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Abstract

Let f be a function of the complex variable z admitting a Laurent expansion in
an annulus I with center in the origin. For an arbitrary positive integer n, Ricci’s
theorem asserts that the function f can be written as the sum of n functions f, 4],
k=0,1,---,n — 1, defined by

n—1 . .
Jinw(2) = 1 exp ( 2WM) f <zeXp <2Z—M>> , z€l
" o n n

In this paper, we shall establish certain results to derive some properties and formulas

pertaining to fj,, x] from f ones and to express some identities of f as functions of the
components f,, x- As an illustration, we consider the function f(z) = exp(z). The
components of this function are the hyperbolic functions of order n and k-th kind. For
those functions, we obtain alternative proofs of known identities and other properties
which are believed to be new.

Key words and phrases: Laurent expansion, Ricci's Theorem, hyperbolic func-
tions.
AMS subject classification: 30EQ5.

1. Introduction

Let n be an arbitrary positive integer. Denote by w, = ea:p(%%) the
complex n-root of unity, and by IN,, = {0,1,...,n — 1} the set of the
first n integers. Let Q(I) = € be the space of functions of the complex
variable z admitting a Laurent expansion in an annulus I with center in
the origin (in particular, holomorphic in a circular neighbourhood I of the
origin). Let Qp, () = Qp, 1, k € IN,, be the vectorial subspace of (2,
defined by the symmetry property:

f € Quuy = flunz) = wif(2). (1.1)
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The subspaces {13 o) and €2 1] amount, respectively, to subspaces of even
functions and odd functions.
The following decomposition in direct sum holds:

Theorem 1.1 (cf. [16, p. 43])

n—1
Q= & Q[n,k]- (1.2)
k=0
It follows that if n is not a prime number, namely n = pq, (p, q) € IN?, and
p and g > 2, we have

p—1
Q= @ Qp,,
r=0
where
g—1
Q[pﬂ"] = ]E:BO Q[n,pj+7"]7 r e ]Np. (13)

From (1.2), we deduce that for any function f belonging to {2 there exists
a unique sequence (f[nyk])ke]N s Sing) € Qmk), such that

n—1
F = fup (1.4)
k=0
and
=
fnpi(2) = Hpp(f)(z) = —~ > M flwnz), ke, (1.5)
=0
where Il 4 is the projection operator on Q, ;) along Q[Jﬁ,k] _ 7:@01 Q.-
04k

The identity (1.4) is called the decomposition of the function f with respect
to the cyclic group {w¥, k € IN,,;} and the functions finx) defined by (1.5)
will be referred to as the components (with respect to the cyclic group of
order n) of the function f.

Notice that if f(z) = >.°°

m
m—0 @m2™ , then

f[n,k](z) = Z anm+kznm+k~ (16)
m=0

So, for the generalized hypergeometric functions defined by (see, e.g., [12,
p. 136, Eq. (1)]):

ary, y Ap, +0oo (a ) (a ) M
Fy(2) = oF, 2] = P 2 (17)
pg pyq by, b, mZ:O (b)m -+ (by)m  m!
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where
e (a)y is the Pochlammer symbol given by (cf. [1, p. 256, Eq.
(6.1.22)]):

1 if m =0,
(@)m = {a(a+1)~~~(a+m—1) it m=12.3,..., (1.8)

or in terms of Gamma functions:

I'(a+m)

(a)m = W7 G#O,—l,—Q,...;

e p and ¢ are positive integers or 0 (interpreting an empty product
as 1);

e 2 is the complex variable;

e the numerator parameters a;,¢ = 1,...,p, and the denominator
parameters b;, j = 1,...,q, take on complex values, provided that b; #
0,—1,-2,....5=1,...,q.

We have (cf. [14, p. 890, Eq. (5)] or [17, p. 194, Eq. (12)]):

ai, y Ap,
H[n,k] z — qu(Z) = qu z
bi, ... by (1.9)

= (2= o(n,k,a1,...,ap,b1,...,0q,2)),

with

qb(n,k:,al,...,ap,bl,...,bq,z):M~Z—

n

A(n,a1 + k), ... ,A(n,ap+k),

‘npFPngin—1 na—pron

A*(n,k+1), Alnbi+k), ... ,A(nby+k),

where A(n, \) is the set of n parameters:

A(n,)\)z{é,)\_‘_l. )\+n_1},n€IN*,

n’ n n
and A*(n,k+1) = A(n,k+1)\ {=}.
n
Thus, the projection operator IIj, 5 can be thought of as a process of aug-
menting the parameters in the ,Fj function obtaining instead ,pFpg4n—1-

Moreover, there are in the literature numereous processes of augmentation
of parameters of the ,F,. We cite, for instance:
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. The Laplace transform and its inverse (cf. [6, Vol.I, p. 219, Eq.(17)
and p. 297, Eq.(1)]);

. The Euler transform (cf. [15, p. 104, Eq. (4)]);

. The d’Abdul-Halim-Al-Salem transform (cf. [1, p. 52, Eq. (2.3)]);

. The Jain transform (cf. [11, p. 18, Eq. (2.3)]);

. The Srivastava-Singhal transform (cf. [21, p. 426, Eq. (1.4)]);

. The Srivastava-Joshi transform (cf. [19, p. 19, Eq. (2.3)]);

. The Srivastava-Panda transform (cf. [20, p. 309, Eq. (1.7)]);
which has numereous applications in the special functions theory. So, it is
significant to study these projection operators.

In the sequel, we purpose to establish some rules of calculus to facilitate
the use of the projection operators I}, r). More precisely, we will evaluate
the projection of the product of two functions and, under certains condi-
tions, the projection of the composite of two functions. We will introduce a
class of linear mappings in €2, called homogeneous, that contains some usual
operators. The composite of the projection operators and a homogeneous
mapping will be determined. The decomposition of a linear mapping in 2
as a sum of n homogeneous mappings will be stated and proved. There-
after, some obtained results will be used to derive certain properties and
formulas pertaining to fi, ) from f ones by a mere mechanical application
of the projection operators and to express some identities of f using the
components fi, r. Then, as an application, we will consider the function
f(2) = exp(z). The components of this function are the hyperbolic func-
tions of order n and k-th kind (see for, e.g., [7, p. 213, Eq. (8)]). For
those functions, we obtain alternative proofs of known identities and other
properties which are believed to be new.

In the forthcoming papers, we shall explore some explicit examples in
detail especially the Bessel functions; Laguerre polynomials; Boas-Buck
polynomials; Brafman polynomials; and Srivastava-Panda polynomials to
illustrate particular points in the general theory. Besides, we shall apply
some results established in this paper to some questions arising in special
functions theory and in harmonic analysis.

2. Operations in €2 and projection operators

From the symmetry property (1.1), one can easily state the following re-
sults:

Proposition 2.1 Let (f,9) € Qpx) X Qi) then

1. f-g e 0 /_/'\\,
[nk + K]
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2. fog € Q s
nk - kN

where the notation fog assumes the existence of this function and 7, r € IN,
denotes the class of r modulo n.

Using these properties and the decomposition (1.4), we deduce the following

Corollary 2.2 1/ Let (f,g) € Q, we have

r+r'=k(n)

2/ Let (f,g9) € QX Qppq, ¢ € IN,.
. If there exist ¢ € IN}, such that q§ = 1(n), then

i (fog) = Mg (f)og. (2.2)
. If n=pq and k = qr, then
ipggr(fog) = pr(f)og. (2.3)

To prove (2.3) it is sufficient to remark that the identity (1.3) implies

) = D, Mg
s=r(p)

O
Some useful rules are given by the following
Corollary 2.3 1/ IfF = [[i_, f;, f; € Q, then
Flng(2) = > I Wiy (£9)- (2.4)
i1 +ig4-+i,=k(n) j=1
2/IfF(z) = f(az), a € C and f € Q, then
3/ If F(z) = f(29), f € Q and g € IN*, then
F[pqxq](z) = f[pj](zq), {e ]Np. (26)
4/ IfF(z) = f(3). f€Q, then
1
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5/ If the function f satisfies the functional relation:
flz+2) Zh (2), reIN¥, (2.8)
where the functions hy, and gp, p=1,2,...,7, belong to 1, then

H[n,k]( Z + Z Z Z H[n,s] hp(z) H[n,s’]gp(zl)' (29)

p=1 s+s'=k(n)

Proof.

1/ The reiteration of (2.1) leads to (2.4).

2/ Since the function z—az, a € C, belongs to Q, 1}, the identity (2.5)
arises from (2.2).

3/ If we put g(z) = 29 in (2.3), we obtain (2.6).

4/ The function z—1 belongs to Qpn—1)- Since we have (n—1)(n—1) =
1(n), the identity (2.2) yields the formula (2.7).

5/ From (2.8), we learn

F(E+2)8) = D hy(28)g,(2€).

p=1

If we apply the projection operator IIj, j to the two members of this iden-
tity, considered as functions of the variable &, and we use (2.5) and (2.1)
we obtain

H[n,k](f) ( z+ Z Z Z H[n s]h (Zf) [n s’]gp(zlf)a
p=1 s+s'=k(n)

which, for £ = 1, amounts to (2.9). a

3.  Homogeneous mappings

To make easier the use of the projection operators, we introduce the fol-
lowing notion :

Definition 3.1 Let ¢ be alinear mapping in €2, ¢ is called homogeneous

of degree (, £ € IN,, if and only if ¢ (€2, ) € Q . for all k£ € IN,,.
[n,k + £]
As examples of homogeneous mappings we mention :

1. For each h € IN,,, II};, p,j is homogeneous of degree 0.
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2. The scaling operator S, o € C*, defined by

(Sa f) (2) = flaz)

is homogeneous of degree 0.
3. The n-translation operator ,,7¢, £ € C, defined by

i
L

S

(n7e ) (2) = flz+whe) =M, (E—f(z+¢)

0

B
Il

is homogeneous of degree 0.

4. The derivative operator D, = d% is homogeneous of degree (n — 1).

5. For each g € p, 4, the mapping f—gf is homogeneous of degree .
Notice that the composite of two homogeneous mappings of degree respec-
tively ¢ and ¢ is homogeneous of degree (¢ + ().

Other characterizations of the homogeneous mappings are given by the
following

Theorem 3.2 Let ¢ be a linear mapping in ) and £ € IN,,, the following
statements are equivalent :
(i) ¢ is homogeneous of degree (.

(i) 11 . 09 = ¢ ol foralkelNy,.
[n.k + £

(iii) So, © ¢ = wﬁcp o Su,-

Proof. (i) = (ii) : Let k € IN,,. For each f € 2, we have

f= f[mk] —Ff[qtk], where <f[n,k]’f[1%b,k]> € Q[n,k] X Q[#%k]

The property (i) implies
<90 (f[n,k]):%p(fi’k])) Y o X ot

"

.k + 4] [n,k + £]

So I ov(f) = ¢(fpmr) = ¢ o Upylf)
[n,k + £]

and (i7) holds.
To prove (i1) = (ii7), it is sufficient to observe that
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(iii) = (i): Let f € Qp, 4. We have from the relation (iii) and the
symmetry property (1.1),

Sun (9(f) = Wb 0 Su(f) = Wi v (f).

So ¢o(f) € __ and (7) holds. O

[n.k + ]
Now, we state an usefull result:

Corollary 3.3 Let ¢ be a homogeneous mapping of degree { and let
r € IN such that r¢ = 0(n). If f is an eigenvector of ¢ associated with the
eigenvalue A then the components fi, x, k € Ny, of f are eigenvectors of
©" associated with the eigenvalue A™.

Proof. The mapping ¢" is homogeneous of degree 0 since ¢ = 0(n). So,
according to Theorem 3.1, it commutates with IIf, 5 for all & € IN,,. Then
we have:

" (fing) = ¢ o Upp)(f) = Mgy 0 @™ (f) = Uy iy (N ) = X flu g
which finishs the proof. O

Corollary 3.4 Let f be a function in ) such that
flx+y) Z R ( ), reIN¥, (3.1)
where the functions hy et gp, p=1,2,...,7, belong to Q, then

n Tyl 0 (f Z I}y, 01 (R iy, 01(9p) (y)- (3.2)

Proof. From (3.1) and the definition of the n-translation operator, we

deduce
I8

wTy(F)@) = Y () (@) 01(9p) ()
p=1
If we apply the projection operator IIj, 5 to the two members of the last
identity, considered as functions of the variable z, we obtain (3.2). a
Notice that (3.2) may also be deduced from (2.9).
Next, we use the homogeneous mappings to decompose £(£2), the vector
space of linear mappings from € into 2. Define the mapping:

3: L) — L(Q)
¢ — Blg) = Sw, o po S,
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It follows immediately from Theorem 3.1, that the subspace (L£(£2))}, g4 of
homogeneous mappings of degree ¢ can be defined by the property:

v € L@y = Ble) = wne. (33)
The following decomposition in direct sum holds:
Theorem 3.5 o
L@ =B (£ (3.4)

Proof. Let ¢ be an arbitrary mapping in £(2). ¢ has the decomposition

v = Pn,gs (3.5)

with

Plng = Ezwﬁejﬁj(@,

which belongs to (ﬁ(ﬂ))[n,é} since (3 (cp[mg]) = W) Pln,g- SO

Z IVE (3.6)

=0
Now, let ¢ be in (L(2)), 0 N (L()) 0, €# €. Then B(p) = who =

wf; ¢. This relation yields ¢ = 0 and hence the decomposition (3.6) is
direct. O
As an example we consider the differential operator

d
dz’

NE

L = ar(z) D", D=
r=0

where the functions a,, »r = 0,1, ..., m, belong to Q. By virtue of (1.4), L

takes the form

where

which is homogeneous of degree /.
We leave to a future paper the study, using some results established in
this section, of explicit examples of differential operators.
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4.  Integral representations

Proposition 4.1 Let f be a holomorphic function in a domain D con-
taining the disc | z |< R, we have

. n—1-—k  k
Mou(N) = — [ 2 fe)ds, |2|<R, (41

2i7T‘ |s|=R s — 21

or, equivalently,

2T
I () (re®) = /O Py x(R,r, ¢ — 0) f(Re'®)d¢, r < R, (4.2)

with
Pn,k(-Ru r, ¢ - 9)

(R2(n—F) _ y2(n—k)) Rk o=ik(6—0) | (R2K _ :2k) Rr—hn—k gi(n—k)($~6)
2m(R?" + r2" —2R™r™ cos n(¢d—0))

(4.3)

Proof. We deduce (4.1) by the use of the definition (1.5) and the well-
known Cauchy formula since

-1
Snflszk 1 n wgkh (4 4)
st — 2t nhzos—wﬁz' ’

Now, put in (4.1), z = re®®, 0 < § < 27, and s = Re®, 0 < ¢ < 27. By
virtue of (4.4), one obtains:

4 1 n—1 Ry s 4
Mg (N0e”) = 5= Y™ [0 p(Re®)ao, v <R,

2nm s —whz
h=0 n

which can be rewritten as

1= s ohz
I N —hk n i) .
[n,k](f)(re ) I rar n 0 S—wqu—i_g—@gz f(RG ) ¢, r <R
(4.5)
Indeed, we have
~hz = R?
—wn—zh— - = Ssg ) 27&07 and _S_:_ = — > R.
5— W)z 5~ zhz wnz r
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S5 )
So —— is exterior to the circle s = Re?, 0 < ¢ < 2. It follows then,
whz

n
according to the Cauchy-Goursat theorem, that

Denote by P, ,(R,r, ¢ —0) the kernel of the integral transform (4.5). That
is

1 S’I’L*kzk gkz’n*k :|

2w | 8" — 2 st —2zZn

gkzk(| 82 |n7k _ | 22 |n7k) +Sn7k§n7k(| 82 |k _ | 22 |l€)

27 | s — 27 |2 ’

from which one deduces (4.2) and (4.3). a
Two interseting special cases of (4.3), where the kernel P, y(R,r,¢ —0)
is real, are worthy to note:

(R?™ — 72 R™™ cos n(¢ — 6)

‘ P n,n y 'y @ — 0) = )
Q on (1,7, 6 = 0) (R + 4 — 2R2np2n cos 2n (¢ — 6)

R2n _ 7.271

/i Pn s Ty 0) = ’
(i) o(f,r, ¢ —9) 21 (R?™ + r27 — 2R™r" cosn(¢ — 6))

which can be rewritten as:

1 s™ 4 2"
Pn,O(R,’f',(b—e) = %%<S )

’I’L_ZTL

These kernels may be expressed by the classical Poisson’s kernel :

1—p?
K = 0<p<land0<a<2m.
(p: @) 2m(1 4 p2 —2pcosa)’ ~ — P melsasam

Indeed, we have
r n
Pn,O(R7T7¢_9): IC((E) >n(¢_9));
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(5)" r
HIEW cos(n(é — 0))K((5)*n. 2n(6 — 0)).

It follows that some properties of these kernels may be derived from those
of Poisson’s kernel. For example, from the expansion of IC(p, ) (cf. [4, p.
271]), we obtain:

Pop (R0 — 60 ) = 2

2r

R )ny T (cos(p—0)),

+oo
Poo(R,r.¢=0) = 1423 (5)" cosnw(6—6) = Y (
v=1

v=0

where T),(x) is the pth Tchebycheff polynomial.
Let us return now to (4.2). Since for all function f in Q, y, I, 5 (f) =
f, we state:

Corollary 4.2 Let f be a holomorphic function in a domain D con-
taining the disc | z |< R. If f € Qp,x, then

21T
f(re®) = i Py k(R,r, ¢ — 0)f(Re*)do, r<R.

For f(z) = 2P, p € IN, we have:
27
/ Pn 7k(R, T, ¢ — e)spd¢ = 6pk Zp,
J0
where s = Re'®, z = re®, and 0;; is the Kronecker symbol. Thence :

27
Py o(R, 7,9 —0)s"dp = 2P, Vp € IN,
JO

which reduces, for n =1 and p = 0, to the well-known identity

2m
K(p,0)do = 1.
J0

Proposition 4.3 Let F be a function in £ and having the integral rep-
resentation

Flz) = / K(x, t)dt, (4.6)
where the path T is independent of thIe variable x. If the integrals
/I K(Wx, t)dt exist for all € N,
then

Flpp(x) = /I (@ — K(x,t))p, 5 (x, t)dt. (4.7)
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To prove (4.7) it is sufficient to apply the projection operator I}y, g to the
two members of (4.6).
As an example of application of this result, consider the integral repre-

sentation (cf. [6, Vol. II, p. 200, Eq. (94)]):

(ap)a
pFa+1 z | = (4.8)
(bq)> a+ ﬁa
1 -1 1 ﬁ 1 (ap)>
= (1=t Fyy xt | dt
B(a, / P ’
(@) o (b, @,
where (ap) stands for the set of p parameters ai,as,...,a,. By virtue of
(1.9), we have
Aln, a, + kl,
onn(q+1)+n—1 €

A*(n,k+1), Aln,bg+ k], A(n,a+k+p),

1 1
S, 1T
Aln,ap + ki,
'onn(q+1)+n—1 at™ dt,
A*(n,k+1), Aln,bg+k], A(n,a+k),

(4.9)
where for the sake of brevity Aln,ap] stands for the set of np parameters:
@1 Alnya)) = {452 =12, p j=01,....,n—1}.

i= n

Notice that the integral representation (4.9) may be justified by the method,
other than the use the classical identity (cf. [15, p. 104, Eq. (5)]):

(ar)a

TFs+n X
(bs), An,a+pB),

1
B(a, () .

-1
/ N1 — )8 L Fypn xt" | dt.
0
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5. A Parseval Formula

Proposition 5.1 Let (f,g) € Q? and (z,y) € I?, we have:

n—1
> @) Towl) = - > f@ha)glely). (6D
k=0

The special case, corresponding to f = g and © = y, amounts to the Par-
seval formula:

n—1 n—1
S (@) [P = %Z | fleha) P = T (| £ 1)) (). (52)
k=0 p=0

Proof. Let a = (ap)pen, and b = (by)pew, be two vectors in €C", and let
A = (Ap)kenw, and B = (By)kew, be their respective images by F,, the
discrete Fourier transform of order n . It is well-known that the image by
Fy of the product a-b = (ap - bp)pen,, is the convolution product

n—1
C = (Cm)mGIan where Cp, = Z Ay - B,
k=0

with the convention: B_, = B,,_, if r € {1,2,...,n —1}. So we have

n—1
1
A By = — <b, w ™, .
> Ak Bk n;oap p Wn (5.3)

If we set
m=0; ap = fwhz); bp = gwhy); Ax = flar(®); and By = gpx(y)
in (5.3), we obtain (5.1) by virtue of the identity

(f)[n,n—k] = fing forall feqQ,

which can be easily justified from the definition (1.5). O
A limiting case of (5.2), corresponding to analytic functions f and g, is
stated in the following

Corollary 5.2 Let f and g be two analytic functions in a neighbourhood
x0 o

of the origin. If f(x) = Z amx™ and g(x) = Z byx™, then
m=0 m=0

1 27

byt = — [ fxe)g(ye”)do. (5.4)
k=0 27 Jo
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Proof. From the definition (1.5), we deduce

. 1n—1 1 2inh
fnw(2) = 2 —ZTh)kf(ze )

"o (ze7n

This, in view of the Cauchy formula, we get

2m 0 (k)
which in connection with (5.1) leads to (5.4). O
As an example of application of the Corollary 5.2, let us consider the
case
(ap),
ft) = 9@t) = pky t
(bg),

where the a; and the bjare positive real numbers.
From the definition (1.7) and the identity (5.4), we deduce

2
(ap)’ (ap)7 1 27 (ap)7 ]
Qngqul |t|2 = qu tet? deb.

(by)s (b, 1. 2 Jo (by),
(5.6)

We list below three special cases of this identity which may be of interest

Case 1 f(t) = exp(t) = oFp t|,telR.

)

In this case, the integral representation (5.6) amounts to a familiar formula

for Bessel function Iy(2t) (cf. [2, p. 376, Eq. (9.6.16))):

) 1 27 012
Io(2t) = oFy £2 et

1 27
df = — / e <sfdp
21 Jo

:%‘0

1 [ 1 [
=— / ettty — — / cosh(tcos0)df, te R.
m™.Jo ™ .Jo

a?
Case 2 f(t) = (1—-t)* = 1Fp t], a>0andl|t|<1.
L,
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For any t € IR we have
a’ a?

2F1 t?
L,

1 [ 0|20 1 /'27r dg
0

= — 1—te]  do=—
27 J, ¢ 27 | (1 +t2 —2tcos0)*’

which, for a = %, may be expressed by the complete elliptic integral K (t)
defined by (cf. [2, p. 590, Eq. (17.3.1)]):

™

2 .9 —d
K(t) = / (1 —tsin“0) 2 d6.
J0

That is 11
2 29 2
oy ( 2] = ZK(t%).
T
1,
a  atl
29 2
Case 3 f(t) = oF} 2Vt |, a>0, t>0.
a?
We have
a  a  afl  afl
PR 29 2 2
4 F3 4t | = (5.7)
a? a? 17
a a+tl 2
1 2T 2 T 9
= — o Fy 2/t exp(if) de.
27'[' Jo o

Recall here a Burchnall identity (cf. [3, p. 101, Eq. (37)]):

a, b, tc+3d, e+id-1

2
4F3 4t = F4(a,b, C, Cl,t, t), (58)
c, c, c+c —1,
where .
o0

b mooyP
F4(a,b,c,c/,x,y)= Z Mm_'y_'
o (©)m()m — m! pl
B f (Cl)m<b)m F a+ m, b + m, xm
— —22l'1 y . _"
m=0 (C)m C/, m.

with v/|z| + v/|y| < 1, is an Appell function (cf. [5, Vol. I, p. 224, Eq.
(9)]). Combining (5.7) and (5.8), we obtain

5 a  afl 2
1 1 ™ 29 2 ]
FM%,%,La,t,t) = = o 2Wie® || de.
JO Oé,
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6. A n xn circulant matrix

Let us consider the n X n-matrix

0O 0 --- 0
0 0 O
A = : . o
o 0 . 0 0
o o0 --- 1 0

The powers of this matrix can be easily expressed by I, the r X r identity
matrix, r € IN, as follows:

A" = I, (6.1)

and
0 S/,
A — oo 4+ oo |, LeN,\ {0} (6.2)

I,., : o

So the eigenvalues of A are w¥, k € IN,,, and hence the eigenvalues of f(zA),
f€Q,are f(awk), k € IN,,. Therefore

det f(zA) = ] flwfa). (6.3)

Now, in view of (6.1) and (6.2), the n x n matrix f(xA) can be expressed
as the n x n circulant matrix obtained by the circulation of the vector

(f[n,k] (x))kE]Nn . That is

f[n,O] ('x) f[n,n—l] ('x) e f[n,l] ('x)

@) fo(@) o flng (@)

faay=| ™ e (6.9
f[n,nfl] (CC) f[n,n72] (.CL') T f[n,O] (.CL')
n—1

Remark 1 Many authors dealt with the calculus of H f(wkz) when
k=0

f is any hypergeometric function. They express this product by another
hypergeometric function. we cite, for example,

) ) )
e of} z | -oF1 —x | =okF3 - |-
v, v, vt (v +1),
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(cf.[5,Vol.I, p.186));

a, a, a,c—a,
2

o [ x| 1k —r | = oF3 -1,

, ¢, ¢, 3¢ 5(c+1),
(cf. [12, p. 211));
[} 0F2 x '0F2 —x

a/7b7 a/7b7
gla+b—1),g(a+b),g(a+b+1),
_27..2

= 3k3y 64l )
a,b,3a,5(a+1),3b,3(b+1),3(a+b—1),3(a+0),

(cf.[15, p.106));

3¢ — i,30+ i,
= oF; (&% |,
6c,2¢c,2c + %,20—&— %,40— %,40, 4e + %,

(cf.[10, p.1513]).
From (6.3), we see that it is possible to express this product as the nth-order
circulant determinant.

Remark 2 The formula (6.4) can be used to derive some identities,
satisfied by the components of f. For instance:

1. From the elementary identity f(zA)-g(xA) = (f-g)(xA), we derive
(2.1).

2. If the function f satisfies the functional relation f(z) f(y) = f(z+y),
then

r+r'=k(n)

7.  An illustration: The Generalized Hyperbolic Func-
tions

In this section, we illustrate the above process and results by treating the
function f(z) = exp(z). Denote by h, the components with respect to
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the cyclic group of order n of the function f. According to (1.5), we have

n—1 . .
1 2imkl 20l
hni(2) = - exp (— il ) exp <z exp (%)) ) (7.1)
0

n
/=

which will be referred to as the hyperbolic function of order n and k-th
kind. The two hyperbolic functions of order n = 2 are thus hg ¢(2) = cosh z
and hg 1(z) = sinh z.

Many authors dealt with the study of these functions. A large bibliography
may be consulted in [13]. We gather below some properties pertaining to
the functions given by (7.1). Thereafter, we prove them by use of some
results established in this paper. Recall first,

P1. P p(@WT2) = W™ by, k(2), (cf. [7] p.214 Eq.(11));
n—1

P2. exp(wltz) = Zwﬁm T, 1e(2), (cf. [7] p-214 Eq.(10));
k=0
- ynm-+k

P3. o n(2) = S £. [7] p.213 Eq.(8)):

d" o,

P4. Fra h - s (cf. [7] p.214 Eq.(12));

nK —7T
1 - gn—k-1
P5. hpi(2) = z— | —— exp(zt)dt,

T 2 Jo tn— 1

where C is a simple closed curve encircling the unit circle once in the positive

sense, (cf. [7] p.213 Eq.(9));

400 n—k—1
Pé. / e hn(t)dt = S Rs > 1, (cf [7] p214 Bq.(15));
Jo s =
n—1
P7. hop(e+y) = Y huy(@h,oi(y),  (cf. [7] p.214 Eq.(13));
=0

n—1
1
P8. — D hpo(z+why) = hno(x) hno(y), (cf. [16] p.48 Eq.(4.6));
r=0
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n—1 n—1
1 21s
P9. hy, 2 -z 2 =, f. [8] p.293 Eq.(3.5));
g:o P k()| - ;0 exp[2z cos - ] (cf. [8] p q.(3.5))

Let F(z) the n x n circulant matrix

hno(2)  Pnp-1(2) -+ haa
Pl — hn{(z) hnﬁ(z) ::' hn%(z) |
hom1(2) ot (2) - Tnol2)
we have
P10. det F(2) = 1, (cf. [7] p-214 Eq.(14));
PIl.  F(2) - F(z)) = F(z+7),  (cf. [22] p.689 Eq.(8)).
Proof.

. To prove P1; P2; and P3, it is sufficient to use, respectively, the
identities (1.1); (1.4); and (1.6).

r

. The derivative operator is homogeneous of degree n —r. So,

dz"
according to Theorem 3.1, we have

d” d"

om0 g = g © Mt
[,k — 7]
Then
d" d" d"
—— (np) = ol (f) =1 o——=()=I1 __(fl=h _,
dz dz dz
[,k — 7] ln,k — 7] [,k — 7]

and P4 holds.

. If we put f(z) = €® in the integral representation (4.1), we obtain
P5.

. The integral representation

1 oo
F(2) = = / e Steftdt, Rs >| z|,
0

s —Zz

satisfies the conditions of the proposition (4.3). So, using (4.7) and (4.4),

we obtain
Sn—k—lzk
Sn — Zn

+0o0
= / e *hy, k(2t)dt,
J0

which, for z = 1, comes to P6.
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The properties P7; P8; P9; P10; and P11 may be deduced,
respectively, from (2.9); (3.2); (5.2); (4.3); and P7. a
Next, we establish other properties which are believed to be new for the
functions Ay, k
1. A curve, in IR", associated with the function f(z) = exp(z).
Let 7, be the mapping:

Yo : R — IR"

. —  m(r) = (%,k(@)
k€N,

Denote the range of v, by I'y. I's is the hyperbola of equation: x% —z?=1.

From P10, we deduce that I'y, lies on the hypersurface of equation:

o Tp—-1 -+ T1
Ty &g X2 -1
Ip—-1 Ip-2 - X0

Now, define the operation ¢ in IR" as follow:
Let (X,Y, Z) € (IR™)*,with

X = (%i)ien,; Y = (W)iew,; and Z = (z)ien,-
Wesay Z = X o Y if and only if

o= Y Ty

{+k=r(n)

From P7, we deduce the relation v, (x)ov,(y) = ~vn(z—+y) . This implies
that (I'y, ¢) and (IR, 4) are two isomorphic groups since 7, is a one-to-one
mapping from IR to I';,. So I';; is a one dimensional manifold equipped with
a group structure.

2. A series of generalized hyperbolic functions.

Let us consider the function z— exp (exp(z)) which may be expressed by

X mz n—1
S S = e (no(2) [T eap (hni(2)). (72)
m=0 " k=1

The action of the projection operators IIj;, ;) on both sides of this identity
and use of the rule (2.4) give rise to the relation

n

oo -1
hnk mz
Z # = exp (hno(z)) - Z H iy (P j(2)) -
m=0 i14+2ia++(n—1)in_1=k(n) j=1

(7.3)

50



Decomposition of Some Complex Functions... AMI Vol.4,No.2,1999

For n = 2, this identity specializes to (cf. [9, p. 42, Eq. (1.471)]):

o

L) p (cosh(2)) - cosh (sinh(z)

m!
m=0

S ) oep (cosh(2) - sin (sinh(2)).
m=1

We conclude by remarking that the above method, used in this section,

of derivation of the properties of the functions h,, ; would apply mutatis
mutandis to the function

z—exp (a 2), a€C,
whose components are
oF F“‘k, k=0,1,2,...,n—1,
where the functions Fr‘j‘ i are defined by
o0 m ynmetk
Zo (nm + k)’

and called the a-hyperbolic functions of order n and k-th kind studied
by Ungar (cf. [23]). These functions can be expressed by the generalized
hypergeometric function ,¥, defined by the series (cf.[5, p. 183]):

(abAl)a ceey (ap> Ap)>

Z L(a; + Aym) o

g’ b
o (61,B1),-..,(Bq: Byg), '(B; + Bjm) ml!

(7.4)

where the parameters
a;,i=1,...,p, and fB;,5=1,...,q,
are complex numbers, and the associated coefficients
Aj,i=1,...,p and Bj,j=1,...,q,

are positive real numbers such that

q P
A=14YB - 3 A4 >0,
j=1 i=1
provided that no zeros appear in the denominator of (7.4).
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In fact, we have (cf. [18, p. 213, Eq. (17)])

(1,1),
,‘j‘,k (2) = P az”
(k+1,n),

For v = 1, we have the functions (7.1).

For a = —1, we have the generalized trigonometric functions of order n and
the k-th kind (cf. [7, p. 215, Eq. (18)]). In this case, both the identities
(5.2) and (6.3) are reduced, for n =2 and z € IR, to the famous formula

cos?z + sin?z = 1.
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