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Abstract

The bending of an orthotropic cusped plate in energetic and weighted Sobolev
spaces has been considered. The existence and uniqueness of generalized and weak
solutions of admissible boundary value problems (BVPs) have been investigated.
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Introduction

Let Ox1xox3 be the Cartesian coordinate system, and let €2 be a domain
in the plane Oxjx9 with a piecewise smooth boundary. The body bounded
from above by the surface x3 = h(x1,22) > 0, (21,22) € Q, from below by
the surface x3 = —h(x1,x2), (x1,22) € Q, from the side by a cylindrical
surface parallel to the xz-axis, will be called a cusped plate. The points
P € 09, at which s.c. plate thickness 2h(x1,22) = 0, will be called plate
cusps. If h € C1(Q), obviously,

0< L:=lim MS-FOO, Qe, Peoq,
Q—P on
provided that the finite or infinite limit L exists; if P is an angular point
of the boundary 92 then under inward to 92 normal n we mean bisectrix
of an angle between unilateral tangents to 02 at P. Q will be called the
projection of the plate. 02 will be called the plate boundary. On figures
1-3 are represented the possible normal sections (profiles) of a symmetric
plate at the point P in its neighborhood.
Let us now consider an orthotropic cusped plate.
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L =+0c0 0<L <400 L=0
fig.1 fig.2 fig.3

The equation of classical bending theory of the orthotropic plates has
the form as follows (see [1], p. 364)

Jw = (Diw,11),11 +(Daw,22),22 +(D3w, 22 ),11
+  (Dsw,11),22 +4(Daw,12),12
= f(z1,22) in QC R? (0.1)

where w is a deflection; f is a lateral load; D; € C?(2), i = 1,2,3,4, and

2F; h? 2G h3
D; = , ,=1,2,3, Djg:= ;
3 ’ 4 3
Dy—D3s>0, a=1,2 if h>0 (0.2)

(for all known orthotropic plates these last conditions are fulfilled (see [1]));
E;,1=1,2,3, and G are elastic constants for the orthotropic case; indices
after comma mean differentiation with respect to corresponding variables.

In particular, if the plate is isotropic,

E oF E
Ea = 1—0?’ a=12 B = 1—o0?’ ¢= 2(1+40)’

where E is Young’s modulus and ¢ is Poisson’s ratio.

Let 0N2 be the piecewise smooth boundary of the domain 2 with a part
I'; lying on the axis Oz and a part I'y lying in the upper half-plane x5 > 0
(89 = Fl U fg)

Let further the thickness 2h > 0 in QUI'9, and 2h > 0 on I';. Therefore

Di(z1,22) >0 in QU9 Di(x1,22) >0 on Ty, i=1,2,3,4. (0.3)
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In particular case let
Dyixy < Di(x1,22) < Do, i1=1,2,3,4, in , (0.4)
where
Dy =const >0, a=1,2, 1=1,2,3,4, s = const >0,
i.e., 3 5
Dj(z1,22) = Di(x1,22)2%, Di1i < Di(x1,72) < Dy,
Dia > D23, a=1,2, (0.5)

(otherwise there would exist such points of 2 where (0.2) will be violated).
In the case under consideration, (0.1) is an elliptic equation, in general,
with order degeneration on I';.

We recall (see [1]) that

Mo = —(Daw,aa +Dsw,p5), a# B3, a,f=1,2,
Mis = —My = 2Dsw,12,

Qo = Moo+ Mg, a#p, a,=12,

Qe = Qa+ Mg, a#p, a,8=1,2,

where M, are bending moments, M,3, a # (3, are twisting moments,
Qo are shearing forces and QF, are generalized shearing forces (bar under
repeated indices means that we do not sum with respect to these indices).

In points of the plate boundary, where the thickness vanishes, all quan-
tities will be defined as limits from inside of €.

1. Cylindrical Bending

In this case all quantities depend e.g. only on x2. Hence (0.1) will have the
form as follows:

(D2w722)722 = f(.CL'Q), 0 < To < l, (11)

where [ is width of the plate. In any section x; = const we have the
same deformation. Therefore the length of the plate plays no role. From
(0.6)-(0.9) we have in Q:

D
My = —Dow 92, M1 = —Dsw oo = D—2M2, Mg = —Mo =0; (1.2)

QRQ1=0, Q2=DMp, Q)=Qq a=12. (1.3)
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From (1.1)-(1.3) there follows

Q22 = —f(x2), Mo = —f(x2),

*2
Dgw,gg = /(3:2 - t)f(t)dt — Cl(xg - l) — Oy, C1,C9 = const.
1

Hence
QQ = —/f(t)dt#—C’l, (1.4)
1
My = —/I(mg—t)f(t)dt—kCl(xg—l)+02, (1.5)
1
wy = 721(( VD3 (1)dr + 721(( YDy (r)dr + C (1.6)
,2 1\7T o \T)at o\T)Ty (T)aT 3,
1 1
w o= '/.(.CL'Q—T)Kl(T)D21(T)dT
I
+ /(.CL'Q — T)KQ(T)TDQ_I(T)dT + Cg(iUQ — l) + Cy, (17)
1
where
Ki(r) = olz—og—/f(t)tdt, (1.8)
1
Ko(r) = —Cﬁ/f(t)dt. (1.9)
1

For f summable on [0,!], obviously,
Q2, Mz € C([0,1]); w, wy € C(]0,1]);

the behavior of
wo and w when xg — 0+
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depends, in view of (1.6), (1.7), on the convergence of

l
I = /TiD21(T)dT, i=0,1,2,---.
0

Obviously,

I <+00 = [Li;1 <400, 12>20; and ;=400 = [;_1 =+o00, 2> 0.

Statement 1.1
w, wo € C([0,1]) if Ip< +oo;

we C([0,1]) if Ig= oo, I} <4o0; (1.10)

(provided, f is bounded with its derivative in some neighborhood ]0,¢] of 0);
in this case (Igp = 400, I; < 400) wy is bounded as xo — 0+ iff (if and
only if)

K1(0) =0, (1.11)

i.e., in virtue of (1.5), (1.8), iff M2(0) = 0, otherwise it will be unbounded.
If I = 400 (hence Iy = +00), Iy < 400, then w is bounded (provided,

Dy € C3([0,1]), f is continuous in 0, and has bounded first and second

derivatives in ]0,¢]) iff (1.11) is fulfilled, otherwise w will be unbounded.
If Iy = 400, then w will be bounded (provided, for fixed k > 2

Iy = +o00, Ipy1 < o0 (1.12)

90 =0, j=0,1,..,k—2, f*(xy) is continuous in 0) (1.13)

iff (1.11) is fulfilled, and
K»(0) =0, (1.14)

i.e., in virtue of (1.4), (1.9), Q2(0) = 0, otherwise, i.e., either K#(0) +
K2(0) # 0 or I, = +oo Vk, w will be unbounded;

If I = +oo, then wy is bounded (provided, (1.12) and (1.13) are
fulfilled, when k > 2, and, when k = 1, (1.12) is fulfilled and f(x2)
is continuous in 0) iff (1.11), (1.14) are fulfilled, otherwise, i.e., either
K3(0) + K2(0) # 0 or I, = 400 Yk, wa will be unbounded.
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Proof. Let Iy = +o00, I < +40c0. Then

l l

o [ Ka(r)Ds (n)dr| = | [ Ka(r) 2Dy (s

!
/ T)dT < 400 for zg €]0,]] (1.15)
0

because of
KM <C Tel: |2 <1 apen ), 7efa .

Further, in virtue of (1.8),

2K
lim o / Ki(r Fydr = lim 222172 1(22)
x9—0+ 29—0+ Dg(mg)

~ im 23:2K1(x2)—f(3:2)x%
z2—0+ D (x9)

0 if D4(0)#0 or D5H(0) = +oo;

2K (x9) — 203 f (x2) — f/(w2)ah — 3f (w)a3

i D) oe=n
When D5(0) =0
i
(0 if DJ(0) = ~o0;
=94 2K1(0) _ 2My(0) _ e lff " ifD5(0) # 0;
Dy0) ~ D§0) Dj(0) S
co if Dj(0)=0, Ki(0)# 0.
(1.16)

But D4(0) can not be equal to 0, when K7(0) # 0, otherwise (1.15) and
(1.16) will contradict each other.
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If K1(0) =0, then

l

l
/Kl(T)DQ_I(T)dT = / KlT(T)TDQ_I(T)dT

o
l

/ Dyl (r)ydr < C /TD (T)dT < 400, m2 €]0,1], (1.17)

since
K
TS UG R A S
T—0+ T T—0+
and hence
K
()] o C, 7 €)0,]
-
Thus,
lim z9 /K1 T)dT = 0.
zo—0+4 i

n (1.7), obviously, other terms have limits when xo — 0+, and (1.10)
has been proved.

If (1.11) is fulfilled, then in view of (1.17), obviously, w2 is bounded
on ]0,1]. Otherwise, if K;(0) # 0, it will be unbounded since in this case,
without loss of generality, we can take K;(0) > 0, and therefore K;(7) >
C =const> 0 in some right neighborhood [0,e] of 0, and if we suppose that

/Kl(T)D21(T)dT < 4oo for w9 €]0,¢],

L2

then

/D T)dr| < /Kl VD3 H(1)dT| < +o00.

L2

Hence

/D T)dT| < 400, for a9 €]0,¢], (1.18)

which would be in contradiction with Iy = +oo.
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Let I} = +00, I < +00. Then

!
T / KQ(T)TDEl(T)dT = / KQ(T)772D51(T)dT
mz - (1.19)

1
<C / 7Dy (7)dT < +oo  for 3 €]0,1],
0

because of

Ko <C Teld; |1 wa e, e fa .

Further, in virtue of (1.9),

l

3
, (rydr = lim C2K2(22)
leg%erz ./KQ(T)TDQ (T)dT_x21%+ DQ(CUQ)

2

~ lim 31}%K2(£L'2) + m%f(mg)
zo—04 DIQ(.CL‘Q)

0 if D{(0)#0 or D4L(0) = +oo;

Ty, reKa(va) +6af(va) +adf () D4(0) = 0.
xo—0+ DIQI(.CL‘Q)

When D5 (0) =0 [
lim w9 /KQ(T)TDQ_I(T)dT
zo—0+ i
@
0 if DJ0)#0 or D5(0)=+o0;

- _ 6Ky(wg) + 18wof (x2) + 955 f (w2) + 23 f"(x2) iy
xjgré+ D,Q/’(xQ) ’LfD2 (0) = 0

When DJ(0) = D5(0) =0

l
lim o / Ky(1)7Dy M (1)dr
z2—0+ |

2
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0 if Dy(0) = +oo;

0
= 600)  6Qu(0) 6[01_{ / (t)tdt}

=- =— if DY (0) # 0;
DY)~ DI0) oy P07

| o if DY) =0, Ka(0) #0.

(1.20)
But DY'(0) can not be equal to 0 when K»3(0) # 0, otherwise (1.19) and
(1.20) will contradict each other.

If K5(0) =0,

l l
/KQ(T)TD21(T)dT = /—KQ(T)72D21(T)dT

. . T
2 *2 (1.21)
l
<Cf TQDQ_I(T)dT < +o0, w9 €]0,1],
0
since Ko(r)
li 2\T — ki _
Ti%lJr T TL%lJr f(T) f(0)7
and hence X
'ﬂ <C, 7€0,1].
-
Thus,

l
lim o /KQ(T)TD21(T)dT =0.
r9—0+ .
2
The boundedness of other terms of (1.7) on ]0,[] is clear (see below
(1.22), (1.23) by k = 1), as well as validity of other assertions of statement
1.1 which are either obvious or should be shown in an analogous way as
above taking into account that, if K;(0) =0, 7= 1,2, and (1.12), (1.13)
are fulfilled, then

l l

[ Kalryry i = | |

L2 L2

KQ(T)

- 7'k+1D271 (T)dt

T

(1.22)
l

<C / DI (T)dT < oo, w2 €]0,1],
0
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since
o Ka(r) STV T gy sl B2 ,
g S50 = i T = G0 e [ <00 e
/ [ Ka(7)
1 . N\T) k41 —1
/K1(7')D2 (T)dr| = | TV Dy (T)dT
T2 L2
(1.23)
!
<C / TPD Y (1)dr < +oo,  xo €]0,1],
0
since (o)
_ k—1
b BA0) o —por )
T—04+ Tk+1 7T—0+ (k =+ 1)7’k (k =+ 1)(k — ].)'
K1(7)
e | 5 ‘ <C, 7€0,l];
from (1.23), (1.22) follows, correspondingly,
o
lim /KM(T)#DQl(T)dT =0, i=0,1, (1.24)
Lo —> .
!

and also convergence of
o2
/ K ()7 Dy Y (r)dr, i=0,1.
1

If I, = 400 Vk, and K(7) := Ki(7) + 7K>2(7) is analytic in a right
neighborhood of 7 = 0, then, obviously, w and w2 are unbounded when
x9 — 0+. Indeed, e.g. (1.6) can be rewritten in the following form (let it
be bounded when z9 — 0+, and K;(0) = 0, ¢ = 1,2; the last conditions
are necessary for it)

w,(2s) = / K(r)Dy\(r)dr + Cs,
1

where K (0) = 0. Since analytic K(7) % 0, there exists such k that
K90)=0, j=01,... k=1, K®0)#0.
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Further
T2
" K(T _
wa(r2) = 7'(k) "Dy (r)dr + C3,
1
where ®
. K(r)  KY(0)
Tlif(r)l-&- Tk N k! 7&0

Then, taking into account boundedness of w o, similarly to (1.18) we can

show
€

/TkDQ_I(T)dT < +4oo for x4 €]0,¢]
2
which would be in contradiction with I = +oc0 Vk.

From the statement 1.1 it follows that on the cusped edge zo = 0
admissible are only four different pairs of the boundary data as follows:

w(0) = w, w'(0) = w) ift Ip < +o0; (1.25)
w'(0) = wp, @Q2(0)=Qo  iff Ip < +o0;
w(0) = wy, My(0) = My iff I1 < +o0;

MQ(O) = Mpy, QQ(O) = Qo always, i.e.,if [ <400, i=0,1,

where wy, wy,
is arbitrary if Iy < +oo,
Moy
=0, if Iy = +o0,

is arbitrary if I} < 400,

Qo
=0, if I = +o0,

are given constants.

On the edge x5 = [ we always can give each of the above four bound-
ary data taking into account peculiarities of cylindrical bending (see (1.4),
(1.5)) that by arbitrary load f, @2 can be given only on one edge; from
Q2(0) (or Q2(1)), M2(0), Ma2(l) only two can participate in boundary con-
ditions on both edges (these peculiarities are not caused by cusps they arise
already in case of cylindrical bending of a plate of constant thickness). If
we choose f correspondingly (see (1.4), (1.5)), we could avoid these pe-
culiarities but restriction on choice of f would be artificial. Nevertheless
also such posed problems can have practical sense. Obviously, solutions of
all these problems can be constructed in an explicit form. Some of them
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are unique, some defined either up to rigid translating or rigid rotating or
general rigid motion.
Let Iy < 400, and e.g. solve BVP with boundary conditions (1.25),

and
w(l) = w, w'(l) = wj, (1.26)

where w;, wj are also given constants.
In view of (1.6), (1.7), from (1.26) we have
Cy = wy, Cs = wf.
For determination of constants C7, Cbs, from (1.25) we have the alge-
braic system as follows:
! 1
C1 /T(T — 0Dy (r)dr + Cs /TDQ_I(T)dT

0 0
T
:/TD2 /f )1 — t)dtdT — lw) + w; — wo,
!

l
~Cy [ (t =)Dy (r)dr — Cy | Dyt (T)dr
[ /

l
_'/Dg_l(T) '/f(t)(T — t)dtdr + w] — w),
0

which is solvable as its determinant
! 2 _
A= /TD21(T)dT - /T2D21(7)d7" /D21(7)d7' <0
J J .
_1 _1

since Holder inequality is strong because 7D, ?(7) and D, ?(7) are positive
on ]0,1[, and 72Dy *(7) and Dy *(r) differ from each other by nonconstant
factor 72.

Other problems can be solved in an analogous way taking into account
(1.16), (1.20) and (1.24) in the corresponding cases.

2. Bending in the energetic space

Let D; € C?(QUTy), i = 1,2,3,4. Let us consider the operator .J (acting
in Ly(Q)) on Dy :
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1. we 04(Q uTly);
Jw € LQ(Q);

€ C(Q) when I; < +oo in case (0.3) (0 < 3 <2 in case (0.4)),

w
=0(1), x9 — 0+, when I;; =+oo (x> 2);
(2.1)
€ 0(Q) when Iy < +oo (0< < 1),
wa
=0(1), x2 — 0+, when Ip =400 (1 <x<+400), a=1,2;
(2.2)
l-
Iy = /ngil(xl,xg)dxg, i=1,2,3,4, k=0,1,..,
0
(21,0) € Ty, (21,l(z1)) € Q,
(Dy — Ds)2w,y, € Ly(Q) (2.3)

(this restriction can be avoided when we consider only solutions with finite

energy);
the bending moment, and the generalized shearing force

My = —(Dow, 22 +D3w, 11 ) € C(Q), (2.4)
Q5 = —[(Daw, 92 +D3w, 11 ),2 +4(Dgw, 12 ),1] € C(Q); (2.5)
2. 5
w
T2 on .

2

where n is the inward normal;

3. On I'; one of the following pairs of boundary value conditions
(BVCs) is fulfilled:

w=0,w,2=0if Ip; < +o0i+1,2,3,4, (0 < s < 1); (
weo=0,Q5=0 if Iy; < 4o0,i=1,2,3,4, (0 << 1); (
w=0, My =0 if Ii < +00,i=1,2,3,4, (0<<2); (

2

Remark 2.1 How it follows from the case of cylindrical bending (see
Section 1, and also [2], p. 96), the BVCs (2.7)-(2.9) can not be posed (in
the sense of correctness) for other values of s except indicated ones, or in
the general case (0.3) if Ip = 400, and Iy = +oo, correspondingly.
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Statement 2.1 The operator J is linear, symmetric, and positive on
the lineal Dy, and

(Jw,v) := /UdeQ = /[Dlv,n w,11 +D2v,00 w,20 +D3(v,11 W,22
Q Q

+v,92 W,11 ) +4D4v,10 w,19 }dQ =: / B(U, w)dQ Yo,w e Dj. (2.11)
Q

In particular, if v=w,

(Jw,w) = /[Dl(wyn )% + Da(w,22 )* + 2D3 w,11 w2
Q
4+ 4Dy(w,12)%)dQ = /[D3(w711 +w,99 )2 + (Dy — D3) (w1 )?
Q
4+ 4Dy(w,12)* + (Dy — D3)(w,22 )?)d€2. (2.12)

Proof. It is obvious that J is linear operator on the lineal D; (the
latter about D easily follows from the linearity of J on C*(Q2UT5)). Since

D, C Ly(92) and Jw € Ls(2), we can consider the following scalar product
n LQ(Q)

(Jw,v) := /vadQ = {Sirré / vJwdQls, Yv,w € Dy,
Q Qs
where
Qs = {(x1,29) €Q : g > 6= const > 0}.

After integration by parts twice and using formulas (d), (c¢) on page 87 of
[1] we have

. ' Oov ov
(Jw,v) = é% / (vQp, — %Mn + %Mns)ds + / B(v,w)dQs |
895 QzS

where ds is the arc element, @), is the shearing force, M,, is the bending
moment, My is the twisting moment.

But
ov _ Ov M6 " OMps , OM,s
/ aMnst—’/ s ds—'/v s ds = — ./v 55 ds
Qs % s s
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as v, Mps € C(Qs). Hence

. ' . Ov , '
(Jw,v) == fsz_% / <in — %Mn> ds + {S’L_T)r(l) ‘ B(v,w)dQs,  (2.13)
8@5 Qé
where M
Qn = QTL - 85 .

In view of (2.6),
/ <UQn - 6_Mn> ds = / (vQ35 — v,2 Ma)ds,
n
805 F‘f

where
I8 = {(x1,22) €Q : w9 =8= const > 0}.

In virtue of (2.1), (2.2), (2.4), (2.5), (2.7)-(2.10), Ve = const > 0 36(e) =
const > () such that

[vQ5 — v,2 Ma| < |v]|Q5] + |v,2 || M2] <&, when 0< x2 <,

i.e., taking into account (2.6),

- 0
/ <UQ;; _ 8—2Mn> ds| = / (0Q5 — v, Ma)ds| < £|T%] < £|99s| < £]0Q)|
Qs F‘f

(|0€2] is the length of the curve 0€2). So that
li 0t — 201, ) ds = i (vQ3 My)ds = 0
200 )\ T an ) T ) e T e s =

s ré

Therefore, because of existence of integral on the left side of (2.13), limit of
the second addend on the right hand side of (2.13), also exists, and (2.11)
is valid. (2.12) is obvious.

From (2.11) there follows

(Jw,v) = (Jv,w) = (w, Jv), Yv,w € Dj.

Hence the operator J is symmetric.
From (2.12), taking into account (0.2), we have

(Jw,w) > 0.

43



AMI Vol.4, No.1,1999 G.V. Jaiani

But
(Jw,w) =0, we Dy,
iff
w,1 =0, we=0, w,2=0 in Q,
1.e.

w = kix1 + koxs + k3, k; = const, i =1,2,3, in €.

The latter, in virtue of (2.6), should be zero on I's and therefore on Q,
because of its linearity.

Statement 2.2 The operator J is positive definite if only Dy > 0 (0 <
n < 4),
Dy — Ds

Z
Ly

0< Dy :=inf
Q
Proof. Let Dy = 0, and consider the particular case (0.4). Hence

Dy = mf(f)g — ﬁg)ngél =0 if only s >4.
Q

Then J is not positive definite. Indeed, let the rectangle
Iy :={(x1,22): a<z1 <b, 0< 22 <6}

be cut out from 2. Let (see [3])

(6 — x2)5sin5ﬂ(xl —a)

T when (x1,x9) € Ig;

wg(x1, x2) 1=

O when (z1,22) € Q\Ilp.

Obviously ws € Dy, and because of 3 > 4, (2.10) should be and, in fact, is
fulfilled by ws. It is easy to see that

* %74 *
72§C(5 , C' = const >0,

since

1 b—a 1 (10
HwéH%Q(Q):ﬁ - ﬁ<5>77511,

and, in view of (0.4),

0 < (Jws,ws) < / maz  { Dy }a%[(ws11)? + (ws20)*+
J i€{1,2,3,4,}
I

+2ws 11ws 92 + 4(ws 12)?]dr1dry < 3(5”Hl + 67T 4 5719,
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*ok
C = const > 0.
Hence J is not positive definite on D .
Now let us return to the general case (0.3). Further Dy > 0 (0 < » < 4),
and prove that J is positive definite.
From (2.12), taking into account (2.3), (0.2) and (0.3), we obtain

(Jw,w) > /'(D2 — Dy) (w0 )%
o

> Do/ x5 (w99 )?dQ = Do/ rh(w,90 )?drydrs,
Q I
where
II:={(z1,22): a<z1 <b, 0 <wg <1}, (2.14)

and without loss of generality, it is supposed that the domain 2 lies inside of
the rectangle II, and a definition of the function w is completed assuming
w equal to zero outside of 2. Then w will be continuous in II with its
first derivatives, and its derivatives of second order, in general, will have
discontinuity of the first kind on the arc I'y. Further

b 1 b 1
9D
(Jw,w) > Dy / /ac w,22 ) d1’1d.732 1—60 / /w dx1das
a 0 a 0

= 7/ w?daidey 27/ wdw = ||w||7, ),
i 0
where
_9,
Y= 16 0-

In the previous reasonings we have used the following

Lemma 2.1 Let w(zq,.) be a real function of xo for fived x1 satisfying
the following conditions:

1.) w and w,y are absolutely continuous on [6,1] V6 €]0,1[;

2.) w, w,o = 0(1) when 9 — 0+;

3) x2w,22€ LQ(]O 1[)

4) (xlu)_wQ( )_O
Then

1 1
9 [ ,
> — .
/ac w,99 )4dry > 16 ‘/w dxo, (2.15)
0 0
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> ©

1 1
/x%(w,gg)deg > /m%(w,g )Qdmg. (2.16)
0 0

Proof. Is similar to the one used in [3] for the case 6 = 0 but we have
to consider all integrals from ¢ to 1 and then let ¢ tend to zero.

Let Hj be the energetic space (see e.g. [3,4]) corresponding to the
operator J defined on D; and acting in La(2).

Theorem 2.1 Let f € La(Q). if Do > 0 (0 < 3¢ < 4), there exists a
unique generalized solution of (1.1) in the energetic space Hy. If Dy =
0 (3¢>4), and f(x1,22) = 0 in Q\Qs then there exists a unique generalized
solution of the finite energy.

Proof. Firstly let us prove that the solution with the finite energy
exists for Doy > 0 (3c > 0), if f = 0 in Q\Qs (the last restriction of f can
be weakened). Let w € D;. Then

ow
w|r2:07 On T2 =Y
and there exist continuous on I'y from inside derivatives w,qg, Let us put
again the domain €2 inside of the rectangle (2.14) and complete a definition
of the function w assuming it to be equal to zero outside of (2.
We have

2 2
@ NP = | [wfdeds) = | [wfdnds,
Q Qs
< / fPdxydas / w?dzydry = C / w?drydry Yw € Dy(2.17)
Qs Qs Il
where

C = / deLL'ldiUQ >0,
0

IIs := {(x1,22) €Il : 29 > 6 = const > 0}.
Obviously, when x3 > 0

1

/ w, dry = w(zy, x2) —w(a, x2) = w(xy, v2) (2.18)

a
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since w(a,z2) = 0 as (a,z2) € II\Q. According to Cauchy - Bunyakovskii
inequality, from (2.18), we have

z1 T1 b

w? < / 1%dz; '/I(w,l )del < (b—a) ’/(w,l )2dx1.

a a a

Integrating both sides in limits a < x1 < b, 6 <z <1,
. 2 2 . 2
/w dridxy < (b—a) /(w,l) dri1dzo
hg h&
<(b— a)4/(w,11 )2d$1dx2 =(b— a)4/(w,11 )deld;rg (2.19)
h(s hé

(in the second inequality the first inequality is applied to w,;)

= (b—a)* / (D1 ;)Di)gu’n )deldxg
bé 1 3
< b 5:)4‘ /)(D1 — D3)(w,1 )2dwidrs
Qs
—a)
< L2 [0 - Doy ?
Qs

+  Ds(w,11 +w,02)* +4D4(w,12)? + (Dg — D3)(w,29 )?]|dx1das

(b—a)
Ds

(b—a)t

IN

(Jw,w) =

lwllZ;,
Ds := min(D1 — Ds3).
Qs
From (2.17) and (2.19) there follows

C(b—a)t
@ NP < L Lju,

i.e., (w, f) can be considered as a linear bounded functional with respect
to the energetic norm. But then, according to the well-known theory [3],
there exists a solution of the finite energy.

In case Dy > 0 (0 < » < 4), moreover, according to the general theory
[3,4], there exists a generalized solution since J is positive definite (see
Statement 2.2).
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Remark 2.2 In the particular case (0.4):

l. A1 —x 1T 1
Toi(21) = / D; (@1, )7 7dr < Dy g —— ‘0 =Dy,
0
and, when s > 1,
1

Ipi(z1) > D3} ii_(%/T_%dT = +o0.
'E

Similarly
< H4oo if x <2
Li(z1)
=+4oco if x>2

3. On a modification of the Lax-Milgram theorem

The section deals with a modification of the Lax-Milgram theorem as fol-
lows:

Theorem 3.1 LetV be a real Hilbert space, and let J(u,v) be a bilinear
form defined on V' x V. Let there exist a constant k > 0 such that

| (u, 0)| < Ellullyl[vlly, Yu,v eV, (3.1)

and let
Jw,0)=0 = v=0 inV (3.2)

(0 is the zero element of V). Then for any bounded linear functional F
defined on V' there exists a unique functional F,, € V* (V* is the space
conjugate to V') such that

Fv=F,v:= klim J(zg,v) Yo eV, (3.3)
where
2L 1= Ciltk (34)

for any sequence ty, € C(V') C V converging to to uniquely defined by F in
view of Riesz theorem. C™' is the inverse operator of the bounded linear
operator C':

t=Cz (3.5)
defined in the space V by the relation
J(z,v) = (v,t) Yo eV, (3.6)
and fized z € V.
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Proof. In view of Riesz theorem, it is possible to express every bounded
linear functional F' in V in the following form

Fv=(v,ty) YveV, (3.7)

where the element ¢y € V' is uniquely determined by the functional F' and

ltollv = [ F[lv~
If z € V is fixed, then the bilinear form J(z,v) represents, obviously, a
linear functional in V. This functional is bounded since by (3.1)

|J(z,0)| < E||vll,, k=K|z|, = const > 0. (3.8)

[

Then according to the above Riesz theorem, there exists a unique ¢t € V
such that (3.6) holds, and also, by virtue of (3.6), (3.8),

1ty < K=y - (3.9)

By the relation (3.6) to every z € V a unique t € V is assigned. This
defines by (3.5) an operator C' in V. C' is, obviously, a linear one, and, in
view of (3.9), also bounded. The range L = C(V) of this operator C is
a certain linear set in V. More precisly, let L be the metric space whose
elements are the elements of that linear set L with the metric of the space
V.
We will prove that the mapping (3.5) from V onto L is one-to-one, i.e.,
L ~ V. To this end it is sufficient to prove that to the zero-element of L
there corresponds the zero-element of V. Thus, let 8 = Cz, i.e., by virtue
of (3.6),
J(z,0) = (v,0) =0 Yo e V. (3.10)

In particular, for v = 2z, (3.10) yields
J(z,z) =0.
But then, according to (3.2), z = 6. Hence 3C~!:
z=C"'t (3.11)

Let {tx} be a fundamental sequence in L, and thus also in V. Since V
is complete, Ity € V such that

lim t), = to, in V. (3.12)
k—o0

Therefore complete L is a subspace of V.
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Now we will prove that L = V. The proof will be performed by contra-
diction. Let L # V. Then there exists an element w # # in V orthogonal
to the subspace L, so that

(w,t) =0 (3.13)

holds V¢ € L. Since w € V, in view of (3.6), a unique t, € L C L exists
such that

J(w,v) = (v,t,) Yoe V.

In particular, for v = w, we have
J(w,w) = (w,t,) =0

because of (3.13). Therefore, by virtue of (3.2), w = 6 in V, which is in
contradiction with assumption w # 6. Hence L = V.

For any bounded linear functional F' in V' we have (3.7), where tg €
V = L is uniquely determined by F. For the above t; € L there exists
a sequence t; € L which is convergent to tp in V. According to (3.11)
Vi € L dzp € V such that

J(zg,v) = (v, tg) Yv e V. (3.14)

Functionals J(zy,v) and (v, ) are bounded linear functionals from V* for
fixed k. Now tending & — oo in (3.14), since, in view of (3.12), there exists
a limit (which is equal to (v, ty) because of continuity of a scalar product)
in the right hand side, the limit of the left side will also exist, and

lim J(zg,v) = (v,tg) Yo e V. (3.15)
k—o0
Then, by virtue of an immediate corollary of the Banach-Steinhaus theorem
(see e. g. [5], p. 277, Corollary 1), linear form

Fo: v— lim J(z,v) (3.16)
k—o0
is a bounded linear functional on V, which does not depend on the choice
of {z4}, i.e., of {t;} since for any sequence t;, — tp in V, on the right hand
side of (3.15) we have the same limit (v,tp).Thus, from (3.7), (3.15) and
(3.16) we get (3.3).

Remark 3.1 If the sequence {z}, 2 € V, corresponding to {t;}, (tx €
L is from (3.12)) is fundamental in V, then because of completness of V
dzg € V such that

lim zp =2z in V.
k—oo
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Therefore, taking into account (3.1), we have

Fov:= lim J(zg,v) = J(z0,v)
k—oo
(this is justification of notation Fy,), and from (3.3) it follows that there
exists unique zg € V such that

Fv=J(z,v) YveV

which coincides with the assertion of the Lax-Milqram theorem (see e. g.
[6], Chapter III, §7, and Section 4 below). Therefore F,, € V* can be
identified with zp € V. If the sequence {z} is not fundamental in V' (let us
note that the number sequence {J(zg,v)} is fundamental for fixed v € V),
then F,, € V* will be identified with the ideal element zy which does not
belong to V. Let us denote by V; the set of the ideal elements z, and by
V := VUV, Let us remind that when {2} is fundamental, the ideal

element zg € V. y
Under the product Azg, A € R, zg € V, we understand the (g identified
with the functional

Feov:= lim J( Az, v) = klim A (2, v) =: AFv.

k—o0

Under the sum 2} + 2{/ of 2}, 2 € V we understand (y, identified with
the functional

Feov:= lim J(zy+ 2(,v) = lim J(z3,v) + klgglo J(zp,v) =: Fyv+ Fv,

k—oo k—oo

where
2= C Y, 2= C 1,

lim ), =t;, lim ¢} =1t; inV,
—00 k—oo

ty and t( are uniquely defined, in view of Riesz theorem, by bounded linear
functionals F' := (v,t})) and F" := (v,t}) corespondingly. Obviously V is
a linear vector space.

Now introducing in V the norm as

Izollg = I Fz, llv=, (3.17)
V will be Banach, and moreover Hilbert space since such is V*. Indeed,

2
Vo

20 + 2613 + 120 — 20 1% = |1 Fy + Foylie + 1 Fyy — Fip
= 214~ + I1Eg 17+

= 2(|zllF + lI2011%)-

o1
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Therefore, the scalar product can be defined as
(20, 20) ¢ == 47 (120 + 25113, + 120 — =0 |I%)-
The completness of V is obvious from (3.17).

Remark 3.2 If C~lis a bounded operator then from (3.11), (3.12) it
follows that {z} is a fundamental sequence.

Remark 3.3 If J is coercive, i.e.,
|J(u,u)| > ¢||v||?, ¢=const >0, YveV,
then C~ is a bounded operator (see the above reference on [6]).

Remark 3.4 If (3.2) is fulfilled, then either J(v,v) > 0 Yv € V or
J(v,v) <0 Vo eV.

Proof (belongs to S.S. Kharibegashvili). Let us take arbitrary fixed
vg € V, vg # 0, from J(vg,v9) # 0 we have either

J(vg,v9) >0 (3.18)

or

J(vg,v9) <0 (3.19)

Let us now show that if (3.18) is fulfilled, then from Vv € V, v # 0
follows J(v,v) > 0, but if (3.19) is fulfilled then J(v,v) < 0.

Let first v € V, v # 0 be not linearly dependent on vy then for Vi €
| — 00, +o0[, we have

0 # J(vo+tv,vo+tv) = J(vg,v0) +[J(vo, v) +J (v, v0) |t + J (v, v)t%, (3.20)

since vg+tv # § Vt € V] — o0, +o00[. Therefore according to the well-known
property of the quadratic trinomial

(o, v0) - J(v,0) > %[J(vo,vo) + (v, 0)]? > 0. (3.21)

But if (3.18) is fulfilled, then in view of (3.21), obviously J(v,v) > 0,
for arbitrary v € V\{6}, which is lineary independent of wvp; if (3.19) is
fulfilled, then from (3.21), we get similary J(v,v) < 0, Vo € V\{6}, which
is lineary independent of vy.

Let now v € V, v # 0, and be lineary dependent on v, i.e., dty €
| — 00, +0o0[, such that vy + tov = 0. Obviously, such ¢ is unique, i.e., the
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equation vg + tv = 6 with respect to ¢ has a unique solution ¢ = ¢g. On the
other hand from

J(vg + tv,ug+tv) =0 & vy +tv=10

it follows that the trinomial (3.20) has unique zero ¢ = to. This is equivalent
with the assertion that the discriminant of the trinomial (3.20) is equal to
Zero:

(v, v0)J (v, v) = %[J(vo,v) + J(v,00)]2 > 0 (3.22)

(the last equality is strong since J(vg,vg) # 0, J(v,v) # 0). Finaly from
(3.22) follows J(v,v) > 0 and J(v,v) < 0 when correspondingly (3.18) and
(3.19) are fulfilled. Thus the remark is proved.

4. Bending in the weighted Sobolev space

Let us consider for the equation (0.1) the inhomogenuoes BVCs as follows:
on I'y

ow
= — = 4.1
w=g12, - =922 (4.1)
and on I'y either
w=g11, w,e=gn if Iy <4oo (0<x<1), (4.2)
or
w,9= g, Q3=hy if Ip<+oo (0<x<1), (4.3)
or
w = g11,
# 0 when Iy < 400 (0 << 1),
My = hq (4.4)

=0 when [y =+oc0 (1<x<2)
if I1; < 400 (O§%<2),

or
# 0 when Ip; < +oo (0 << 1),
My =h
= 0 when Ip; = +o0 (1 < 3 < +00),
(4.5)
% 0 when I1; < o0 (0 < 2 < 2),
Q3 = hy

=0 when I1; = +00 (2 < 3 < +00)
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if Ip; < 400 (0 < 3 < +00).

Let
9a8, ha € L2(I'1), a,B=1,2, (4.6)

and g11, g21, g12, g22 be traces of certain given function u € WQQ(Q, l~)) (see
below (4.7), (4.10)).

Remark 4.1 Conditions ho =0, a = 1,2, in (4.4), (4.5) are necessary
conditions (see Section 1) of boundedness of deflection w and w,y corre-
spondingly when I;; = +o00 (2 < 3 < 4+00), and Ip; = +00 (1 < 3¢ < +00).
The demand of boundedness of w and w,o is natural in the mechanical point
of view since we do not consider the case of concentrated shearing forces
and moments, when w and w,s should be, in general, unbounded.

Remark 4.2 In the particular case (0.4), let

3 1 3—x=
g12 € W (T2), goo € Wi (T'2), g1 € W, 2 (I'1),

e

1—s
g21 € Wy ? (I'1), ha, he € Lo(T'),

and g11, 921, 912, g2 be traces of certain given function u € WQQ(Q,D) (see

below (4.15), and Remark 4.5) and its derivative of the first order (if O is

of the class C3, they exist, on Ty always, and on T'1 when 0 < s < 2 and

0 < 3¢ < 1 respectively (see [7.8], and [9], Section 10).

Let further
WE(©, D) (47
be the set of all measurable functions u = u(x1, x2) defined on Q which have
on ) generalized derivatives Dg(ff}gg?)u for o + a9 <2, aq,a9 € {0,1,2}
such that i
/ |D{L02) |2, (21, 29)dQ < +00 (4.8)

1,22
Q

for p,, 1= 1, pyy = Di(x1,22), p,, = Dalz1,22), py, = Do(x1,72).

D;, i = 1,2,3,4, are bounded measurable on €2 functions satisfying (0.2),

(0.3). Therefore, since D, > D3 in €,

/ D3 (U0 )?dQ < / Do (thy00 )2dQ < 400, a=1,2, (4.9)
Q Q

1 1
| Ds(u,11 +u,22 )2dQ2 < [ Dy(u,11)%dQ +2 [ D21y -D3u,00 dS
Q Q Q

=
=

L 12
+ [ Da(u,22 )2dQ < { [j D1 (u,11 )Qdﬁ] g [j Do (u,22 )QdQ] 2} < o0.
Q ) )

o4
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Let
D = {po,ov Pa,0> p1,17p0,2}7
and

D:=DU {poy = x3}.

Then, in view of (4.7), (4.8), the sense of the notation W2(Q, D) is clear.
Obviously, 5
W2(Q,D) c Wi(Q,D). (4.10)

From (0.3), it is clear that

€ L (9).

-1
pal,ag

Hence according to [10] WZ(Q, D) and W2(Q, D), by virtue of (4.8), (4.9),
will be Banach spaces under the norms

||u||12/V22(Q7D) 1= /[U2+D3(U,11 +u,99 )2
)
+(Dy — D3)(u,11)? 4+ 4Dg(un2)? 4 (Do — D3)(u,09 )?]dS, (4.11)
\|uH§V22(Q,D) = |\u\|$4,22(97D) + / 22 (u, )2d) (4.12)

Q

respectively, and moreover, Hilbert spaces under the scalar products

(w,V)wz@p) = / [uv + D3(u,11 +u,922 )(v,11 +v,02) + (D1 — D3)u,11 0,11
Q
+  4Dgu,12v,12 +(D2 — D3)u,22v,922]d<2,

(u, W)z (0,5) = (W V)wz@p) + /95%“,2 v,2dS2

Q
respectively. Let further f € Ly(Q2), and
O ~ _— ~
Vi=W3(Q,D)=Cg(Q) in the norm of Wi(Q,D). (4.13)

Since p,, ., € Llc(Q) we have C§°(Q) € W(Q, D), and (4.13) has the

sense. In particular case (0.4), we can take as V also

~ ov
— 2 . — — ;
Vi={veW;(Q,D): v, =0, I 0, and either
o, =0, vl =0 if (42) or v,s| =0 if (43) (4.14)
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or wvlp, =0 if (4.4) in sense of traces}

In case (0.4) we could introduce weights and norm as follows:

pp— — — P ra
Poo - = L P20 = P11 = Po2 -= T2,

1l vz g - = /{U2+x§[(ua11 +,22) 2 (w11 )7+ (1,12 )7+ (u,22) ] Q.
Q
(4.15)
It is obvious, in view of (0.4), that the latter norm and (4.11) are equivalent
in W2(Q, D). But we prefer (4.11) since the above resonings are valid for
the more general case (0.3).

Definition 4.1 A function w € W(Q, D) will be called a weak solution
of the BVP (0.1), (0.3), (4.1)-(4.5) in the space W2(S2, D) if it satisfies

conditions as follows:

w—u€eV, (4.16)
and Vv eV . .
J(w,v) = / B(w,v)dQ) = / vfd§, (4.17)
Q Q
where (defined in (2.11))
B(v,w) = Ds(w,11+w,22)(v,11+v,22)+
+ (D1 — D3)w, 11 v,11 +4Dsw,12 v,12 +(D2 — D3)w,22 v, 22,
(4.18)

or corespondingly, for the particular case (0.4),

J(w,v) := /B(w,v)dQ: /deﬂ—i—w / hovdr1—1 / hiv,odzy, (4.19)
) Q I Iy
where y1 =72 =0 if (4.2); n=0,2=1 if (43); 1 =1 12=0

if (4.4); and if (4.5) then v =1 when 0 < 3x <1, and v =0 when
1< <+00; v2=1when 0 < <2, and v =0 when 2 < 3 < +00.

Remark 4.3 The BVCs (4.1), (4.2), the first ones of (4.3), (4.4) and

(4.5), the second ones of (4.3), (4.4) are specified in (4.16) and (4.17),
(4.19) correspondingly.

Remark 4.4 Obuviously, if the solution of above problem exists in the
classical sense then (4.16), (4.17) and (4.19) will be fulfilled.
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Theorem 4.1 In case (0.3), if Dy > 0, under other above conditions
there exists the unique weak solution of the BVP (0.1), (0.3), (4.1)-(4.5).

This solution is such that
ol < C [y + el ] (4.20)

where constant C is independent of f,u.

Theorem 4.2 In case (0.4), if 0 < 3 < 4, under other above conditions
there exists the unique weak solution of the BVP (0.1), (0.4), (4.1)-(4.5).
This solution is such that

ol 0,0, < € |1y + 1ellg ) + 91111 geryy + 2l ey
(4.21)
where constant C' is independent of f,u,hi, ho.

Proof of the Theorems 4.1 and 4.2. First of all, let us prove that V is
a subspace of W2(Q, D). In case (0.3), it is obvious. In case (0.4), for it we
have to show its completeness. Because of linearity of the trace operators
and operators in (4.1)-(4.4), obviously, V' is a lineal. Since u € W(Q, D)
has the traces [7-9]

33—

ul, € W, 2% (T1) for 0 <5< 2,
3
2

ul, € Wg([T2) for 0< i< oo,

1—x
U, 9 ‘F1 e W,2 (I'1) for 0 < <1,
ou 1/2
I, e W7 (q) for 0 < s < o0,

then 3C7 =const> 0 such that

||u||W23_51 - < C’1||u||W%(Q’D) for 0 < <2, (4.22)
HuHWZ%(F : < C’lHuHW%(Q}D) for 0 < s < 400, (4.23)
[|w,2 || 2177% - < C’1||u||W%(Q’D) for 0 < <1, (4.24)
Haujj Cullul| for 0< < + (4.25)
— u or P 0. .
on WZ% ((Tg) w3 0,0 =

Let vy, € V' be a fundamental sequence. It will be also a fundamental
sequence in W2(Q, D). But the latter is a complete set, i.e., Jv € W3(€, D)
such that

llom = vlwa@,p) m =g

o7
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Then, by virtue of (4.22)-(4.25), respectively,

[|vm — v 23:%(1“1) < C1l|vm — UHW%(Q,D) for 0 < <2,
[|vm, — U||W§(F2) < Ch||vm — v||W%(Q’D) for 0 < 3 < 400,
|[om,2 — vy2 HW21_—21(F1) < Cillom = lly3q py for0< <1,
OV,
) (F2) < Ch||vm — v||W%(Q,D) for 0 < » < +o00.
Therefore,
[|vm — UH Box — 0 for0<» <2, (4.26)
52 (I1) M —+oo
|| U — 0| — 0 for 0 < s < +o0, (4.27)
W?(F ) M —r4o0
||Um72 — 0,9 || 1—z — 0 for 0 <isx <1, (4.28)
Wy? (1) m —+o0
Ovp,
) 1 — 0 for 0 < < 4o0. (4.29)
W3 ([2) M —+oo
But since
Umlp, =0 for 0<s0<2, (4.30)
Umlp, =0 for 0 < 3 < oo, (4.31)
Um,2lp, =0 for 0 <3 <1, (4.32)
0
Tml — 0 for 0< < +oo, (4.33)
87’1 I'a
from (4.30) follows
lomll s =
Wy? (T1)

Then, taking into account (4.26),

0wl s = llomll sge | =llol]) sge < Mool g 0

2 1

i.e., almost everywhere (a.e.)
v, =0 for 0 < <2
Similarly, in view of (4.27)-(4.29), (4.31)-(4.33), we have a.e.

o], =0 for 0 <s¢< oo,
v72|F1:O for 0 << 1,
v

—| =0 for 0< s < +o0.
8TLF2

o8

WT( 1) W, 2 (I1) Wy 2 (T1)M —+oo
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Thus V is complete, i.e., it is a Hilbert space and a subspace of W%(Q, ﬁ)
Further the proof of Theorems 4.1 and 4.2 will be realized by means of
(see[4,6])

The Lax-Milgram theorem. Let V be a real Hilbert space and let
J(w,v) be a bilinear form defined on V x V. Let this form be continuous
—i.e., let there exist a constant K > 0 such that

|J(w, 0)| < Kl|wll, [|v]], (4.34)

holds Vw,v € V— and V -elliptic —i.e., let there exist a constant o > 0 such
that
J(w,w) > allw]2 (4.35)

holds Yw € V. Further let F' be a bounded linear functional from V* dual of
V. Then there exists one and only one element z € V' such that

J(z,0) =< F,v>=Fv YveV (4.36)

and

2], <a (4.37)

Obviously, for the bilinear form (4.17), in view of (4.18),

1 1
mmmsﬂm—mﬁmnum—mwmmm
Q
' 1 1
+ [ (D2 — D3)2|w,9 |- (Da — D3)2|v, 99 |dQ2
Q
© 1 1
+ / D3 w, 114w, 22| - D3 |v,22 +v,11 |[dQ
Q

1 1
+4 DZ |w,12 | . DZ ‘U,lg ‘dQ

S

D=

(D1 — D3)(w, 11 )QdQ] : [‘/‘(D1 — D3)(v, 11 )Qdﬁ]

A\
\

D=

(D2 — D3)(w,22)? } [/ (D — D3)(v, 22 )Qdﬂ}

D=

|
0"

D3(w, 11 +w, 29 )? } [/ D3(v,114v,22 )Qdﬁ]
Q
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N~

1
2
+4| [ Datw.ayan]" | [ DatwraPa|” < Tl bl

Q
(4.38)
and, in particular (see below Remark 4.5),
[ (w, )] < Tlfwllvllvlly Ve,o e V. (4:39)
Hence (4.34) is fulfilled.
Taking into account that (Dy — D3)(v,22)? € L1(f2), because of
Dy — Ds
ay < Dy (4.40)

obviously,
x%(U’QQ )2 S Ll(Q).

Without loss of generality, we can suppose that Q lies in II (see (2.14)),
and let v € V and v = 0 in R2\Q. Then for fixed z;

1
o, ) EWB00,1L, ), 1elgr0apap = [ 10° + h(0iaa Pl
0

v(x1,1) =0, wv,a(x,1)=0,
and if we suppose that (Dy — Dg)%(U,Q)Q € L1(Q), ie., 23(v,9)? € L1(Q)
(D3 — Ds)?
L=l -
Dg
Lemma 4.1) that the inequalities (2.15), (2.16) are valid for such functions
ve W2(Q,D), QCIL

2

since x5 < because of (4.40), it is easy to show (see below

Remark 4.5 In viev of (2. 16) (4.40), when Do > 0 the norms (4.12),
and (4.11) are equivalent in W3(Q, D), Q C 1. Consequently (4.38) holds
also for W2(2, D).

Lemma 4.1 If v € W3(]0,1[,23), 23(v,2)? € L1(]0,1]) and
v(z1,1) =0, wv,(x1,1)=0,

then (2.15), (2.16) are valid, i.e.,
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1 1
)2d
iU v,22) 95 v,2 ) dxs.
0 0

Proof. In the case under consideration v(z1,-) € W2(]e, 1[) for V[c, 1] C
10,1]. Therefore (see [4], Remark 29.6) v(x1 ) and v,2 (x1,-) are absolutely
continuous on [e, 1] for arbitrarily small ¢ =const> 0. Now we have to
repeat proof of Lemma 2.1 considering all integrals in limits ¢ < xy < 1,
and then tending ¢ to 0+ taking into account that from square summability
of v(xy1,) and xov,2 (21,-) follows respectively

r¢>-|©

. 2 3 2
legTé+ xov*(x1,29) =0, leE)%+ v, (1, 22)]* = 0.

Otherwise if we assume lim x9v?(z1,22) = co(z1) > 0, lim z3[v,e (21,22)]? =
:L‘2—>O+ :L‘2—>0+

c1(z1) > 0 then in some right neighbourhood of point (z1,0)

c1(x1)

2xy

co(z1)
2x9

v (xy, 20) > . 3v,g (21, 22))% >
But this is a contradiction since on the left hand sides we have integrable

functions while on the right hand sides we have nonintegrable functions.
In view of (2.15), as 0 < Dy < D2{;1D3, for v € W2(Q, D), we have
2

b 1
/UQ(xl,xg)dQ = /U (x1,x2)dx1,drs = /da:l / vidry <
a ‘0

Q I
oo b1
S %/ diUl/iU ,22 d.CL'Q < 91—120/(1:101/ Doxé{(’u,gg)Qde S
a 0
16 [ )
<—[(Dy—D dsd.
< op [ (D2 Dowee)

Q
Similarly, by virtue of (2.16),

4

/’ (020 < 51 /’(D2 — Dy) (0,99 )2d92.
2

jol

Hence

||v][ == /[UQ + 23(v2)? + D3(v,11 +v,922 )% + (D1 — D3)(v,11 )2+
Q
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—|-4D4(U, 12 )2 + (DQ — D3)(’U,22 )Q}dQ < (441)
20 f *
< — /(D2 — Dg)(v,gg )QdQ + J(U,U) = CJ(U,U),

9Dy .

Q

where
5 — 14 20
= —9D0.

(4.41) means V-ellipticity of the bilinear form J. Thus (4.35) is also fulfilled.
Now let us consider the following functional

Fv:=(v,f) = J(u,v) + 72 / vhedzy — 1 / v,2hadry, veV (4.42)
1:‘1 1:‘1
(For case (0.3) we have to take y3 = y2 = 0).
Further

[0, O < M0l g0 11y @y < T2l 0y (4.43)

33— 1—3

and, since in case (0.4) traces belonging to W, * (I'1),0 <3 < 2; W, * (I'1),
0 < 5 < 1; are also traces belonging to La(I'1),

' /vhgdml

I'1

' /U72 hidxq
I
0<x<1.

After substitution of (4.43), (4.38), (4.44), (4.45) in (4.42), we obtain

<ol o el ey, < Clloll il s (444)

C=const >0, 0<x<2,

< oo o 1ol ey < Clloll Bl oy, (445)

[Ev] < I flzo(@) + Tllellwso,p) + CCrellhallL, o,

bl )l (4.46)
Let us note that by demonstration of boundedness of the functional F
defined by (4.42), we did not use that Dy > 0 (0 < » < 4), ie., the
assertion is true for Dy > 0 (0 < »r < 4+00). Therefore the linear functional
(4.42) is bounded in V. So in view of (4.39), (4.41), (4.46), according to the

Lax-Milgram theorem 3z € V — unique such that, by virtue of (4.36), we
have

J(z,v) = Fv:= (v, f) — J(u,v) + 2 / vhodzi — y1 / v,9 hidzy Yv € V,
1:‘1 1:‘1
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i.e.,
J(w,v) = (v, f) + 72 / vhedry — 1 / v,0hidxr1 Yv €V, (4.47)
f‘l 1:“1
where
w:=u+z € W5(Q,D). (4.48)
So

w—u=2z€eV,

and (4.16) is fulfilled. (4.47) coincides with (4.19) (in case (0.3) with (4.17)).
Thus the existence of the unique weak solution w € W3(, D) of the BVP
(0.1), (0.4) or (0.3), (4.1)-(4.5), has been proved.

From (4.46) it follows that

1E Ny < 1111y, @ + 7lellwaio,0) + COallall o, 71l ). (449)

By virtue of (4.48), (4.37), (4.49),

lwllwze,p) < llullwz@,p) + 21l < llullwze,n)
a7 1l + Tullwz o) + COllhallymy, +1lh1l 4y m,))]
< ClIAN @ + Tullwz@,p) + llball,w,) +2llh2ll, e

where

C:=maz{Ta"t +1, a71C},

i.e., (4.20), and (4.21) are valid in cases (0.3) and (0.4) respectively.

Remark 4.6 Instead of V defined by (4.14), we could consider the
space

0 ~
W3(Q,D).

Then taking into account that (2.15) is, obviously, valid for v e C5°(]0.1]),
the condition (4.41) will be fulfilled for v € C§(Q) and hence for v €

W2 (Q,D). The condition (4.39) will be also realized on W2 (Q,D)— sub-
space of W2(Q, D). (4.46) (where v1 = v2 = 0) will be also carried out for
0

v e Wi(Q, D) Therefore Theorem 4.2 will be valid if in the definition 4.1
O ~
the space V is replaced by the space W3(Q, D) C V, and (4.19) by (4.17).
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5. The Case Dy =0 (3> 4)

In this case only the BVP (0.1), (0.3), (4.1), (4.5), can be correctly posed.
Let

V = W20, D) = G0
with the norm of W2(Q, D).
Definition 5.1 Let u € WZ(Q, D) be given, and
Fv:=(v,f)—J(u,v), veV, (5.1)
where J is defined by (4.17). zo+u, where zy € V is identified with F,,eV*

(see the modification of the Lax-Milgram theorem in Section 3), will be
called the ideal solution of the BVP (0.1), (0.3), (4.1), (4.5), if it satisfies

condition as follows:

» 0
F,v:= klzm J(zg,v) = / fodQ — J(u,v) Yo eV =W3(Q,D). (52)
Q

Theorem 5.1 There exists the unique ideal solution of the BVP (0.1),
(0.3), (4.1), (4:5)-

Proof. Obviously,
1] < el o + Tl

<1l ol + Tlall g < ol

0
since (4.38) is all the more fulfilled for v € V = W2(Q, D) C WZ(Q, D).
Hence F' defined by (5.1) is a bounded linear functional on V. In view of

0
(4.39), which is all the more valid for V' = W2(Q, D), (3.1) holds.
From v € V and

J(v,v) =0
follows
v =kix1 + koxo + k3, k; =const, i=1,2,3, a.e. in £,
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since from (4.17), (4.18) we have

J(v,0) = [ [Dl(%n )2 + Da(v,22)2 + 2D3v,11 0,22 +4Dy(v,12 )? | S
Q

= s£ [Ds(v,n +v,22 )% + (D1 — D3)(v,11)?

+(Dg — D3)(v,90 )% + 4Dy (v,12)?|dQ2 = 0,

and hence a.e. in ()
v,11=0, v,2=0 v,12=0.
On the other hand, it is obvious that

u € W3(Q,D) = u € W3(Qs, D) = W5(Qp).
ou = .
Hence u and I have traces on I'o N Qs V6 > 0, and since v € V =
n
0
W2(Q, D), similarly, in the sense of traces,

ov
v ==
LouQs  On

FQUQg_

Therefore, v = 0 a.e. in Q, i.e., v =6 in V. Hence (3.2) is fulfilled.
Thus, we can apply the modified Lax-Milgram theorem. Which asserts
the existence of the unique ideal element zp such that (5.2) is fulfilled.

Remark 5.1 If, in particular, 29 € V then 2o +u € W2(Q, D), and on
0zp +u

on

ou
and u, — coincide.

T’y the traces of zg + u,
on
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