, +00[) the concentrated along the above
edge force [4] and moment are applied and they are equal to hos and hii
respectively (see Fig.1):

h22 = QQ(O) = QQ(CU?’ 0) (125)
+h
= lim Qa(a,x2) := lim Xoz(2Y, z9, 23)dxs,
z9—04 To—04 |
—h
hir = Mz (0) = My(a¥,0)
th
= lim Ms(z?,20) := lim / 23Xo3(2Y, 29, 3)dxs.
T2—0 To—04 |
h

The above integrals are taken on the striped area. {Xi;}, i,j = 1,2,3, is
stress tensor.

2 Vibration of the Plate with Two Cusped Edges

The equation of bending vibration has the following form

0*w(z2,t)

as 0<ap <l (21)

(D(z2)w,22 (x2,1)),220 = q(w2,t) — 2ph(x2)

where p is a density of the shell.
In this case we have to add to the BCs of Problems 1-10 the initial
conditions

w(we,0) = @1(x2), wy(x2,0) = @a(x2), x2€]0,l], (2.2)
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where @;(x9) € C*(]0,1]), = 1,2 are given functions.
Let us consider the following initial boundary value problem (IBVP):

Problem 11 Let 0 <a < 2,0< 6 < 1. Find

w(-,t) € ¢*(]0,1)) nC([0,1]) N C*(]0,1])
wizs,) € CL(L> 0) N Ot > 0), w(wat) € C0<ms <1, t>0) 23
satisfying equation (2.1), the BCs
w(0,1) = M(0,t) = wy2 (I,) = Qa2(L,t) = 0, (2.4)
and ICs (2.2), where
wi(z2) € C*]0,1) N C([0,7]) NnC*(]0,1]), i=1,2. (2.5)
¢i(0) = —D(w2)¢] (x2)|zs=0, = ¥(l) (2.6)

= (=D(x2)¢}(22)) |spm1 = 0,i =1,2.

Solution. In this section all quantities, particularly those in (1.4),
(1.5), depend on x3 and t.
Using the Fourier method, we look for w(z2,t) in the following form

w(wa,t) = X(x2)T'(t). (2.7)
Let firstly g(xz2,¢) = 0. Then from (2.1) we get

(D(2)X"(22))" _ T"(t)

g(x)X(z2)  T(t) = A\ = const.
Hence,
T"(t) + \T'(t) = 0, 2.8)
and
(D(w2) X" (w2))" = Ag(2) X (w2), (2.9)

where g(x2) := 2ph(z2).
From (2.4) for X (x2) we obtain the following BCs

X(0) = =D(2) X" (22) lep—0 = X'(1) = (=D(2) X" (22))'|op=1 = 0. (2.10)
Now, in view of (2.3), we have to solve the following BVP:

Find
X(x9) € C4(]0,1)) nC([0,1]) N C1(]0,1]), (2.11)

which satisfies equation (2.9) and BCs (2.10).
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X(z9) and Ag(x2) X (z2),

If in (1.20) we replace w(z2) and g(x2) by
r X (z2) we obtain

respectively, then, similarly to Section 1, fo

l

X@ﬂzk/ﬂOK@maX@Wm (2.12)
0
h
e K K3(&,x9), 0<¢& < mo,
(22,€) {mefx:w<f<z
z9 x9 l_
Kﬁm@wz—m/%D*mmW+/#D*mwn+mg/D*mmmzm>
: : :

Proposition 2.1 K(x9,§) is symmetric with respect to xo and &.

Proof. For z; and z3, such that 0 < 21, 29 <[ we get

_ K3(22721), 0 S Z2 S 21,
K(21722) - { KS(ZDZQ)’ 21 < 29 < l?
_ Ks(z1,22), 21 <22 <1,
K(z,21) = { K3(2z2,21), 0< 29 <2,
i.e.,
K(21,22) = K(22,21), for any z1,29 € [0,1].
O

(2.12) can be rewritten as follows
l.
Y(e2) =2 [ Blaa €)Y (€ (214
0
where

V(rg) = Vg(x2) X (22), R(x2,6) = Vg(w2) K(22,6)V/9(£).  (2.15)

(2.14) is an integral equation with a symmetric kernel.
Recall the following three Hilbert-Schmidt theorems

Theorem 2.2 Ifu(xq) € C([0,1]) has the form
l.
u(w2) = A [ Rlea,u(e)de
0
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then

u(xg) = Z(u Vi) Ya(22), (2.16)

where

I
/ u(x9) Yy, (z2)dxs,
0

Y, is an eigenfunction of R(xa,§), and the series on the right hand side of
(2.16) is convergent absolutely and uniformly on [0,1].

Theorem 2.3 If the number of eigenvalues A\, of the symmetric and con-
tinuous kernel is finite then

N

R(x3,6) =) —Y”(xi (&)

n=1

Theorem 2.4 If f(z2) € C([0,1]), then

! o0
/RxQ, dg_z(f’Y”)Yn,
0

and the series is convergence absolutely and uniformly. Here R(x2,§) is a
symmetric and continuous kernel with respect to x93 &, Y, are eigenfunc-
tions of R corresponding to the eigenvalues Ay,.

Proposition 2.5 Number of eigenvalues A, of (2.14) is not finite.

Proof. Let it be finite, and n = 1, m. Then we can express R(x2,§) as
follows (see Theorem 2.3)

Rlan g = 3 Yalo¥a(©)
n=1 n

where Y, (z2) € C*(]0,1]), i.e
R(x2,€) € C*(10,1[x]0,1[) - (2.17)
On the other hand, by virtue of (2.13),

1
K;/;(x%g)kﬂmf - K;/;(x27§)|£ﬂw2+ = m;
then kernel
R(wa,€) £C*(0,1[x]0,1]). (2.18)

But, (2.17) and (2.18) contradict each other, thus the number of A, is not
finite. OJ
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Proposition 2.6 All of \,, are positive.

Proof. Obviously, if we denote by Y,, orthonormalized eigenfunctions
(it can be assumed without loss of generality) of (2.14), then

Xn(x2) = ng(éi))

are eigenfunctions of (2.12) (i.e., of (2.9)). Let us multiply both sides of
the following equation

(D(w2) X,y (22))" = Ang(22) Xn(22), (2.19)

by X, (z2) and integrate it from 0 to [. Taking into account the first ex-
pression of (2.15), we obtain

l

1
/Xn(mQ)(D(xQ)X;;(mQ))"dmg — / o= X (a02)ds

0 0

!
= A\ Yn xg dLL’Q An.-

/

Further,

l
A = ’/Xn(@)(D($2)XZ($2))"CZ$2 = Xp(22)(D(22) X" (22))'

0
- [ X2 (D) Xi2)

0
(by virtue of the BCs (2.10))
!

- /Wm (22) X0 (23)) dy = X/ () (D(22) X" (2))

0
l

X
[ D)X = [ D) (X (w)ds > 0
0 0
Hence, A\, > 0 for any n, since in non trivial case X, Z 0. O
We can write the solution of (2.8) as follows

T( b} sin (\/ t) + b5 cos <\/)\nt> , b =const, i=1,2.
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Now, we can find a solution of the Problem 11 in the form as follows

( sin (\/_t) + by cos <\/)\_nt>) (2.20)

w(e, ) ZW

or taking into account (2.15) in the following form

w(we, t ZX (22) (bl sin (\/_t) + b5 cos <\/_t>) (2.21)

In view of initial conditions (2.2), we formally have

o x0
D Yalw) = 1(x2)V/g(w2), Y VAnYa(w2)b} = @a(w2)/g(w2). (2.22)
n=1 n=1

If ¥;(x9) := % € C[0,1], (¢ = 1,2), then after integration of the last

expression, /g(x2);(x2) can be expressed as follows

l
o(e2)pilrs) = / () O K (2 ©)s(€)de
0

g(w2)pi(x2) fR (w2, &)1b;(&)dE.

Evidently, (2.22) series will be absolutely and uniformly convergent on ]0, {].
Since there exists positive minimum of eigenvalues, from the convergence
of the second series follows absolute and uniform convergence on ]0,![ of

the series Z Xp(z2)b}

Hence, by virtue of Theorem 2.2, since v;(§) € C(]0,!]) and symmetric

R(z2,¢) € C(]0,1[x]0,1]), we get absolutely and uniformly convergence of
the series (2.22) on [0,{], and

l

I
/g n(w2)p2(xe)drs, by = /g(xz)Xn(@)SOl(@)d@-
0 0

1

g

(2.23)
Further, taking into account (2.12) X (x2) € C(]0,1]), then, by virtue of
(2.15), we can rewrite (2.20) as follows

o
=) Xu(x)b}, 4,5=1,2i#].
n=1
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Therefore, the series (2.20) is absolutely and uniformly convergent on
10, 1].
After formal differentiation of (2.20) with respect to ¢ we get

(2,1) ZX x2) (bl cos(v/ Ant) — b sin(y/Ant) ) (2.24)

Wy (xo,t ZX ) A (b’f sin(v/Ant) + by Cos(\/gt)) . (2.25)

Theorem 2.7 (2.24) and (2.25) converge absolutely and uniformly on |0,1]

if
U, (22) == Wils) , i=1,2, (2.26)
9(x2)
are satisfying conditions (2.6) and
Xi(22)V/g(22) := (D(22) T (22))", i=1,2, (2.27)

are integrable functions on |0,1] (for this, e.g., it is sufficient that cp(J)( 2)

O(xy7),29 — 04, %J—const>7 Jj - 3,4,05])( 9) = O((1 — x9)%),
x9 — l_, 6;; = const > 7 — j——,i—12j—28)

Proof. Substituting in (2.23) the function g(z2)Xyp(z2) found from
(2.19), we get

= — [ (D) X (2)) " pa2) s

AnVAn.
0

(after integrating by parts 4-times, taking into account BCs (2.4), (2.6),
(2.10) and (2.15))

la

= e | (D) X)) ealaz)lh - 0/ (D(w2) X! (2))' )
1 7
= o | D) Xiaehaly + [ D)X ) ef(a)das

l
o 0/ Xi(e2)(D(ea) ol 2))
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— \1/E{ X/ (22)(D(w2)¢" (2))}
!
/X D(x2)¢h(x2)) dl’2}
0
_ A_nbx{ — X(@2)(D(2) @y (x2)) ]

/X (22)(D(z2 @2(132))”(1:102}

l
= )\n\l/)‘_n / X (2)(D(w2) @} (w2)) " das

—_

l
- \/A_o/ V(o) (wa)dea. (2.28)

Analogously,
l
1
by = )\—/ (z2)h1(z2)ds.
2
0

In view of (2.27), ¥;(x2) can be expressed as follows

l

‘1/1(1,'2) = / .Z'Q, \/ XZ d§7 1= 1727
0

and by virtue of (2.26), (2.15) we obtain

I
vilen) = [RGeaOni(6de, i = 1,2
0
According to the Theorem 2.2, the following series

26;”}/”(3:2)7
n=1

where l
g = /Yn($2)¢i(x2)d$2, 1=1,2, (2.29)

0
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is convergent absolutely and uniformly on ]0,[, i.e.,

> 18 I¥n(@2)| < +oo, (2.30)

n=1

Further, from (2.24)

fw,e (w2,8)] = ZX 22)v/ A (b7 cos(v/Aut) bgsmmt))'
< (VAnt)
(V)
< i_o:l)Xn(xg)\/)\—nb? +§)Xn(@)mb3. (2.31)

According to Proposition 2.6, all of A, are positive. Therefore, we can find

Ao such that \g < min {)\} and by virtue of (2.15), (2.28)-(2.30), we

1<i<oo
obtain

G 7 S ]' i
;)Xn(@)\/rnbz) = 7;‘1/”\/)\_“)\_7161

IN

f_iwmw
N od ) T
)\O\/—Z\YIWQKOO

5[t v/mnt| =
n=1

Hence, the series in (2.31) are convergent. Thus, (2.24) is convergent ab-
solutely and uniformly on |0,[[. Similarly, we get the absolute and uniform
convergence of (2.25) on |0,![. O

Let us now differentiate formally (2.20) i-times and consider the follow-
ing expressions

wg( ) = ZIXS) (z2) (b7 sin(v/Ant) + b5 cos(v/Ant)) ,
i=1,2,3,4,

(2.32;)
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(D(@2)0.g0, (2,15 = 3 (D) X (2)) i D (b sin(vAnt)

n=1

+b% cos(vAnt)) , i = 1,2
(2.33i)

Theorem 2.8 The series (2.32;) (i = 1,...,4) are convergent absolutely
and uniformly on ]0,1[. The series (2.33;) (i = 1,2) are convergent abso-
lutely and uniformly on [0,1].
Proof. Obviously, in view of (2.10), after integration of (2.19), we get
ll
X)) = M [ R, € Xal€)de, (231
0
where
ll
¢ [D i in, 06 <
Rl (m27 g) = mng

—/D dn+§/D n)dny, xo < €<,
€

and
Rl(mg,ﬁ) € C([O,” X [O,l]), (2.35)

because of 0 < a <2, 0< < 1.
Substituting (2.34) into (2.321), we obtain

,(x2,1) Z)\ /R1 x2,€ ( 1 sin( \/_t + by cos(\/)\_nt)) =

1
/ (2, € [ZX (b;lsin(\/A—nt)ergcos(\/Et))]dg, (2.36)
0

since (2.25) is absolutely and uniformly convergent on |0,![ and in view
of (2.35) and X, (x2) € C(]0,1]) we conclude that the corresponding integral
n (2.36) is absolutely convergent on |0,![. Similarly, we can prove the
convergence of the series (2.323), (2.323), (2.324), on ]0,{[ and (2.33;) (i =
1,2) on [0,]. O
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After substituting (2.12) into (2.21) we have

!
w(ze,t) = /K(a:g, [Z)\ Xn( (b’f sin(v/ Apt) + by cos(\/)\nt))] d
J ot

(2.37)
Since the integrand series is convergent absolutely and uniformly on
10,1], X (&) € C([0,1]) and K (x2,§) € C([0,1] x [0,1]), we obtain that the
right hand side of (2.37) is convergent absolutely and uniformly on [0, ].
Thus, (2.20) is the solution of the Problem 11 in the case ¢(x2,t) = 0.
Now, let us consider Problem 11 when ¢(x2,t) # 0, ¢; = 0, and let
%( t) € Ly(0,1). Then g(x2,t) can be represented as convergent series in
Ly

(0,0):

I
q(w2,t Zg 22) Xn(22)qn(t), /q w2, 1) Xp(wg)dwa.
0

Further, we look for the solution in the form

3727 E wn 3727

where wy,(22,t) is a solution of the Problem 11 with g(x2,t) replaced by

g(x2) Xn(22)gn(t). Now, we will look for w by the method of separation of
variables

wn(xg, t) = Xn($2)T1n(t)7
where
T (1) + M T1n(t) = gn(t)

and X, (z2) satisfies (2.12).
Therefore, w(xg,t) can be expressed as follows

1 / .
w(wa, t Z VA_nX” 0/ sin(y/ A (t — 7))gn (7)dr. (2.38)

Now, similarly to the proofs of Theorems 2.9 and 2.10, if the following
conditions are fulfilled

o 1 . q(xa,t)
et s (oo (32551) ) eema
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T — _D(x T(xa,1t)
\/g(o,t) D( 2)( g(@))mm .

— | _D(x T (2, 1) _
- D( 2) ( g(x2)>,w2w2 07

W2 g =]_

(for this, e.g., it is sufficient that q(j)(-, t) = O(ac2 Nag — 04,9 > T— j——
gD 1) = O((1—w2)%) 29 — 1, v, > T—j — —ﬁ , j = 0,8) we have the
absolute and uniform convergence of the series (2. 38) and

o

(D(@2)w a5 (@2,1))5) = Y (D(a2) X7) W (22)Thnlt), i=0,1,

n=1

on [0,1], and the absolute and uniform convergence of the series

CCQ, ZX CUQ Tln 1= 1, ...,4,

(29, 1) ZX 2)TD 1), i=1,2,

on |0, 1.

Remark 2.9 Solution of the Problem 11 in case q(xa,t), p; /=0 can be
expressed as follows
'T27 an 'T27

where

Wy (z2,t) = Xp(x2)(Tin(t) + Tn(t)).

Remark 2.10 Similarly, we can solve the following initial boundary value
problems which correspond to the Problems 1-7, 9, 10.

Problem 12 Let 0 < a, < 1. Find
w(-,t) € C1(0, 1) N CH([0,1]),
satisfying equation (2.1), the BCs
w(0,t) = w,g (0,t) = w(l,t) =w, (l,t) =0,
and ICs (2.2), where
pi(z2) € C*(10,1)) N C*([0,1])

©i(0) = ¥(x2)|zp=0, = @i(l) = @i(x2) =0, i=1,2.
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Problem 13 Let 0 < a, < 1. Find
w(-,t) € C1(0,1[) N CH([0,1]),
satisfying equation (2.1), the BCs
w(0,t) = w, (0,t) =w,2 (1,t) = Q2(l,t) = 0,
and ICs (2.2), where
pi(z2) € C*(10,1)) N C*([0,1])
#i(0) = @i(@2)laz=0, = ¢ill) = (=D (@2){ (22)) lapmt- = 0, i = 1,2
Problem 14 Let 0 < a,<1,0< 38 < 2. Find
w(,t) € C4(0,1) N CL(0,1) N (0, 1),
satisfying equation (2.1), the BCs
w(0,t) = w2 (0,t) = w(l,t) = Ma(l,t) =0,
and ICs (2.2), where
pi(x2) € C1(0,1) N CH([0, 1) N C([0,1]),
i(0) = @i(2) a0, = @i(l) = (=D(2)¢} (2)) lzy=1_ =0, i =1,2.
Problem 15 Let 0 < a <1, 3>0. Find
w(-,t) € C1(0,1[) N CH([0,1]),
satisfying equation (2.1), the BCs
w(0,t) = w2 (0,t) = My (I,t) = Qa2(l, 1) =0,
and ICs (2.2), where

pi(r2) € C*(J0,1) N CH([0, 1)),

#i(0) = Pi(@a)les=0, = (=D(@2) @} (2)) lar=i_
= (=D(z2)¢)(22)) |ay—t_ =0, i =1,2.
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Problem 16 Let 0 < o, 8 < 1. Find
w(-,t) € C*(10,1) N C([0,1]),
satisfying equation (2.1), the BCs
w,2 (0,t) = Q2(0,t) = w(l,t) = w2 (I,t) =0,
and ICs (2.2), where
pi(a2) € C*(10,1) N CH([0,1]),
G2 leg=0, = (—D(@2)@} (%2)) lapm0, = @ill) = ¢}(1) =0, i =1,2.
Problem 17 Let 0 < a <1, 0 < 3 < 2. Find
w(-t) € ¢*(J0,1) N C*([0,1]) N C([0,1]),
satisfying equation (2.1), the BCs
w,2 (0,) = Q2(0,t) = w(l, ) = Ma(l,t) =0,
and ICs (2.2), where
pi(r2) € C*(10,1) N C([0,1]) N C([0,1]),
G (@)|z=0, = (—=D(x2)¢] (22)) an=0, = @i(])
= (=D(z2)¢j (22)) lzy=t =0, i =1,2.
Problem 18 Let 0 < a <2, 0< 3 < 1. Find
w(-,t) € ¢*(10,1) N C*(J0,1) N C([0,1)),
satisfying equation (2.1), the BCs
w(0,t) = My(0,t) = w(l,t) = w,y (I,t) =0,
and ICs (2.2), where
pi(a2) € C*(10,1)) N C1(10,1) N C([0,1]),
¢i(0) = (=D(z2)¢{ (22)) loa=0, = @i() = ¢i(1) = 0, i =1,2.
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Problem 19 Let 0 < o, 8 < 2. Find
w(,) € C400,1) N C(0, 1),
satisfying equation (2.1), the BCs
w(0,t) = My(0,t) = w(l,t) = Ma(l,t) =0,
and ICs (2.2), where

pi(x2) € C4(0,1) N C([0,1]),

@i(0) = (=D(22)¢}(x2)) |zs—0, = wi(l)
= (=D(22)@(22)) lap=t_ =0, i = 1,2.

Problem 20 Leta >0, 0 < 8 < 1. Find
w(-,t) € C*(10,1) N C1(J0,1)),
satisfying equation (2.1), the BCs
M5(0,) = Q2(0,%) = w(l, ) = w2 (,t) =0,
and ICs (2.2), where
pi(z2) € C*(10,1)) N C*(]0,1)),

(—D(w2)¢} (w2)) = (=D(x2)¢}(2))" lsa=o,
o) = (1) =0, i =1,2.

In all these cases we get integral equations with symmetric kernels.
We can avoid the restrictions (2.39) on g(x2,t) if we consider harmonic
vibration. In this case
iwt

w(za,t) = e“lwg(2a), q(za,t) = e“lgo(a2),

where w = const is an oscillation frequency, go(x2) € C([0,1]) is a given
function. Now, for wg(x2) from (2.1), (1.11) we get the following problem

(D(@2)wf(x2))" = qo(x2) + 2w ph(wa)wo(2),
wo(0) = Ma(0) = w'(l)=Qo(l) =0, 0<a<2 0<F<1,

wo(x2) € C*(J0,1) N C([0,2]) N C*(J0, 1]).
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This problem is equivalent to the integral equation

[
o) = [ (2, 9(6) wo()d€ = Flaa), (2.40)
0

where
Foo) = [ K€ ()
0

Introducing a new unknown function

wi(x2) = wo(x2)v/g(x2)

we can reduce (2.40) to the following integral equation

l
—w? /R (z2,&) wi(€)dE = F(xa)\/g(x2) (2.41)
0

with R(x9,€) given by (2.15). If w? # A, the unique solution of (2.41) can
be written as follows (see, e.g., [6], Theorem XVIII, p.140)

wi(ze) = F(x2)\/g(72)
!
—I—wQZ - —w2 /F g(22) Yy (§)dE | Yi(x2)(2.42)

0

where the series in the right hand side of (2.42) is absolutely and uniformly
convergent on [0,].

3 A Cusped FElastic Plate-Fluid Interaction Problem

Let us consider the problem of the interaction of a plate whose variable

flexural rigidity is given by the equation (1.3) and of a flow of the fluid.
Let the flow of the fluid be independent of z1, parallel to the plane

Oxoxs, i.e. v1 =0, and generating bending of the plate. Let at infinity,

va(xo,x3,t) = O(1), wvs(wa,w3,t) — V300(t), (3.1)

p(x2,x3,t) — poo(t), when |z| — oo, (3.2)

where v := (vg, v3) is a velocity vector of the fluid, p(x2,x3,t) is a pressure,
and v3.0(t), peo(t) are given functions.
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Further, if the plate is thin, we can assume that:

— the fluid occupies the whole space R? but the middle plane Q of the
plate, i.e., Qf = R3\Q.

— transmission conditions for vs(xg,xs,t) has the following form (see
[1], 2], 8], [13])

ow(xa,t)

’U3($2,0,t) = ot

, xa € [0,1], t>0. (3.3)
For an ideal fluid we have (see e.g., [2], p.7; [5])

O'ij = —péij.
Therefore, the transmission condition for p has the following form

(+) (=)
—p(x2, h (2),t) +p(x2, h (22),t) = q(x2,t), 22 € [0,1]. (3.4)

In case of the potential motion of the flow there exists a complex func-
tion ® = ¥ + iy such that

690(m27m37t) 81/’(5327333775)

= = t
61}2 6%3 UQ(iUQ,CUg, )7
(3.5)
Op(xy, x3,t) _ Op(wy, w3,1) _ v (9, w3, 1).
ors 34D
The pressure is given by the formula
2
_f |V P O 09 1 5 s
parnt) = |+ B 202 S8 S ). (30)

In case under consideration w(x2,t) is given by the equation (2.1).
Taking into account transmission condition (3.4), we have

2h(w2)p?

(33(21(1 — 29)Pw,99 (xz,t)) 2= ""p

Wy (T2, 1) (3.7)

(+) (=)
—p | @2, h(x2),t) +p| 22, h(22),t

+ Do

For @5 (w9, 23,t) = —v3 + vz, in view of (3.3) and (3.1), we get the
following expression (see [11])
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1
m'\/ (xg + txg) (2o + ixg — 1)

iT ixg—l1)
GG Dy (6, 1)d6

(Ea—x2)—ix3

®72:_

X

o

To +ixy —1/2
300 2 Tivs 1) : (3.8)
V (x2 + ixs)(xg + izg — 1)
Let

w(wa, t) = € wo(wz), q(za,t) = e™qo(a2), (3.9)

p(x27 xs3, t) = eiUJtpO(m27 £C3),
(3.10)

U’Q(m% xs3, t) = ethug(m% CL’3)’ U3(CU2, xs3, t) = eiUJtug(m% CL’3)’

where w = const > 0, vo = ua; (v3 = uzy). Further,

o(w2, x3,t) = ie™loo(ze, 23), Y(z2,23,t) = ie™Pg(z2, 3),

va(xo,x3,t) = “"tvg(mg,mg) vs(x2,x3,t) = z'ei"’tvg(xg,xg),

Poo(t) = Pl . v300(t) = i), P, v3,, = const.

From (3.8) we have expression for v3. By means of the latter, in view
of (3.5), we can calculate ¢ which we have to substitute in (3.6). Then
substituting the obtained expression of p(x2,x3,t) in (3.4), by virtue of
(3.9), we get the following expression for gg(x2)

®
L PN RN
w r(& o
wir=22 fuy [ SED o
0 ) 2
— h (z2)

(w2 — §)cos[(¢(&, x3) — Py, x3))/2] + w3sin((d(€, 23) — d(x2,23))/2]

x dzsd
(€ — w2)? + 23 T3
Dien) »
—w?p! / (29 — l/2)cos—¢(x2’x3) + xgsinqb(m’m) V300473 ’
: 2 2 T($27$3)
(+)
— h (@2)
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where ¢(x2,x3) is defined either by
cosd(xa,w3) = (23 — 2§ — lwg) [r(ws, x3)

or by
sing(xy,x3) = (229 — l)ag/r(x2, 23)

and

r(ze,x3) = \/(x% — 2% — lx9)? + ((2x2 — )x3)2.

Taking into account (3.9), (3.10), (3.11), from (3.7) after integrating
four times with respect to xs we get the following relation

wo(ws) — 2 /'h<f>K<x2,f>wo<f>d£: /'<c15+c2><x2—5>D1<5>d5
_ csmat et / K (22,€)qo(€)de,
- (3.12)
where 2
€01, K(ra,€) = - / (2 — m)(€ — ) D (m)d.
:

Constants ¢; (¢ = 1,...,4) should be defined from the admissible boundary
value conditions (see in Section 1 Problems 1-10).

Let us consider, e.g., boundary conditions (1.11). Then for wqg(x2) we
get the following equation

l
wo(zs) — o / K (w2, €)wo(€)de
0

l

2p%w? /h(f)K(xQ, wo(§)dE + /.h(f)Kl(xm §wo(§)dE

0
T2

+ /h(g)Ko(xz,f)wo(f)df
0
(

f(z2),
(3.13)

where
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Kolwa,€) = g{ /x2D1<n>dn— /'nD1<n>dn}K<o,£>,
1 0
Ki(z2,8) = 1‘2/)77171(77)6177
1

T2

I
- /nQD‘l(n)dn - :UQ'/ (n—&D™ (n)dn,

0
e o =
N p_ - r\¢,T3
Ky(@2,6) = — 'ZKZ( 2,¢) / C.z0)
z9 —(-;L_)(C)
(€ = &)cos[(9(§, x3) — A(C, 23))/2] + wgsin[(¢(€, x3) — ¢((, x3))/2]
" €07+ o
/ O e
rg,Ts
+./Ko($2,C) / C.rs)
azg (+)
—Rh(©)
(¢ = &)cos[(9(§,x3) — d((,23))/2] + zgsin[(¢(€, x3) — ¢((,23)) /2]
" €— 0P +a3 ok
X2 (Z)(C)
. BRVALCIEZ)
+ZK< 20 | s
zo _(J}g)(g)
(€ —&)cos[(9(§;x3) — d(C,23))/2] + xzsin[(¢(€, x3) — ¢((,3)) /2] ,
: i donic

! ! )
f(z2) = 29 (922 + h22/§D1(§)df + hn/Dl(f)df) +911+h22/§2D1(§)df
‘O .0 b

=4 2 l
—hus / £D71(€)de / (honé + hy) (2 — €)D7}(€)dE — w?p! { / Ki(e,€)
0 29 29
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(+)
h (&)
' 0
X / {(f - 1/2)605@ + Jrgsinﬁb(f’;s) } UiZCfZ:;)dg
(+)
- h (8
0 %
- /KO(anf) / {(§ — l/2)cos¢(£éx3)
2 B
(&, 3) } v drs
+ 381N 5 € 23) d¢
wg (;’;)(.12) .
z9 +) )
’ —h (22)

It is easy to show that 2p°h(&) K (z2,&), 2p°h(&) Ko(x2, &), 2p°h(§) K (22, ),
Kq(z2,8) € C([0,1]) (inourcase 0 <a<2,0< < 1).

The integral equation (3.13) can be solved by method of successive
approximations.

Remark 3.1 In case of other boundary conditions above (see problems 1-
7, 9, 10), the problem under consideration is solved analogously and in all
cases we get integral equations of (3.13) type.

Below we give expressions for kernels Ko and K; under BCs of Problem

1-7, 9, 10.
Problem 1.

I l
<—K(0, & +1[(E~ n)Dl(n)dn> Jn*D(n)dn
Ko(wg,&) = —K(0,§) + ¢ -

! ! ! 2
g'n2D‘1(n)dng'D‘1(n)dn - (,g'nD‘l(n)dn>

0 l
= n)D’l(n)an/ nD = (n)dn L
- ‘ ; ; 5 ‘/77(352 —n)D~*(n)dn
!nQD‘l(n)dnb/'D‘l(n)dn - (g'nD‘l(n)dn> 0
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0 l
f(f - n)D‘l(n)dnanD‘l(n)dn

* B l l 2
banD dnfD n)dn — (anl(n)dn>
l.
K(0,&) [nD~(n)dn 2
+ - ; - l 5 /(wQ—n)D Y(n)dn
OIUQD‘l(n)dngD‘l(n)dn— (_g'nD 1(77)d?7> 0
< L, +1f(¢—nD? )fD dn
Ki(x2,8) = z 3
Jn?D )dng'D‘l(n dn — (MD )dn>
l l
!(5 - n)D‘l(n)dnban‘l(n)dn
o ! 2
{nQDfl(n)dnbefl(n dn — <f"7D )dn>
l
x /77(332 —n) D™ (n)dn
0
l l
+{K<z,s>+z/<fn> dn}/mg
5 0
Problem 2.
0
Kows&) = ~KO.8)+ [za(¢~nD ()
3

2

0 [ (x2 = n)D~ (n)dn
—‘/ (€ =)D (n)dn x ——
¢

D= (n)dn
0
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Ki(z2,8) /77352—

Problem 3.

0
Ko(rn,6) = / (€ —n)D " (n)dn

0 1,E) [n(z2 —n)D(n)dn
Kiwn€) = ~K(L.&)+€ [aD )iy - —
:22 f?]QDfl )d’l]
MD n)dn

Problem 4.

Ko(@2,6) = —K(0,§) + 22 (€ —n)D (n)dn,

J‘n\o

Ki(x2,8) = [ (w2 —n)(§ —n) D™ (n)dn.

\o

2
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Problem 5.
! l
’ [ (wa —n)D~(n)dn [ D~ (n)dn
Ko(x2,8) /77962— (n)dn — = ] ~
{D”(n)dn
I
[ (xa —n)D " (n)dn o
e (& =mD~ (n)dn
_O/'D‘l(n)dn 3
!
Ki(x9,8) = — (29 — 1) /
3
l
! [ (w2 —n)D~ (n)dn
/ (& =mD H(n)dn x Z—
3 {D”(n)dn
Problem 6.

0
Ko(22,€) = (2—1) / 0D ()~ / 72D ()i (2 —1) / (n—€) D ().
5 :

Ki(r0,6) = ¢ { /@ — D" () — / nD1<n>dn} ~K(LE)

Problem 7.

0
Ko(en,€) = /(5 )DL (n)dn
3

fn(arg —n)D~(n)dn

0
“ {K(O,@H/@ n)D 1<n>dn},
3

gUQDfl(n)dn

0
0 K(1,€) [n(z2 —n) D (n)dn
Kiwn€) = ~K(L.&)+€ [aD )iy - —
@2 Of n2D~1(n)dn

o7
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(1=¢) .JO'UD’l(n)dn 0

— n(z2 —n) D~ (n)dn.
.OWD”(n)dn @2

Problem 9.
T2 0
Ko(e2,8) = 3 [ 1= ez =)D g+ L2 [y - Dty
la
_ngf (L =n)D~*(n)dn — %K(O, £,
I . (1 ;
Ki(22,6) = fT_/n(wz —n)D " tdn — w'/n@l(n)dn
2 l. 2
D [ptyay + k()
Problem 10.

l
Kafaz,€) = K(L€) = (22 =) [ (€~ n)D (o)
!

Thus, the following Proposition is valid.

Proposition 3.2 Problem of the harmonic vibration of the plate with two
cusped edges under action of the incompressible ideal fluid (i.e., equations
(3.5), (3.6), (3.7), under transmission conditions (3.3), (3.4) and under
conditions at infinity (3.1), (3.2) and BCs have) has a unique solution

when
2 1

w<m,

o8
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where
M =mljggfé’l]{I2p5h(£)K(w2,£)l,
12p°R(&) Ko(z2,E)|, 2p°h(€) Ki(z2, &), [K1(z2,8)]}-
ACKNOWLEDGMENTS:

The authors are very grateful to Prof. R.Bochorishvili, Prof. G.Devdariani,
Prof. S.Kharibegashvili, and Prof. D.Natroshvili for useful discussions.

59



AMI Vol.6 No.2, 2001 N. Chinchaladze, G. Jaiani.

Appendix A.

Xy a<3;p<3

P

=z
4—
vw
[

fig.3

X3 a<3;p>3

c

~ o

=)

X3 a=3;p=3

Hy

< a>3;p5>3
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Appendix B

Problem 1, Aluminium
o=0.3, 3=0.3;
1=3*n; g=sin(x )

W(X,)
0.02 T T T T T T T
e
o % \‘\ —
R
002 . . . . . . . . .
] 20 40 60 80 100 120 140 160 180 200
M(x,)
2 T T T T T T T T
T T
R
o }—// \\ /,/—\{
- . . ‘ ‘ ‘ — ‘ ‘
[¢] 20 40 60 80 100 120 140 160 180 200
Qz(x2)
2 T T T T T T T T T
SR .
orF \\\x /,/”/ \\\\:
o] 20 40 60 80 100 120 140 160 180 200
Fig. 11
Problem 8, Iron
a=1.5, =0.1;
I=1; q=const
x 10" Wixp)
— . . . ; ; . / —
0.5 - \\\ o 4
o} 20 40 60 80 100 120 140 160 180 200
M(X,)
0 T T T T T T T T

L L L L | L
0 20 40 60 80 100 120 140 160 180 200

Q,(xy)
1 - ! T T T T S —
ol -
4 e ‘ . . ‘ ‘ ‘ ‘
o] 20 40 60 80 100 120 140 160 180 200
Fig. 12
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Problem 10, Aluminium

oa=3, 3=0.1;
1=1; g=h(x)
x 107 wixp)
o T T T 1 L
2 -
o] 20 40 80 80 100 120 140 180 180 200
M(x,,)
o — - - - . - r r T —
S ——
-0.02 |- I . _
004 . . . . . . . .
[s] 20 40 60 80 100 120 140 160 180 200
Qz(xz)
02 T T T T T T T T T —
ol - |
02 . . . . . ) .
[s] 20 40 80 80 100 120 140 160 180 200
Fig. 13
Problem 10, Aluminium
a=3, =0.1;
1=3n; g=sin(x )
W(X,)
o T T T T T T T ——r—
0.01 - N
002 . . . . . . . . .
[¢]} 20 40 60 80 100 120 140 160 180 200
M(x,,)
2 T T T T T
Of——0 //// TThe—
N . [ —— ‘ ‘ ‘ .
o 20 40 60 80 100 120 140 160 180 200
Q2(x2)
2 T T T T T T T T
T T
of___ o T o
20 40 60 80 100 120 140 160 180 200
Fig. 14
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Fig. 15
X 10 Wixg)
O = T =
0.5} — - ,
-1 L L - — . L L L
o 20 40 60 80 100 120 140 160 180 200
Fig. 16
w(x,)
o T ——
-0.01 _— -
-0.02 -
o 20 40 60 80 100 120 140 160 180 200
Fig. 17
X 107 WiXp)
o T S —
Y - i
_4 ‘
o] 20 40 60 80 100 120 140 160 180 200
Fig. 18
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