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Abstract

In the pseudodifferential calculus on manifolds with singularities there appear op-
erators in terms of Fourier and Mellin transforms. This gives rise to abstract Fourier-
Laplace transforms. We describe pseudodifferential operators and Sobolev spaces with
respect to such transforms. It is indicated how these techniques may be used to get
an index formula on manifolds with one-point singularities.
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Introduction

The concept of the conification of an operator algebra was introduced in
Schulze [Sch91]. It applied earlier results of [Sch90]. Roughly speaking, the
conification is a pseudodifferential calculus along the cone axis R, based
on the Mellin transform, with operator-valued symbols taking their values
in the given operator algebra. The essential key words in this context are
Fuchs-type operators, conormal symbols, Mellin quantization, kernel cut-
off, meromorphic operator functions, weighted cone Sobolev spaces, discrete
and continuous asymptotics, Green operators. In particular, given a closed
compact manifold X, the conification of the algebra of pseudodifferential
operators on X gives rise to a cone algebra on the stretched cone C =
Ry x X.

Let us comment in this connection on the role of the Mellin transform
which is the relevant integral transform here, whenever a new cone axis
R, > t appears. We could always substitute the diffeomorphism r = log ¢ of
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R, — R and pass to the Fourier transform in the new coordinate. However
in the original t-variable the calculus needs the Mellin and the Fourier
transform at the same time. The link between the Mellin and the Fourier
description of operators by means of Mellin operator conventions belongs to
the essential technical points of the calculus. Thus, the coordinate change
by r = logt would destroy this relation, and it seems in fact much more
natural to employ the Mellin transform in its classical form, though the
elements of the Mellin pseudodifferential calculus have to be established
and accepted as a tool.

The advantage of using the Mellin transform in the analysis on mani-
folds with conical singularities lies in the fact that it “quantizes” the covari-
able z as the Fuchs-type derivative —t d/dt which is the only characteristic
component in a local basis of vector fields at the singular point. The basic
geometric ingredient is the “germ” of the diffeomorphism ¢ +— logt att =0
(or, more precisely, the behavior of this diffeomorphism in an infinitesimal
interval (0,¢), where £ > 0).

More generally, consider an arbitrary diffeomorphism r = §(t) of the
half-axis T'= R onto the whole axis R, with §’(¢) > 0 for t € T". We asso-
ciate to § an isomorphism F' : L*(T,dm) — L*(R), where dm = 2 &'(t) dt,
by changing the variable in the Fourier transform. Then, we study the
integral transform F for complex values of the covariable, too.

Similar considerations apply to the multidimensional case provided that
the mapping 6 under consideration does not mix up the variables.

The integral transform so obtained is easily verified to “quantize” the
covariable z as the derivative D = 6’_%0% d/dt which keeps an information
on the geometric nature of the singular point in question via the “germ”
of the diffeomorphism ¢ — §(¢) at t = 0. It is therefore to be expected
that F' is the relevant integral transform in the analysis on manifolds with
one-point singularities, such as “conical points”, power-like and exponential
“cusps”, etc.

In the literature there exists a number of directions studying the analysis
on manifolds with one-point singularities under different aspects (cf., in
particular, Plamenevskii [P1la89], Levendorskii [Lev93], Maz’ya, Kozlov and
Rossmann [MKR97], et al.). Melrose and Nistor [MN96] defined a “cusp”
calculus on a manifold with boundary by use of blow up techniques. They
described the Hochschild homology of this algebra and various of its ideals
and so deduced a pseudodifferential generalization of the Atiyah-Patodi-
Singer Index Theorem. We also mention the paper of Schulze, Sternin and
Shatalov [SSS96] where an operator algebra on manifolds with power-like
cusps is constructed by use of non-commutative analysis.

The aim of the present work is to develop the calculus of pseudodiffer-
ential operators on a manifold with one-point singularities by use of the
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integral transform F'. Thus, our approach is similar in spirit to the cone
calculus of [Sch91].

We will restrict our attention to the local algebra at a singular point,
for we use the standard pseudodifferential operators away from the singu-
larity. In this situation, we introduce the notion of ellipticity and establish
the Fredholm property of elliptic operators. We then apply Fedosov’s tech-
niques to derive an index formula for elliptic operators of order zero (cf.

Fedosov and Schulze [FS96]).

1 Abstract Fourier-Laplace Transform

1.1 Fourier transform

Until further notice we assume that 7' = (a,b) is an arbitrary interval in
the real axis and r = §(t) is a diffeomorphism of 7" onto R. To be specific,
consider the case where ¢'(t) > 0 for t € T

It is easy to see that, given any u,v € Cg;,,,,(T), we have

_ N 1
(wos voé 1)L2<R) = (4, 0) 27 am) (1.1.1)

where dm (t) = 27 |6'(t)| dt. Hence it follows that u o §~1 is of class L*(R),
for any u € L?(T,dm).

Thus, we may define the Fourier transform on L*(T,dm) (denoted by
F in contrast to the usual Fourier transform F) so as to make the following
diagram commutative:

L2(T,dm)
(6_1)Ast \F
L2(R) L I2(R).

In other words,

Fu(r) = ‘/ﬂ% eiiﬂnu(&*l(r)) dr
1

= — [ e Wy(t)dm(t), T €R,
27T JT

for any u € L*(T,dm).
The main property of the Fourier transform so defined is that Parseval’s
formula remains valid.
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Lemma 1.1.1 Ifu,v € L*(T,dm), then
(FU, FU)LQ(R) = (u, U)L2(T,dm) .
Proof. Indeed, applying Parseval’s formula yields

(Fu, F'U)LQ(R) =27 (u 06 1 wo 6_1)L2(R) )
which gives the desired conclusion when combined with (1.1.1).
O
Hirschmann [Hir90] defines regular F-transforms on L?(T,dm) by re-
quiring the Parseval formula as well as 3 more properties to hold. Then, he
proves that any regular F'-transform is of the form F = F o (6‘1)*, with ¢
a diffeomorphism of T" — R.

1.2 Fourier-Laplace transform

If w e &(T), then Fu (1) is also well-defined for every complex value 7 €
C. In this way we obtain what will be referred to as the Fourter-Laplace
transform. Namely,

Fu(z) = % [ =0 () dm (1)

= F (e“‘s(t)u> (1), z=T1+1w € C, (1.2.1)

where we first assume u € Cgy,,,(T).

Obviously, Fu (z) is an entire function in the complex plane and the
restriction of Fu (z) to the real axis coincides with the Fourier transform
of u (i.e., Fu(1)).

Givenay € R, set I'y = {z € C: im z = v} and consider the
Fourier transform” F.,u = Fu]lr, .

113
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Lemma 1.2.1 For any v € R, the transform F., extends by continuity
to a unitary isomorphism

F.,: L*(T,e®*dm) = L*(T). (1.2.2)

Proof. If u € C%5,,,(T), then

comp

sup (1+ |z|)N |Fyu(z)] < oo
zel'y
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for all N =0,1,.... Now, applying Lemma 1.1.1 gives

(Fu, FVU)L2(F7) = (F(ewu), F(ev‘sv)>

= (ewu e )
L2(T,dm)

L2(R)
= U)LZ(T,eZW‘sdm)

(
whenever u,v € Cg,,,(T). Hence (1.2.2) is an easy consequence of the

relation between F' and the Fourier transform on R via the substitution
r=06(t).
O

1.3 Inversion formula

The following is actually an equivalent formulation of the Fourier inversion
formula.

Lemma 1.3.1 The inverse of (1.2.2) is given by the formula

F;lf(t)ZQL it f(2) d=.

T Jr,
Proof. Indeed, given any u € L*(T, e**dm), we have
Fu(r+iy) = Fir (ev‘su)
= Fror (€7 u(571(r))),
whence by Fourier’s inversion formula
Fy' (Fyu) (1)
= 780 % /}% POTE (eu(67(r))) dr
= u.

This proves the lemma.

1.4 Properties

The Fourier-Laplace transform on LQ(T dm) is related to the derivative

1
D = d dt
50"
in the same manner as the usual Fourier-Laplace transform to the derivative

D=1d/at.
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Lemma 1.4.1 For any u € Cg;,,,(T), it follows that

Proof. Indeed, integrating by parts yields

Fy..(Du) = /T e=izb(t) ( 6/1t)Dtu> 18 (1) dt

= sgn(é’)/ (—Dtefiz‘s(t)) wdt
JT

= zF4.,(u),

as desired.
(]

It is therefore to be expected that the Fourier-Laplace transform F will
prove to be useful by studying “totally characteristic” differential operators,
i.e., those of the form A = %", A;(t)D? with A;(t) smooth functions on
T.

Yet another basic property of the Fourier-Laplace transform is that
multiplication of u by the weight function e¥® is interpreted under (1.2.1)
as the displacement of the reference line by .

Lemma 1.4.2 For any v € R, we have
F(e"u)(z) = F(u) (: +17), z€C.
Proof. Indeed,

F(e™u)(z) = /T e128(0) (eW)u(t)) dm (1)
— F(u)(z+),

as desired.

1.5 Sobolev spaces

We want to define weighted Sobolev spaces of functions on T, based on the
Fourier-Laplace transform. Lemmas 1.4.1 and 1.4.2 sheds some light on
how we have to begin with.

Definition 1.5.1 Let s € Z; and v € R. Denote by H*"(T) the set of
all distributions u onT" whose derivatives up to order s are locally integrable
with respect to the measure dm and satisfy

1
2

. B S ] 9
[wllpgo iy = /Te 28() Z |DIu(t)|” dm | < oo.
: =
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For integer s < 0, we could define the space H*7(T) by duality and
then, for fractional s, by complex interpolation. However we derive a direct
description of the space H*7(T') so obtained, from the following lemma.

Lemma 1.5.2 Suppose s € Z. Then

wmmm~(4

where the equivalence of two norms means that their ratio is bounded uni-
formly in u both from below and above by positive constants.

1
2
u+vﬂswm@Wm), w e 1T,

Y

Proof. For the proof, we rewrite the norm || - ) by using the

2
HHS,'y(T
Fourier-Laplace transform. Namely, Lemmas 1.2.1 and 1.4.1 imply

laldniy = 2 / |DIu(t)|” %0 dm
=0 7T
- Z / ‘FtﬂszU‘Q dz
=0 /T
- Z / ‘Zj Ft|—>zu}2 dz.

F—’Y

Since

1+|z\ <Z }23‘ 1—Hz\2)8,

we conclude that

1
st Jr

(14 2%)° |Fu(2)dz < [ull3 () < /F (1+12%)° |Fu(2)? d.
. Jr,
This is precisely the assertion of the lemma.
U
Since r = 6(t) is a monotone function, there is no embedding H*" 7" (T) «—
HY(T) for s < ", 4" < ~". However, we get an embedding theorem if
we cut off the functions in question at one of the bounds of T'.

Lemma 1.5.3 Let r = 6(t) be a monotone increasing mapping of an
interval T' = (a,b) onto R and let w € Cpe.(T') be equal to 1 close to a and
0 close to b. Then,

" 17

w HT(T) — HE(T)

for all 8 <", v <A".
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r

r=t
[ ...................... r=logt
t
1.005.00141.0045.002
Fig. 1.1: The graph of r = §(t).
Proof. The proof is straightforward.
]

The following example was intended as an attempt to describe the
weighted Sobolev spaces H*?(TxX) of Schulze [Sch91] in terms of a global
integral transform.

Example 1.5.4 If T'= R, and 6(¢) = logt, then

Fu(z) = /0'00 t u(t)%

= Mu(—iz), z € C,

M being the Mellin transform. The corresponding spaces H*7 (R, ) have
proved to be extremely useful in the cone theory (cf. Schulze [Sch91]).

On the other hand, if 7' = R and §(¢) = ¢, then F = F is the usual
Fourier-Laplace transform on the line. Then, H®°(R) are the classical
Sobolev spaces.

We now combine these examples by considering a diffeomorphism r =
6(t) of Ry — R, such that

6(75):{ logt closeto t=0,

t close to t = o0,

see Fig. 1.1.
Then, H*%(R. ) are isomorphic (as normed spaces) to the spaces H*°(R )
widely used in the cone theory (cf. Schulze [Sch91]).
O
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1.6 Pseudodifferential operators

Lemmas 1.2.1 and 1.4.1 imply that FD = z F, defined, for instance, on
functions u € L?(T,dm) with Du € L*(T,m). This leads to the notion of
pseudodifferential operators with respect to the transform F' via

opp(a )U(t F—’Y)zn—nf Ft’>—>Z( (t,t, 2)u (t))

27'(' / dz/ i(6(t)—6(t")) (t ¢ Z) ( )dm(t'), (161)

where a € Cpo.(T x T x T'_,) (see Hirschmann [Hir90]).
If a(t,t', 2) is independent of ¢, then this reduces to

oppy(a)u(t) = (Fy). 0 alt,2) Fuzu, for ue Cg,,(T).

2 Elements of Pseudodifferential Calculus

2.1  The Laplace-Beltrami operator on a manifold with cusps

Consider the surface

S={z=(21,22,2) : f(z3) =\/2} + 235, 23 > 0}

in R? which is obtained by revolving the curve z; = f(23) around the axis
OZ3.

We assume that f : Ry — R4 is a positive C* function on the half-
line Ry, with f(0+) = 0. Then S has a singularity at the origin unless
f'(04) = co. We Wlll restrict our discussion to the case of singular points
by requiring fo 9) to be infinite (see Fig. 2.1).

In particular, if f(t) = P, p > 1, then the origin is a conical point, if
p=1, and a cusp, if p > 1.

Let us parametrize the surface by

z1 = f(t) cos,
z2 = f(t) Sin¢7

Z3Zt,

where ¢ runs over [0,27) and ¢ € [0,00).
Then, the Riemannian metric on the smooth part of S is given in the
coordinates (¢, ¢) by

d2? +dz5 +dz = (1+ (f'(1)?) dt* + (f(t))* do?
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z3

f(z3) = /2 + 23

—
"~

2 (ﬁ:ﬁ:ﬁffffff:ﬁ

18.0015.00113.0035.00233.0015.00333.0035.004

Fig. 2.1: A surface with a singular point at the origin.

or, in tensor form,

Note that this metric is degenerate at the singular point.

Denote by A the Laplace-Beltrami operator on the smooth part of S
with respect to the metric ¢g. In order to compute A, we note that the
inverse of the matrix (g;;) is the matrix

g — a0
(¢) = < OO )
TP

Then, a trivial verification shows that the Laplace-Beltrami operator is
given in the coordinates (t, ) as

A = 0; v/det g 8
Vdet g ]Zl ¢
= gnaf —d - o1 ( detggll) o1 + g22822

1
= — <@812+ 922 <81 g22>81+62>
g22 \ 911 gi1 gi1
where 0 = 0/0t and 02 = 0/0¢.

33



AMI Vol.8, 1998No.1,1999 B Schulze, N. N. Tarkhanov

Since

g0t = (Vo) — (1v/Tm) (vamdr)
@@1 gﬂ) o = N (\/9561)+\/% <01 ! )(@an,

911 911 911 V911

we may rewrite this as

1 1

2= (w2 (D) (vamo + )

=t (T U000 - 3 g U010/ + )

where Ay is the Laplace-Beltrami operator on the unit circle (the cross-
section of S close to the singular point).

We have thus arrived at a totally characteristic differential operator
related to the mapping r» = 6(¢) of Ry — R, where

tode

0= . F@

with any fixed tg > 0.

The important point to note here is the form of 6. Namely, since
8(t) = ﬁ is positive for all ¢ > 0, it follows that the function r = §(¢) is
monotonically increasing and so one-to-one. However, the image of Ry by

this function may be different from R. While §(0) = ftg % = —oo, the
case of power-like cusps f(t) = t*, p > 1, gives §(t) = %p <tPL1 — #)
0

and so the image of Ry by ¢ is <—oo, ﬁ#) . Thus, the Fourier-Laplace
transform of Section 1.2 needs making more precise to apply in this sit-
uation. Namely, what is merely important for us is the behavior of the
mapping 6 close to the singular point ¢ = 0. Thus, we may correct the
mapping r = §(¢) away from an infinitesimal interval (0,¢), ¢ > 0, in order
to arrive at a diffeomorphism r = 6 (t) of the half-axis R4 onto the whole
axis R.

2.2 Typical differential operators on manifolds with singular points

When blown up, a manifold with singular points has locally the form of a
cylinder C = T x X close to a singular point, where T'= R, and X is a
smooth compact manifold of dimension n without boundary. We also call
C the stretched cone. Moreover, the “push-forwards” of the vector fields on
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|
33.0020.00133.0027.002

Fig. 2.2: A modified diffeomorphism r = §(t).

the manifold, which originate with the singular point, splits into a totally
characteristic derivative D = &L(t)% d/dt along the half-axis 7" and smooth
vector fields along the base X.

The local algebra of pseudodifferential operators close to the singular
point is completely determined by the “germ” of r = §(¢t) at t = 0. Our
basic assumption is the following: the “germ” of 6 at ¢ = 0 can be repre-
sented by a smooth diffeomorphism of T" onto R, with a positive derivative.
We continue to write = §(¢) for this representative.

Clearly, the form of r = §(¢) in an infinitesimal neighborhood of ¢ = 0
depends on the geometric nature of the singular point in question. In
particular, if §(¢t) = logt near ¢ = 0, then the singular point is a conical

point. On the other hand, if §(t) = l%ptp%l close to t = 0, with p > 1, then

the singular point is a power-like cusp. Yet another case is §(t) = —ei for
t € (0,¢), that corresponds to exponential cusps, etc.

By the above said, when constructing a local algebra close to the sin-
gular point, we have to begin with typical differential equations on C which
are of the form

m
&'@)m Z A;(t) Diu(t) = f(t), t>0, (2.2.1)
7=0
where A;(t) € C2 (R4, Diff (X)), j = 0,1,...,m. We did not specify
the variable x in (2.2.1), keeping in mind that, for fixed ¢, the value u(t) is
a distribution on X and A;(t) act as differential operators with respect to
the x-variables.
The relevant weighted Sobolev spaces in a neighborhood of the singular
point are defined as follows.
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Fix a family of order reductions A*()\), s € R, on X depending on a
parameter A € R. Now, for s,7 € R, we let H%7(C) be the completion of
CS (R x X)) with respect to the norm

comp
Jules ) = ( i
JI

Lemma 2.2.1 A function u € D'(R; x X) belongs to the space H*7(C)
if and only if the “pull-back” t*u = u(6~*(log o)) of u under the diffeo-
morphism o +— 6! (log o) of R, belongs to the corresponding cone weighted
Sobolev space.

[N

MWMFMW@@W%- (2.2.2)

-

Proof. Indeed, if o = ¢®®, then an easy computation shows that

11 d 1 d

- -V = SO0,

o' (t) dt d

Z %@ —290 22
Q?

whence

Fu(z) = M (t*u) (—iz), ze€C,

M being the Mellin transform (cf. Example 1.5.4). This gives the desired
conclusion when substituted into (2.2.2).
O
Since the derivative ¢§’(¢) is different from zero for ¢t > 0, equation (2.2.1)
is equivalent to the equation

Ault) = (/) FB), >0,
where
m .
A=Y A(t) D7 (2.2.4)
=0
From what has already been proved in Sections 1.4 and 1.6, it follows
that the operators (2.2.4) behave properly in the scale (2.2.2). Hence, when

one treats typical differential equations in a neighborhood of the singular
point, there naturally appears an additional scale of norms

[ullgsamiey = 1(6")" ullags ey (2.2.5)
with parameters s,v,u € R.

Lemma 2.2.2 Let w € C,, (R.). Then, for each real numbers s’ <

comp
s", ' < A" and p' < 1, we have a continuous embedding

" 1 7"

w H () o ().
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Proof. This is obvious because of (2.2.2) and (2.2.5).
O
We now return to the “transcedental” change of variables o = e®(*) used
in the proof of Lemma 2.2.1. The first equality of (2.2.3) shows that the
“pull-back” of the operator A under the diffeomorphism o — 6~!(log o) of
R, is the differential operator

HA = ZtA < jg)j, (2.2.6)

so that t*(Au) = t#A (t*u). Thus, we deduce that the operator A trans-
forms, under the change of variables t = §~*(log o), into a Fuchs-type op-
erator t!A. Conversely, each Fuchs-type operator on Ry x X transforms,
under the change of variables o = e?®, into an operator of the form (2.2.4).

It is worth pointing out that t = 6 L(log o) is a homeomorphism of the
closed semi-axis R+, with the inverse p = e®®. Therefore, the coefficients
t*A; (o) = Aj(6 1 (log o)) of t* A are continuous up to ¢ = 0 if and only if so
are the coefficients of A. However, as the change of variables ¢t = §~!(log o)
is not smooth up to ¢ = 0 in general, the coefficients of t*A need not be
smooth up to o = 0, even if so are the coefficients of A.

Another way of stating this observation is to say that topologically all
the one-point singularities are equivalent. However, having fixed a geomet-
ric type of the singular point, we are allowed to use only those homeomor-
phisms of R close to t = 0 which preserve the geometric structure of the
singularity.

2.3 Kernel cut-off

The Mellin calculus in the form developed by Schulze [Sch91,Sch94] gives
also a general framework for the analysis on manifolds with arbitrary one-
point singularities. The basic idea is the following. Outside the singular
point, one uses the standard pseudodifferential calculus and the standard
Sobolev spaces. Near the singularity, however, the analysis relies on the
operators constructed by use of the transform F', and the spaces H*7(C).

More precisely, one considers the operators (2.3.1) on the semiaxis
whose symbols take their values in the algebra of all pseudodifferential
operators on X.

In the sequel, let m,y € R be fixed. Given a € CpL(Ry xRy, ¥ (X;T'_,)),
we shall write a = a(t,t, z), where z = 7 — ¢y indicates the variable in I'_,.
For ¢, ¢/, z fixed, this a(t,t, z) is a pseudodifferential operator on X.

Definition 2.3.1 Suppose that a € Cpo(Ry x Ry, W™ (X;T'_,)). The
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comp comp

operator opp(a) with the symbola on Cg5,, (Ry x X) = CF, (Ry, C(X))
is

opp(a)u(t) = L 5 / dz/ et BO=8ENz (¢ ' 2)u(t') dm(t).
(2m) Jr_y, Jo

(2.3.1)

The right-hand side of (2.3.1) has to be understood as an iterated inte-
gral. We did not specify the variable  in (2.3.1), understanding that, for
fixed ¢/, the value u(t') is in C*°(X) and that a(¢,¢, z) acts as a pseudod-
ifferential operator with respect to the xz-variables.

If X consists of one point, then (2.3.1) reduces to what has already been
defined in Section 1.6. In general, we have

oPpy4a(a) = eP8) opp(a(t,t’, 2 —1if)) e~ (2.3.2)

which is due to Lemma 1.4.2.
Like pseudodifferential double symbols, the double symbols in (2.3.1)
are not uniquely determined.

Example 2.3.2 [t is immediate from integration by parts in (2.3.1)
that

OPF~ ((10/0z)a) = OPF~ ((6(t) —8('))a) .
O

Given any a € C75 (Ry x Ry, ¥™(X;T'_,)), we will have a continuous
map
opg(a) : Cogpp(Ry x X) — Cim (R4 x X).

Smoothness of a up to zero yields the continuity of opp, (a) on the weighted
Sobolev spaces. The preceding Example 2.3.2, however, shows that the
smoothness is not necessary.

Proposition 2.3.3 Let a € Ci2 (R x Ry, U™(X;T'_,)). For each s €

R and wi,wy € ngmp(]@_,_), there is a continuous extension

w1 0pp (@) wy = HY(C) — H™7(C).

Proof. See Schulze [Sch91, 1.2.3].
O
We also mention the following results. The first of them shows that,
just as in the case of pseudodifferential operators, one has asymptotic sum-
mation of symbols.
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Proposition 2.3.4 Let (mj)j=1,2,... be a sequence in R tending to —oo,
let a;j € Cpo(Ry x Ry, U™ (X;T'_,)), and let m = maxm;. Then there
exists a symbol a € Cf5,(Ry x Ry, W™(X;T_y)) with a ~ 7% aj, i.e., for
any N € Zy there is a J such that a—ijl aj; € CR(Ry xRy, U™ N(X;T ).
Moreover, a is unique modulo C;o.(Ry x Ry, U™>°(X;I'_,)).

Proof. See Schulze [Sch91, 1.2.4].
O
Moreover, one obtains smoothing operators by a special analytic proce-
dure that Schulze [Sch91] calls “kernel cut-off.”
For the standard pseudodifferential operators, we may calculate the
Schwartz kernels in terms of the amplitude functions. For operators (2.3.1),
we can analogously write

1 [

— % ; k(a) (t,t’,é_l(é(t) _ 5(t/))) u(t') dm(t')

opp,(a)u (t)

whenever u € Coy, (R, C*°(X)), where

comp

k(a) (t,t, <) = F! a(t,t', 2)

—Vz—g

is interpreted in the distributional sense. Obviously, k(a) is a C* function
of (t,t') € Ry x Ry with values in D'(Ry, U™ (X)). For fixed ¢ and ¢,
the singular support of k(a) (¢,t',¢) is contained in the only point ¢y € R
where 6(¢p) = 0 (cf. Schulze [Sch91, 1.2.4]). Moreover, we have a(t,t', z) =
F_, k() (1, 2).

Proposition 2.3.5 Assume that w € C5. (R.) is a cut-off function

comp v
close to ¢y (i.e., w(s) = 1 near ¢ = ). Given any a € Cpo(Ry X
R-ﬁ-u \Ilm(X7F—’Y))a let
_ -1
ar(t,t',2) = Fos (w(QF L a(t,, z)) ,
a2(t7t,72) = F§'—>Z (1 - w(g))F:%z._}ga(t,t’,z)) .
Then
ap € Cloo%(li&-l- x IE&-H \Pm(X;F—’Y))u
ag € CZOO%(R+ X R+, @700( ,Ff/y))

Proof. See Schulze [Sch91, 1.2.4].
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2.4 Algebras without asymptotics

We are now able to describe an algebra without asymptotics on a manifold M
with singular points. We shall not attempt any discussion of the rigorous
definition of such a manifold. The important point to note here is the
form of transition diffeomorphisms close to a singular point - they have to
preserve the geometric type of the singularity. We shall instead deal from
the very beginning with the “stretched object” associated to M.

Proposition 2.4.1 For any manifold M with singular points S there
is a smooth manifold with boundary M such that:

1) M\ S is diffeomorphic to M\ OM; and

2) there is a neighborhood O of S in M and a collar neighborhood O =~
OM x [0,1) of OM in M such that O\ S is diffeomorphic to OM x (0,1).

Proof. We construct M by replacing, for every one-point singularity
p € S, a neighborhood O of p by [0,1) x X via gluing with any one of the
diffeomorphisms O\ {p} — (0, 1) x X of which equivalence classes determine
the structure of M close to p. We even get OM = Upcs.X,, the subscript p
pointing to the dependence of X on p.

(]

In the sequel we tacitly assume that M has only one singular point; this
does not include any restriction of generality.

We begin with definition of weighted Sobolev spaces H®*7(M) (cf. Sec-
tions 1.5, 2.3). We shall say that a function or distribution is supported
close to the boundary of M if it vanishes outside the part of M that is iden-
tified with [0,1) x X. Fix a smooth function w on M which is supported
close to the boundary and equal to 1 in a smaller neighborhood of the

o

boundary. Given a distribution u € D/(M), we can write it as u = uj + u2
with u; = wu supported close to the boundary and ug = (1—w)u supported
away from the boundary. We shall say that v € H%Y(M), provided that

up € H¥Y(C) and ug € H} (/\O/l) It is easy to see that this definition is

independent of the particuﬁcr choice of w. We can topologize H*7(M) as a
Hilbert space, using the Hilbert space structures on H*7(C) and H*(R*7),

In the sequel, we use the notion of a weight datum of an algebra without
asymptotics. By such a datum is meant any couple w = (v, 3) of numbers

v, 8 €R.
For a weight datum w = (v, 3), denote by Alg™> (M, w) the set of all

o

operators S : Cgy,,(M) — D'(M) such that, for all s € R, there is a
continuous extension Sg : H*Y (M) — H®B(M).
Given any m and weight datum w = (v, 3), let Alg™ (M, w) be the space

o

of all operators A : Cg5,. (M) — D'(M) of the form A = Ap + Ar + Sp,

comp
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where

Ap is an operator based on the transform F' close to the boundary, i.e.,
there are ¢g, %y € C*°(M) supported close to the boundary of M,
and a symbol a € C52 (R x Ry, ™ (X;T_,)) such that
Ap = eB=78() o Op Fﬁ(a) Yo;

Ar is a pseudodifferential operator supported away from the boundary, i.e.,
there are functions ¢, ¥ vanishing in a neighborhood of the bound-

ary of M, and a symbol a € §™(M) such that Ar = @o 0p£(a) Yoo;
Sp is an operator in Alg™* (M, w).

The collection of all the spaces Alg™(M,w) with m,v,8 € R is the
algebra without asymptotics. With the help of Proposition 2.3.3. it is easy
to see that an operator A € Alg™(M,w) induces a continuous mapping

A: H¥' (M) — H™P(M)

for any s € R.

It is not so trivial that the algebra without asymptotics is an “algebra”
in the sense that, for all mq, ma,y € R, the composition of operators induces
a continuous multiplication

Alg™2(M,ws) x Alg™ (M, wy) — Alg™F™2( M, w),

where wy = (v, ), w2 = (B, ) and w = (v, a).

It follows from the mapping properties that the operators in Alg™ (M, w)
form an “ideal” in the sense that the above multiplication restricts to con-
tinuous maps

Alg™ (M, ws) x Alg" (M, w1) — Alg” (M, w),
Alg"™ (M, ws) x Alg™°(M,w1) — Alg™> (M, w),

w; being as above.

Remark 2.4.2 If m = 0, then Alg’(M,w) is an algebra in the usual
sense, and Alg™ (M, w) is an ideal in this algebra.

Finally, the important point to note here is the following relation be-
tween the operators based on the transform F', and the usual pseudodiffer-
ential operators.

Proposition 2.4.3 Suppose r is an operator as above. Then, for
any functions peo, Voo € C . (M), there is an operator Yy € V™(M)

comp

supported in the interior of M such that Yoo YF Voo = Y.
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Proof. The reader did certainly recognize that this assertion is none
other than the change of variables on the space of usual pseudodifferential
operators.

O

Under the hypotheses of Proposition 2.4.3, if moreover the supports of
Yoo and 1 are disjoint, then poo Yp o € Alg™° (M, w).

From what has been said at the end of Section 2.2, it may be concluded
that the algebra Alg™(M,w) is an extension of the cone algebra in the
sense that, close to the singular points, the pull-back of the cone algebra
under the mapping ¢t — o = e is a proper subalgebra of Alg™ (M, w).
However, the norm closures of both algebras coincide because each operator
corresponding to the conical setting can be approximated by operators with
“coefficients” constant near singular points (cf. Mantlik [Man95]).

2.5 Asymptotics

In general, asymptotic expansions of solutions to equation (2.2.1) in a neigh-
borhood of the singular point seem to be controlled by the scale of norms
(2.2.5), i.e., the remainders, when cut off, lie in the spaces H*7#(C) with
u large enough.

In the last two sections of this chapter we will restrict the discussion to
the situation when the asymptotic expansions of solutions may be controlled
by the scale (2.2.2). Roughly speaking, this corresponds to the case where
the standard parametrix construction for elliptic operators A leads not only
to a gain in the power of (6'(¢))~! but also to a gain in the power of e®(),
To ensure this, we need an additional assumption on smoothness of the
coefficients of A close to t = 0, namely, that A;(67!(log o)) are C* up to
o=0, for j =0,1,...,m. This assumption is satisfied, in particular, if all
the coefficients A; are constant in a small interval [0,¢€), € > 0.

To begin with, we make more precise the definition of the spaces H*7(C)
on the infinite stretched cone C = R, x X. The analysis on C employs the
transform F' and weights only near the base ¢ = 0. The weight factor
e~279() in Definition 1.5.1 affects the space also for t — oo. It is ad-
vantageous to introduce another variant of spaces on C that refers to the
Fourier-Laplace transform and to weight factors only near ¢t = 0. The idea
is to multiply H*7(C) by a cut-off function w and then to add (1—w) H*(C),
where H*(C) is the usual Sobolev space on C properly interpreted 2. Thus,
for s,v € R, we set

H(C) = wH* (C) + (1 — w) H*(C),

2The proper definition of H*(C) should perhaps take into account the behavior of
r = 6(t) for t — oo.
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with w a fixed cut-off function on R,. We topologize H*?(C) by the norm

vl s ) = u:wmif(ﬁ_w)uz (llwu [l ey + (1 = w)uzllyscy) -

It is easy to check that the space H*7(C) is independent of the particular
choice of the cut-off function w up to an equivalent norm. Moreover, the
topology of H*7(C) is still induced by a Hilbert inner product 3.

Having disposed of this preliminary step, we can now return to spaces
with asymptotics. The following assertion is of basic interest in the analysis
of the conormal asymptotics of distributions on C for ¢ — 0.

Lemma 2.5.1 Let w € Cogp(Ry) be a cut-off function with respect to
the origin, and let p € C, p € Zy. Then the Fourier-Laplace transform
of the function w(t) e®P*® (§(t))* extends to a meromorphic function in the

whole complex plane with exactly one pole, of multiplicity u + 1, at p.

Proof. We first prove a reduced form of the lemma, namely, assume
that both p and p are zero.

For im z > 0, write
1

Fu(2) = u(2),
z
where u(z) = F (Dw) (z). Since Dw € Cg,,,,(Ry), we conclude that u is
an entire function of z € C. Moreover,

1 [ dw

= =)

= 1.

Hence it follows that %u(z) is a meromorphic function with a single pole
located at z = 0 and of multiplicity pu = 1.

For the general case, take z € C with im (2 — p) > 0. An easy compu-
tation shows that

Fi .. (w(t) ePe(®) (5(t))”)
_ % | 0’°° o—i28(t) (w(t) iP5 (t) (5@)”) dm(t)

=(10/02)" Fw (2 — p)
. 1
= (19/02)" <Z_pu(z—p)> )

3In the same way, starting with 7{*7"*(C), we can define the spaces H*"""*(C) for all
8,7, 1 €R.
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By the above, the right-hand side here is a meromorphic function with a
single pole located at z = p and of multiplicity i + 1. Hence the lemma
follows.
O
The proof above gives more, namely, given any point p € C and ex-
cision function x(z) of p, the function x F (w(t) eP8(t) (6(t))") is rapidly
decreasing on each weight line I' ., uniformly in + on finite intervals.

Remark 2.5.2 [t is easily seen from the proof that the difference

(=) 1
pl (2= p)rtt

Fiys (w(t) ™0 (5(0)") -

extends to an entire function.

Fix a cut-off function w € C° (R, ) with respect to t = 0. Given a

comp

point p € C, it follows from Lemma 2.2.1 that the asymptotics
ult, @) = w(t) e™O (5(8))* ui(x)

lies in H*7(C), for each p € Z and u; € H*(X), if and only if imp < —7.
We want to introduce subspaces Hgy' (C) consisting of functions u € H*7(C)
which have a gain in the weight up to elements of some finite-dimensional
subspace of asymptotics. To make this more precise we give the following
definitions.

A weight datum w = (v,(—(,0]) consists of a number v € R and an
interval (—[,0] on the real axis. We consider finite weight intervals (i.e.,
those with 0 < [ < co) as well as the infinite one (i.e., (—o0,0]).

By an asymptotic type associated with the weight datum w is meant

any collection as = ((pj, pj,%;)) where

§=0,1,...,.J°
e (p;) are complex numbers in the strip —y — 1 < imp; < —7;
e (4j) are non-negative integers; and

e (X;) are finite-dimensional subspaces of C*(X).

For the infinite weight interval, the value J = oo is also admissible.
However, we assume that each strip {¢/ <imz < ¢’} contains only a finite
number of the points p;. Thus, a condition on (p;) is imp; — —oo when
J — oo.

Definition 2.5.3 Given a weight datum w, we denote by As (w) the set
of all asymptotic types associated with w. Asymptotic types of such a kind
are called discrete.
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Fig. 2.3: A carrier of an asymptotics for the weight datum w =
(77 (_la O])'

By the above said, when working with the spaces H®7(C), we have to
consider weight data w = (v, (—(,0]). Fix such a datum.

Given any asymptotic type as € As(w), we denote by Ags the finite-
dimensional space spanned by the functions

(w(t) e™i%0) (5(1))H Cju(m))j

where c;, € ¥;. (The cut-off function w(t) is kept fixed.)

From what has already been proved it follows that A,s C H*7(C), for all
s € R, and Ags N HH=0(C) = (), where H*"H=0(C) = Ne~oH*H=<(C).
The elements of H¥77=9(C) may be regarded as being flat of order [ — 0
relative to the weight ~.

We endow Aus with the natural topology, and H*Y*=0(C) with the
topology of projective limit of Hilbert spaces.

Definition 2.5.4 For s,yv € R and as € As (w), let
HE(C) = Ags + H>T0(0).
We make Hg}'(C) a Fréchet space by giving it the topology of the sum of

Fréchet spaces. Obviously, Hai'(C) is independent of the particular choice
of the cut-off function w up to an equivalent topology.
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Remark 2.5.5 Spaces with asymptotics are also well-defined on a man-
ifold with one-point singularities if we either keep coordinates fized or else
interpret the subscript ‘as’ associated with an asymptotic type ‘as’ as an
equivalence class of possible asymptotic types.

We finish this section by a brief discussion of operator-valued meromor-
phic functions. Namely, for a discrete set ¢ in the complex plane, we define
meromorphic functions h(z) € A(C\ o, ¥7/(X)) whose values are classical
pseudodifferential operators on X.

The space U7;(X) is endowed with its natural Freéchet topology, and
by A(C \ o,L) we mean the space of L-valued holomorphic functions on
C\ o. Clearly, A(C\ o, ¥ (X)) has a natural Fréchet structure, again.
Denote the points of o by (p;);_q, . We will assume that each hor-
izontal strip {¢’ < imz < ¢”} contains only a finite number of points in
o.

Furthermore, let us fix a sequence (y;) of positive integers and a se-
quence (L;) of finite-dimensional subspaces of operators of finite range in
U=(X).

Every collection as = ((pj, 5, L)) =, Will be called a (discrete)
asymptotic type for F-symbols.

Now M,s(C, U7 (X)) denotes the subspace of A(C\ o, U7} (X)) consist-
ing of all functions A(z) such that

e for every o-excision function x(2) (i.e., x € Cpe(C) is equal to 0 near o

and 1 away from a neighborhood of o) we have x hlr_, € ¥/ (X;T )
uniformly in v on finite intervals in R;

e h(z) is meromorphic with poles at p; of multiplicities p; + 1, and the
Laurent expansion at p; is h(z) = ZZLO l; (z—py)~ WD) 4 hi(2) with
l; € L£; and h;(z) € A(O, ¥} (X)) for some neighborhood O of p;.

The space Ms(C, U7 (X)) has a natural Fréchet topology. We will
write it simply M(C, V7}(X)) when o = (.

2.6 Algebras with asymptotics

Until further notice, we restrict our attention to a coordinate patch on X
with variable  and covariable .
For m € R and a weight datum w = (v, 3), we denote by e(#=1gm(bT*C)
the subspace of S™(C x R'*"™) consisting of symbols of the form
alt,z,1,6) = P g (¢ o L7' 13 (2.6.1)
7 7 7 7 ) 6,(t) ) )
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where a(t,z, 7, &) € S™(C x RI™).

Since the weight factor e/B=7)8®) is fixed for every m, we can endow each
space e3=183™(bT*() with a canonical Fréchet topology. The elements of
eB=18gm(bT*C) are called degenerate symbols of order m.

Let e(#=7)887(*T*C) stand for the subspace of e(#~7°8™(*T*C) induced
by S™(C x R™™) in the same way.

As usually, we set

S CT*C, w) = Ny, STOT*C).

By definition, each symbol a € e/#~7S™(*T*C) can be written in the
form (2.6.1), where a € S™(C x R*™). Write @ ~ > X Gm—j, with x an

excision function and a,,_; € C2(C x R*™) homogeneous of degree m — j.

Definition 2.6.1 Given ana € e(ﬁ’V)‘SSZ}(bT*C), by the principal inner
symbol of a is meant

o (a)(t,z, 1, &) = BW g <t x, 0 )7' §> t>0.

Since §(t) — —oo as t — 0, the principal inner symbol itself cannot
control the behavior of @ at ¢ = 0. For this purpose, we may invoke the
component an,(t, z,7,€&) because it is well-defined up to ¢ = 0 and captures
the behavior of o'f (a) away from ¢ = 0.

A symbol a € e#=15Sm(*T*C) is said to be elliptic if @, (t,z,7,£) # 0
for all (¢,z,7,&) € Cx (R**7\{0}). The important point to emphasize here
is that the ellipticity of a degenerate symbol subtends the non-singularity
of @, up to t = 0. By the above, every elliptic symbol a € e(3=708m (bT*C)
is also elliptic in the sense of symbol algebra on the interior of C. Therefore,
a has a Leibniz inverse in this algebra, which is unique modulo S’oo(é X
R!*™). The crucial fact is that we can ensure the existence of a Leibniz
inverse within the class e(=8)°S_™(*T*C).

Under ellipticity, we want to associate with the Leibniz inverse of a
a continuous mapping between weighted Sobolev spaces on C. We first
demonstrate these techniques by example of those degenerate symbols which
are polynomial in 7.

Example 2.6.2 Let A be of form (2.2.4). We have A = opx(a) with a
unique symbol a € ST (*T*C), for each weight data w = (v,v). In this case,

o (a)(t, 3,7, €) = ia 3 twf)(él}t)7>j. (2.6.2)

Jj=
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Fix a cut-off function w on R, so that w(t) = 1 for ¢t < a and w(t) = 0
for t > A, where 0 < a < A < co. Then ¢pg = w and oo = 1 —w
give the partition of unity on the semiaxis subordinated to the covering
Iy = [0,24), Ic = (3a,00). We now choose ¢, € Cf2(R4) (v = 0,00)
such that suppv, C I, and v, = 1 near suppe,. Since the operator
A is local, it is a simple matter to see that A = Ay + As, where Ay =
o op£(a) 1Yo, Acc = Yoo Op£(a) Yoo. The operator Ay is “supported” away
from the singularity ¢ = 0, so it extends to a continuous linear operator
H*Y(C) — H*~™7(C), for each s,v € R, provided that the coefficients A;
are independent of ¢ for ¢ > 0 large enough. The next task is to rewrite
A as a pseudodifferential operator with respect to the transform F', thus
making Ay more prepared to act in the weighted Sobolev spaces close to
t = 0. However, a trivial verification shows that, for every v € R, we have
A = opp,(h) on CF,,,(Ry x X), where

comp

h(t,z) = iAj(t) 2 (2.6.3)

=0

Thus, the operator Ay = ¢gopp.,(h)¢po extends to a continuous linear
operator of H*7(C) — H* ™7(C), for each s,y € R.
O

For arbitrary degenerate symbols, it is no longer possible to obtain a
precise representation just as in Example 2.6.2. When studying arbitrary
symbols we had to look for such a representation only modulo “smoothing”
operators.

To each symbol a € e(ﬁ’V)‘SSZ}(bT*C), we may assign a pseudodifferen-
tial operator A = opr(a) which is well-defined on distributions supported
in the interior of C.

Fix an open covering Io U I, of the semiaxis R, where Iy = [0,2A)
and Io = (3a,00) (0 < a < A < 00). Let (¢,)y—0,00 be a partition of
unity on R subordinated to this covering, and let ¢, € Cpx. (R, ) satisfy
supp ¢, C I, and ¥, = 1 in a neighborhood of supp ¢,.

Since the operator A is pseudo-local, we see at once that A = Ag + Aso

modulo smoothing operators in C, where

Ay = poopg(a)o,
A = Saooop]-"(a)woo-

Our next goal is to find a suitable reformulation of the operator Ag in terms
of the transform F'.
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Theorem 2.6.3 Given any a € eB=MESm(OT*C), there ewists an F-
symbol h(t,z) € Cpo(Ry, M(C, ¥ (X))) such that, for each v € R, we
have

opr(a) = eB=7°) opg (h) (mod T™*(R; x X)). (2.6.4)
Proof. Cf. Egorov and Schulze [ES96, 8.1.3].

Summarizing, we have

opr(a) = e %W o 0p (h) Po+ooo 0P x(a) Yoo (mod T *(Ry x X)),

(2.6.5)
for each v € R. Moreover, Proposition 2.3.3, when combined with bound-
edness properties of pseudodifferential operators in Sobolev spaces, shows
that the right-hand side of (2.6.5) extends to a continuous linear operator
of H*7Y(C) — H*~™P(C), for each s € R, provided a is independent of ¢ for
t > 0 large enough.

We are now in a position to describe our algebra with asymptotics on a
manifold with singular points. By the above, we are interested in a simple
edition of this algebra based on the spaces with asymptotics of Section 2.5.
In order to get asymptotic results, it is necessary to put some restrictions on
the symbols in question. The requirement on a is that a(6~*(log o), x, 7, €)
is smooth up to ¢ = 0 (cf. (2.6.1)). Such is the case, in particular, if @ is
independent of t close to t = 0.

The algebra with asymptotics on a manifold with singular points starts
with operators of the form (2.6.5), where the Fourier symbol a(t,z, 7, ) and
the F-symbol h(t, z) are compatible in the sense of Theorem 2.6.3. Our op-
erator convention (2.6.4) does produce at once smoothing errors of different
kind under changing h(t,z) or the cut-off functions. It is worth pointing
out that if we add to h(t, z) a symbol ho(t, z) € C22(Ry, Mas(C, ¥,*(X)))
whose poles do not meet the reference line I'_,, then the equality (2.6.4)
is still true. In this way we obtain what we shall call the smoothing F'-
operators, by analogy with smoothing Mellin operators (cf. Schulze [Sch94,
1.4.3] ). Since the parametrix constructions for the typical elliptic differen-
tial operators (2.2.4) lead to smoothing F-operators, it is adequate to have
them from the very beginning in the class.

To describe more precisely the smoothing F-operators, we need the
notion of a weight datum for an algebra with asymptotics. By such a datum
we mean any triple w = (v, 3, (=1, 0]) consisting of real numbers 7,3 € R
and a weight interval (—(,0], { > 0.

The smoothing F-operators under a weight datum w = (v, 5, (—(,0]),
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l=1,2,..., are defined to be operators of the form
-1 ‘
Sp = e N e op . (hy), (2.6.6)
=0

with hj(2) € Mas;(C, ¥ °°(X)), where h;(z) has no poles on the weight
line 'y, and v —j < <~y forall j=0,1,...,0 — 1. The latter two con-
ditions ensure, by Proposition 2.3.3, that @9 SFig extends to a continuous
linear mapping of H*"(C) — H°(C), for each s € R.

Remark 2.6.4 The absence in (2.6.5) of smoothing F-operators with
meromorphic symbols allows actions on spaces with arbitrary weights v € R,
in contrast to what we obtain by adding an operator of the form (2.6.6),
which contains meromorphic ingredients and hence natural restrictions on
the weights.

The only point remaining concerns the smoothing errors produced by
(2.6.4) under changing the partition of unity (¢,),_g - on the half-line R.
These are known as the Green operators and defined via their mapping
properties.

For each operator A € L(H®7(C), H"?(C)), we can define the transpose
A’ as an element of L(H58(C), H *~7(C)) via the non-degenerate pair-
ings H%7(C) x H=%~7(C) — C induced by the inner product in H%9(C).
Namely, we require (Au,g)pooc) = (u, A'g)goo) to hold for all u,g €
025, C).

Since we are again aimed at the analysis near ¢ = 0, we shall replace
H>%P(C) and H,77(C) by subspaces st,(C) and S_(C) respectively,

as’ as’ as’!
where

S,0) = wHSC)+(1-w)SC),

as’ as’

SO = wHSTC) +(1-w) Q).

(lS” aS”

Here w(t) is a cut-off function and S(C) = S(Ry,C™(X)). It is easily seen
that these new spaces are independent of the concrete choice of w.

Definition 2.6.5 An operator G € NyerL(H*Y(C), H*P(C)) is said to
be a Green operator with respect to a weight datum w = (v, (3, (=[,0]), if
there are asymptotic types as’ € As(B,(—1,0]) and as” € As(—~, (—1,0])
such that

G € Ner L(H*(0),S5,(C)).
G' € Neer L(H>B(C),S.(C)).

) GS”

These operators can be characterized in the following way: G is a Green
operator with asymptotic types as’ and as” if and only if G is an integral
operator with a kernel in st, (C)®xS,0(C).
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The difference between a smoothing F-operator and a Green operator
is that the former preserves the asymptotics of the argument function and
adds specific ones, whereas the latter forget the original asymptotics and
produces new ones. The reason for taking [ — 1 as the upper summation
bound in (2.6.6) is that e(3=7)8() ¢76(t) OPp,, (hj) is a Green operator with
respect to a weight datum w = (v, 3, (=1, 0]), provided that j > [.

We leave it to the reader to carry over the above local results to the
whole manifold X by using a familiar argument invoking a partition of
unity on X.

To complete the construction of the algebra with asymptotics on a
stretched manifold M, we can argue just as in Section 2.3. Given any
m € R and weight datum w = (v, 8, (=1, 0]), let Alg™ (M, w) stand for the

o]

space of all operators A: C35. (M) — D'(M) of the form

comp
A= o Ap b + P AF Yoo + 00 Sk o + G, (2.6.7)

where

Ap is an operator based on the transform F' close to the boundary, as on
the right-hand side of (2.6.4);

A is a pseudodifferential operator of order m in the interior of M, which
differs from A, close to the boundary, by a smoothing operator;

Sr is a smoothing F-operator close to the boundary, as in (2.6.6); and

G is a Green operator with respect to the weight data w, defined via its
mapping properties.

The collection of all the spaces Alg™ (M, w), with m € R and weight
data w = (v,0,(=(,0]), is the algebra with asymptotics. As follows,
Hzy' (M) is an adequate choice of domains for the operators in this algebra.

Proposition 2.6.6 If A € Alg™(M,w), then for each asymptotic type
as’ € As(v,(=L,0]) there is an asymptotic type as” € As(3,(—1,0]) such
that A has a continuous extension

A HY(M) — HE ™ (M) (2.6.8)
for any s € R.

Proof. Cf. Theorem 1.4.42 in Schulze [Sch94].
O
To see that the algebra with asymptotics is an “algebra” in the sense
of Section 2.3, we refer the reader to Schulze [Sch94, 1.2]. It is worth
mentioning that the operators g Sr Yo+ G form an “ideal” in this algebra.
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By the above, if the mapping t — o = ¢®®) is C* up to t = 0, then the
algebra Alg™(M,w) just constructed is an extension of the cone algebra
with discrete asymptotics (cf. Schulze [Sch94, 1.2]) in the sense that, close
to the singular points, the pull-back of the latter under the mapping o is
a proper subalgebra of the former. As mentioned, the norm closures of the
two coincide.

The symbol 0’#(A) controls the interior ellipticity of operator (2.6.7).
However, there is yet another symbolic level given by the principal conor-
mal symbol op(A) (elsewhere this is referred to as the operator pencil).
For the typical differential operators (2.2.4), this is defined by o (A) (2) =
>t A;(0)27. For the operators A on the right-hand side of (2.6.5), we
have op(A)(2) = h(0,2z). In the general case (2.6.7), also the compo-
nent ho(z) of Sg invests to the principal conormal symbol, thus giving
or(A) (2) = h(0, z) + ho(z). Given any fixed z € I'_,, the principal conor-
mal symbol is a pseudodifferential operator along the base X, of order m. In
this way we obtain a family of operators op(A) (z) : H*(X) — H*7™(X),
s € R, parametrized by z € I'_,.

Definition 2.6.7 An operator A € Alg™(M,w) is said to be elliptic if:

1) the interior symbol of A is elliptic up to t = 0;

2)op(A)(2) : H¥(X) — H*~™(X) is an isomorphism for each z € I'_,
and s € R.

It follows from the elliptic theory on closed compact manifolds that, in
condition 2), we may require op(A) (2) to be an isomorphism for any one
s eR.

The key result in the algebra Alg™(M,w) can be then formulated as
follows.

Theorem 2.6.8 If A € Alg™(M,w) is elliptic, then for each asymp-
totic type as’ € As (v, (=1, 0]) there is an asymptotic type as” € As (3, (—1,0])
such that the operator (2.6.8) is Fredholm.

Proof. See Schulze [Sch94, 1.2.2].
O
No attempt has been made here to extend Theorem 2.6.8 to arbitrary
‘cusp’ operators, i.e., those without additional restrictions on the regularity
of symbols near conical points. It is worth pointing out that the ‘ellipticity
condition’ of a ‘cusp’ operator A is necessary and sufficient in order that
A induce a Fredholm operator H*7(M) — H*~™P(M) for any one s € R
(and hence for all real s). This is the topic of our next paper (cf. [RST97]).
We just mention that the Fredholm property in weighted Sobolev spaces
without asymptotics holds for all elliptic ‘cusp’ operators with symbols
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slowly varying close to singular points (in particular, for operators whose
symbols are smooth up to ¢t = 0). On the other hand, the class of symbols
under study is sufficient for the purposes of index theory because a familiar
argument shows that each elliptic ‘cusp’ operator with coefficients smooth
up to t = 0 is homotopic in the class of elliptic operators to an operator
with coefficients constant in a neighborhood of each conical point.

3 Index formula

3.1 Overview

Let r = §(t) be a diffeomorphism of an interval T' = (a,b) onto the whole
axis R. We assume that 6'(¢) > 0 for all t € T'.

In this chapter we consider a special case of F-pseudodifferential oper-
ators on the stretched cone C = T x X, whose base X is a smooth compact
manifold of dimension n without boundary. These operators have the form

(Au)(t) = <%>2/F dz ‘/;ei(é(t)_é(t/))za(t, 2u(t')dm(t),  (3.1.1)

when defined on functions u € Cg;,,,(T,C°(X)). The weight line I' may
be any horizontal line I'_y = {z € C: imz = —~} in the complex plane.
We may assume without loss of generality that I' coincides with the real
axis I'g (cf. (2.3.1)).

The operator-valued symbol a(t, z) is assumed to satisfy the following
conditions:

o a(t,z) € CX (T, ¥} (X;T)) is “sufficiently” smooth up to the end-

loc

point ¢ = a of T in the sense that a(§~!(log o), 2) is C* up to o = 0;

e a(t,z) is independent of ¢ close to the endpoint ¢ = b of T, more
precisely, a(t,z) = a(b—, z) for t € (C,b), with a < C < b;

o for t € [a,c), with a < ¢ < C, the symbol a(t,z) admits an analytic
continuation to some strip {z € C: |[imz + | < €} and on each line
I'_o it is a parameter-dependent pseudodifferential operator of order
m on X, uniformly in a € [y — €,y + €], e < e.

By the above, operators (3.1.1) are of great importance for the calculus
of pseudodifferential operators on manifolds with singular points. Here we
restrict our attention to the model case where the singular manifold is an
infinite stretched cone and the operator may be written globally via the
F-transform. Since the symbol behaves well close to the endpoints of T,
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it follows from Proposition 2.3.3 that A extends to a continuous linear
operator As : H®Y(C) — H*™™7(C), for each s € R.

Throughout this chapter we assume that m < 0. In particular, we need
the following concept of elliptic operators of order 0 (cf. Definition 2.6.7).

Definition 3.1.1 An operator A of order 0 is called elliptic if its symbol
satisfies the following conditions:

1) for each t € T, the symbol a(t, z) is a parameter-dependent elliptic
operator on X with parameter z € I';

2) a(t, z) is invertible for each t € [a,c) and each z in the strip {z € C:
[imz+v| < e}; and

3) a(b—,z) = 1, where 1 stands for the identity operator on X.

When compared with Definition 2.6.7, this includes an additional as-
sumption 3) which is connected with the exit condition on the infinite
stretched cone C (cf. Schulze [Sch94, 1.2.3]).

We prove in Section 3.5 that ellipticity implies the existence of a parametrixz
for A, i.e., an inverse up to smoothing operators of trace class. The im-
portant point to note here is the form of the parametrix, which is again an
elliptic operator of order 0. Thus, the kernel and the cokernel of the op-
erator Ag are actually independent of s. Moreover, a familiar argument of
functional analysis yields that the mapping Ay is Fredholm for each s € R.
Hence, for every elliptic pseudodifferential operator A of order zero, we may
define its index via ind A = dim ker A, — dim coker A;.

In order to evaluate the index of A, a basic observation is that the
ellipticity conditions imply that the Fredholm family a(t, z), parametrized
by (t,2) € T x T, is trivial outside a compact set in T x I' * (see Fig. 3.1).
Therefore it defines an index bundle inda € Keomp(T % I'), where Kcomp
means K-functor with compact support (cf. Atiyah and Singer [AST1]).
The Chern character of this bundle is represented by a closed differential
from of compact support, and we prove the following result.

Theorem 3.1.2 For any elliptic operator (3.1.1), we have

ind A = ././JI“XF ch (inda). (3.1.2)

The proof of (3.1.2) follows the scheme developed in Fedosov [Fed74].
It consists in comparing three expressions:
e analytical index

indA=tr(l1—PA)—tr(1— AP),

where P is a parametrix of A up to a trace class operator;

“That is, a(t, z) is invertible.
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Fig. 3.1: The domain of invertibility of an elliptic symbol.

e algebraic index
inda=tr(1—poa)—tr(l—aop),

where p is a formal complete symbol of P and o means a composition
of formal complete symbols (Leibniz product); and

e topological index given by the right-hand side of (3.1.2).

The most important step is transition from the analytical index to the
algebraic one, or, using the terminology of Fedosov [Fed74], the Theorem
on a Regularized Trace of Product. The transition from the algebraic index
to the topological one is based on the machinery developed by Fedosov
[Fed78]. Namely, we prove that

1/
inda = — // tr (poda A poda + dpo A da) , (3.1.3)
J JT'xI

21

where po(t, 2z) is a point-wise parametrix for a(t, z), such that both 1 — pga
and 1 — apg are trace class operators, for any (t,2) € T x I, and pg = a™*
outside a compact subset of T' x I'. Then, (3.1.2) is a consequence of the
fact that the integrand in (3.1.3) represents the Chern character of ind a in
terms of a and pg (cf. Fedosov [FedT78]).

Let us mention some particular cases of Theorem 3.1.2. If T" = R,
6(t) =t and a(t, z) = 1 away from a finite interval in R, then (3.1.2) follows
from the Atiyah-Singer theorem on the index of a family of elliptic operators

(cf. [AST1]) and the Atiyah-Singer Index Theorem (cf. [AS68a, AS68b]).
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This formula goes back to the work of Luke [Luk72]. Yet another case
corresponds to T'= R4 and 6(¢) = logt (i.e., conical singularities). In this
situation the Atiyah-Singer theorem for families is no longer applicable, and
formula (3.1.2) is due to Fedosov and Schulze [FS96] (cf. also Rosenblum
[Ros96] for another proof).

3.2  Trace estimates for remainders

In the sequel, we need a special order reduction A*(A) on X which admits
an analytic extension in A to the strip [im A+ 7| < 1 and in s to the whole
complex plane C. To construct such an order reduction, we consider the

function
(1 + CQ)% _ e% log(1+¢?)

for [im¢| < 1 and s € C, assuming that the branch of log(1+¢?) in the strip
lim¢| < 1is real at ¢ € Tg. Since 1 +¢% =1+ (R¢)% — (im ()% + 2i R¢im ¢,
the function (1 + CQ)% is well-defined and holomorphic in ¢, belonging to
the strip [im¢| < 1, and in s € C.

Lemma 3.2.1 For any R > 0 there exists a constant ¢, depending only
on R, such that
s Rs
L+ P2 <e(t+ )7
whenever [im (| < 1 and |ims| < R.
Proof. Indeed, since arg(1 + ¢?) < 7 for all ¢ in the strip [im(| < 1,
we get

I(1+¢))E| = o5 log [14¢2|— 22 arg(14¢?)
< eI+,
as desired.
O
Now, letting A denote the Laplace-Beltrami operator on X, we set
A*(2) = (1+ (z+iy)2 — A)2 (3.2.1)

for imz + 7| < 1 and s € C. A complex power is understood in the sense
of elliptic theory (cf. Seeley [See67]). This family is holomorphic in z and
s belonging to the mentioned strips.

Let us return to the symbols a(t, z) of operators (3.1.1) under consid-
eration. In what follows, we tacitly assume that these symbols are “suffi-
ciently” smooth up to ¢ = a and independent of ¢ close to the endpoint b

of T.
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Lemma 3.2.2 Let a(t,z) € C;5.(T, Y™ (X;T)), where m < 0. Suppose
that a(b—,z) = 0. Then

IFucalt, )l ey S e+ KA T +[2)%, jezy,

for z €' and ( € I'_g, 8 <0, with ¢ a constant depending only on j and
0.

Proof. The integral

1 g .
Ficalt,z) = o Te—@(t)a(t,z)dm(t)

S B do
= [ e ae og o)) 2
Jo 0
converges in the upper half-plane im{ > 0. Moreover, for im{ > 0, we
have
1
¢
where Fy, ,c(D7a(t, z)) is holomorphic for im ¢ > 0.
Thus, if ¢ € '_g with 8 < 0, then

Fy ca(t,z) = = Fi_(D’a(t,2)), j=12,...,

| Frcalt, 2)|l 2en2ex))

£5(C)

. _ R _ d@
<1¢]~ /0 o8 | Da(57 (10g 0), 2) 2200

- (3.2.2)

where C' € T is such that a(t, z) = 0 for ¢ > C. We now invoke the condition
that, for fixed t € T, the derivative D’a(67!(logp),z) is a parameter-
dependent pseudodifferential operator of order m < 0 on X. Hence it
follows that

m
2

ID7a(6 (log 0), 2) | cz2x)) < const (4,C) (1+2]%)

for all o € (0,e°©)] and 2z € T (cf. Shubin [Shu87]). Substituting this
estimate into (3.2.2s), we obtain the desired conclusion.

O
A slight change in the proof actually shows that if m < —3%, then

Fy .ca(t, z) is a Hilbert-Schmidt operator in L?(X) and its Hilbert-Schmidt
norm || - ||2 satisfies

n

_ mt
1Fsca(t, 2)]l2 < const (j, 8) (1+[CA) 2 (1+ =)=, jeZy, (323)

forall zeI'and ( € I'_g, 8 < 0.
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Finally, if m < —n, then the operator Fy ,ca(t, z) is of trace class in
L?(X) and its trace norm || - || satisfies an estimate
. _Z min .
IFycalt, )i < const (4, 3) (1+|C[2) % (1 + )™, jez,, (3:24)
whenever z€I"and ( € I'_g, 8 < 0.
Given any two symbols a(t, z) and p(t, z) in
Co (T, (X;T)), we set

loc

K-1
1
poalk =) E(a/az)kp(t, z)D*a(t,z), K=1,2,... (3.2.5)
k=0
(in this way we obtain what is known as the Leibniz product).
We will write an operator opj ., (a) simply op (a) when no confusion can

arise. With these notations the main result of this section is as follows.
Theorem 3.2.3 Let
a(t,z) € Co (T, v™(X;T)), m<0,

loc

p(t,z) e C2 (T, 7 (X;I), w<0,

loc

and let both a(t,z) and p(t,z) vanish at t = b. Then, for K large enough,
the operator R = op (p) op (a) —op (po a|k) as an operator in the space
HOY(C) is of trace class.

Proof. Choose a partition of unity (¢q, @i, ¢p) on 7' in such a way that

¢a=1 on (a,c), supp¢, C (a,c’);
supp ¢; C (¢, ¢);
¢op=1 on (c,b), suppey C (",b),

where a < ¢ < " < " < ¢ <b. It follows that the supports of ¢, and ¢
do not meet each other (see Fig. 3.2).
Then any operator op (a) may be represented as the sum

op(a) = 3" op(4,a),

the symbols ¢ (t) a(t, z) and ¢;(t) a(t, z) being holomorphic in z belonging
to the strip {z € C: |imz + 7| < e}. Hence it follows that the operator
Ry is the sum

R =) op(¢up) op (¢va) — op ((¢p) © (va)|), (3.2.6)

/J'7V

and we consider several cases according to the values of u, v.
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Fig. 3.2: The partition of unity (¢4, ¢;, ¢p) on T.

Case 1 (p1,v # a) In this case the supports of symbols ¢,p and ¢,a
are bounded away from ¢ = 0. The F-calculus of such operators on the
interval 7' may be reduced to the usual Fourier calculus of pseudodifferential
operators on the whole real axis by the change of variables ¢t = § !(r).
Indeed, equality (3.1.1) transforms to

Aus™0) = 5- / dz / T e o571, 2 u(6 () dr, 1 e R,

and the Leibniz product of two symbols becomes

K-1

poalic = 3 7(0/02)p(67 (1), 2) (3 0/0r)Fa(57 (1), 2),
k=0

which is the usual composition rule for Fourier pseudodifferential operators.
The symbols

Gu(6=1(r) p(871(r), 2),

$u(871(r)) a(61(r), )

have compact supports in r, so the theorem follows from the usual calculus
of pseudodifferential operators (cf. Fedosov [Fed74]).

Case 2 (i = b,v = a) In this case (¢,p) o (¢pa)|x = 0, for the supports
of ¢, and ¢ do not meet each other. Consequently, we need to prove that
the operator

op (¢vp) op (¢aa) = op (pp) da op (a)

is of trace class °.

5This is referred to as the pseudolocality property.
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The operator op (a) is bounded in H%?(C), for its order m is non-
positive, and hence it suffices to prove that op (¢pp) ¢4 belongs to trace
class. To this end, we represent it as a composition

HO7(C) B HOe () — HOY (), (3.2.7)
ntl

with some integer s > *7= and some € > 0, and show that both opera-
tors in (3.2.7) are Hilbert-Schmidt operators. The second operator is an
embedding.

The following lemma is a kind of the Rellich Embedding Theorem for
the spaces H*7(C).

Lemma 3.2.4 If s > ”T‘H and € > 0, then the embedding

when considered on the subspace of functions u € H*71¢(C) whose supports
belong to an interval (a, A] C T, is a Hilbert-Schmidt operator.

Proof. Suppose first u € C;2.(T,C%(X)) has a compact support in
the interval (a, A]. Since

A
‘Zj £i26(A) Fu(z)| = QL / ot2(6(A)=6(1)) Dju(t) dm(t)
T Ja
1 A .
o eB6(A)—8(1)) |D7u(t)|dm(t) for imz> -3,
T Ja

we deduce that e?**(4) Fu(z) is an entire function rapidly decreasing in each
half-plane im z > — (3, where 5 € R.

The norm of u(t) in the Sobolev space H*77¢(C) is equal to the L?>-norm
of A®(z) Fu(z) on the line I'_,_.. Here A®(2) is the order-reducing family
given by (3.2.1). The norm of u(t) in H%7(C) is equal to the L*-norm of
the restriction of Fu(z) to the line I'_,. Applying the Cauchy formula
to the function e*#%(4) Fu(z) in the half-plane im z > —y — €, we see that
the restrictions of Fu(z) to I'_,_ and I"_, are connected by the Cauchy
integral

F L[ Y ) 3.2.8
u(C) =5 S T u(z) dz, (3.2.8)
forel' .
Setting v = F:;_6 A®(z) Fu, we rewrite (3.2.8) in the form

C i-08(A)
Fu(¢) = —— /F GZT A=*(z) Fo(z)dz, (€T,
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This operator acts between L?-spaces on the lines I'_,_¢and I'_, and its
Hilbert-Schmidt norm is equal to the L?-norm of its Schwartz kernel

=5 7 A
z=¢
which is an operator-valued function.
For s > 7, we may estimate the Hilbert-Schmidt norm of the operator

A~%(2) in L*(X) by

—st

A () < 1+ (2 +in)? "2, z€T_e

(cf. (3.2.3)). Hence it follows that
o2¢6(A)
(RC — R2)? +

for ( €', and z € I'_,_¢. Integrating this over ¢ and Rz and using that
—s+ 2 < —1, we obtain that the L2-norm of K((, 2) is finite, whence the
lemma follows.

1K (¢, 213 < 5|1+ (R2 - ie)?| 52

(]

To prove that the operator P in (3.2.7) is a Hilbert-Schmidt operator,

we use the fact that the product ¢,(t) ¢4(t') vanishes on the diagonal ¢ = ¢'.
So, writing

ei(&(t)fé(t’))z _ (5(t) _ 6(t/))7K(_,L- 8/6Z)Kei(6(t)76(t’))z

for any K € Z4 and integrating by parts, we represent P as an integral
operator

Pu(t):2i dz/
T™Jr JrT

(=)= by )b (1) (i0/92)Kp(t, 2)

(6(t) —6(#)"

where v = v/§e~%u belongs to L*(T, L*(X)) if u € H%Y(C). The inclusion
Pu € H®'T¢(C) for a non-negative integer s means that, given any j =
0,1,...,s and any differential operator A; of order s — j on X, we have

Véle 0498 A DI Pu e LA(T, L*(X)).

& (e p(tat

This operator, when acting on v = V/6'e= "0, has the Schwartz kernel

K(t,t) = % /F )=+

(2 ZK ’
« 0] (0040 100y SO s,
(3.2.9)
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and we are going to estimate the L?-norm of this kernel. More precisely,
our objective is to prove that

[ o) dar < oo,
J JTXT

the integration being in fact over t € (¢, C) and ¢’ € (a, ).
To do this, we observe that

DI HEO-8EDz — i (i6O-5())=

and
et i(6(1)—6(t")) |_ 1(6(t)—6(t'))

for z € I'. Moreover,

| DI (60(0) 45 (10/0)%p(t, 2)) |, < const (j.C) (1+ D

the constant being independent of ¢ € [¢",C] (cf. (3.2.3)). Taking into
account that ¢p(t) ¢4 (t") vanishes in a neighborhood of the diagonal ¢t = ¢/,
we may estimate the Hilbert-Schmidt norm of the integrand in (3.2.9) as

n

(14 [z
(15 [0(t) — 6()E

w— K+§L—+s

7e(t 1+|Z|)f (4
< /6 6 1150 —3@)F o' (t) (3.2.10)

up to a constant, uniformly in z € T, (¢,¢') € (¢",C) x (a,¢”) and j < s.
If K is large enough, then the integral of (3.2.10) over z € I' converges
and we obtain

85'(t) e~ | 2|7

5 (t')

1
(1+16(t) —o6(¢)D¥

for all (t,¢') € (¢",C) x (a,c”). Thus, for the L?*norm of |K(¢,t)|2 we
obtain an estimate

[[ 1Ko aar
JJITXT

|K (t,t)|]2 < const (K) /8 (t) e <)

o'(t)

-C e—2eb(t) ,
< t(K do(t d6 t
= cons / / (1+8(t) — 6()])2E ()

6(C) 6(0” e 2er
= const ( / dr / dr’

50111 ) 1+|’f’—’l“,|)

< 090,
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provided that K > 1. This proves Case 2.

Case 3 (u, v = a,i) This is the most difficult case. Here we will make use
of the fact that both ¢, (t) p(¢, 2) and ¢, (t) a(t, z) are holomorphic functions
in the strip {z € C: |[imz + 7| < €}. To shorten notation, we omit the
factors ¢, (t) and ¢, (t) including them into p(t,z) and a(t, z).

For uw € C,.. (T,C*(X)), we have

comp

Au(t) = op(a)u(t)
1 :
= . ez q(t, 2) Fu(z) dz,
where I'_, may be any horizontal line with v — e < a < v+ . Given any
¢ € C with im ¢ > —a, it follows that

Fooodu = - (L / ei<<z>é<t>a<t,z>dm(t>) Fu(2)dz
: 2W JT_q 2W JT
1

= o - Fa(( — z,2z) Fu(z)dz

(cf. Lemma 3.2.2). In much the same way for F(PAu) we obtain

1 .
Fy ,wPAu = 2 ’/F_ﬁ d¢ Fp(w—(,¢) Fa(¢ — z,2) Fu(z)dz,

JT_q
(3.2.11)
with imw > —( > —a. Analysis similar to that in the proof of Lemma
3.2.2 shows that the integral in (3.2.11) converges.
Now, using the Taylor formula, we write
K—1

Fpw—¢,0) =)

k=0

| —

(8/02)"Fp(w —(,2) (¢ = 2)* + R Fp (¢ — ),

(3.2.12)

o

!

where

F(0/02)5p(w— ¢, 24 0(¢ — 2)) db.

(3.2.13)
By Lemma 1.4.1, the regular terms in (3.2.12) after substitution into (3.2.11)
and integration over ( give

11 K1
RicFp(w—(,( 2) = '/0 %

% (0/02)*Fp(w—(,2) (C— 2)P Fa(C — 2, 2) dC
Jr_g
== | F(0/05)p(w (.2) FD (¢~ =, 2) ¢
27 ~F_ﬁ

= Fu - ((0/02)"p(t,2) D¥aft,2)) |
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thus resulting in op (p o a|k)u. Hence the operator Ry corresponds to the
remainder term in (3.2.12), i.e.,

FtHwRKU:L/. d¢ ) RxFp(w—(,(,2) FDRa ((—2,2) Fu(z) dz.
I'p

(2m)% . Jr_a

(3.2.14)
If K > 1, then the function FD¥a ({ — z,2) is holomorphic in ¢ be-
longing to the half-plane im¢ > —a — 1, for a(67*(log o), 2) is C°° up to
0=10 (cf. (3.2.2)). Hence it follows that the integration line I'_3 may be
shifted arbitrarily within the strip |[im ¢ + v| < e. Thus, the assumption
imw > —f > —a« is needed no longer, and the only requirement remaining

is imw > —@. It will be convenient to take

—f <imw < —oa. (3.2.15)

To prove that (3.2.14) belongs to the trace class, we again represent it
as the composition of two Hilbert-Schmidt operators

HO(C) B HEHE(C) — HO(C)

for some s > ”T'H, which may be taken as an even integer, and some € > 0.

The second operator in this sequence is an embedding. By Lemma 3.2.4,
the weight gain € is necessary to have a Hilbert-Schmidt embedding. Now,
we choose a =7, imw =—y—€eand y+ €< < vy+ein (3.2.15).

Lemma 3.2.5 Suppose s is a non-negative even integer. Then the op-
erator
Ri : HY(C) — H*7H<(C)
is a Hilbert-Schmidt operator provided K is sufficiently large.
Proof. The assumption that s is an even integer serves only to simplify
the proof. Using representation (3.2.14) for Rg, we have to evaluate the

Hilbert-Schmidt norm of the operator between L?-spaces on the lines r_,
and I' ¢, whose Schwartz kernel is

1

(2m)? I s

To estimate the Hilbert-Schmidt norm of the integrand, we invoke
Lemma 3.2.2. Namely, we have

K(w,z) = A (w)RgFp(w— ¢, ¢, 2) FD®a (¢ — 2, 2)dC.

IA*(w) R Fp (w = ¢, ¢, 2) FDRa (¢ = 2, 2)]|2
< [[A*(w) R Fp (w — ¢, ¢, 2)|l2 [FD¥a (¢ — 2,2) | £(2(x))
< const (j) (14 |¢ = 2[*) % ||A*(w) R Fp (w = (,¢, 2)]|2
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with arbitrary large j.
In view of (3.2.13) our next goal is to evaluate the norm

|A°(w) F(9/02)"p (w — ¢, 2+ 6(¢ — 2))]|2- (3.2.16)

Denoting z 4+ 6(¢ — z) by v and putting s = 2N, N € Z,, we may rewrite
A®(w) by the binomial formula as

Aw) = (1+@+1)° = A= (i) + w+i))"
. ! ) '
= Y W AR v ) i),
ity ilglk!

Finally, applying inequality (3.2.3) for the operator A% (v) F(9/02)Xp (w—
¢,v) of order w — K + 2i yields

w—K+2i+%

1A% (0) F(9/02)5 p (w—C, v)ll2 < const (5) (1+|w—[2) % (14+]u]2) 2

provided @ — K + 2i + 5§ < 0, with j an arbitrary positive integer. This
enables us to derive a rough estimate of (3.2.16), namely

1A (w) F(8/02)5p (w — ¢, 2+ (¢ — 2))
< const (j,5,7) (1 + Jw —¢|) 7% (1 + [v]?)

w—K+s+ 1 s
7 (L4 Juf’)?
where @ — K + s + 3 is supposed to be negative.

We next write w as w = (w — ) + (( — z) + 2z and apply the binomial
formula to arrive at

(1+[wl*)? < const (s) (1+w = ()2 (1+[¢ =22 (1+2%)2.

These crude estimates result in the following estimate for the kernel K (w, )

-1

| K (w, z)||2 < const (i,],s,7) / df
JO

(1+]2P)2
J
2

: _ - d(3.2.17)
" ./r_,@ I+ fw—=(P)2A+[C— 221+ [z +0(C - 2))*)>

where i, j are arbitrary positive integers and k£ > 0 may be made larger in
magnitude at the expense of K.
The needed Hilbert-Schmidt norm is

/ dw/ 1K (w, )13 dz.

—y—e€ . —
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Taking 7 large enough, we may integrate over w € I'_,_ thus arriving at
the following estimate of the above integral

o ' (1+]21%)°
0 z .
.Ad Aﬂd.Aﬂ(r+m—zm%1+w+9@—zWWdQ

up to an unessential constant.
We first consider the region |( — z| < ‘—;' Then

1,
22k
(1+]2]2)*

1
(1+[¢—=[*)7
1

(1+[z+0(¢—2)]%)*

IN A

|

and
Iy s ¢
z v ~ o A%,
Jro, Jeer_gricai<lel (T4 12[2)F Jr_, (L4 |z[2)Fs

which is convergent for k large enough. On the other hand, for | —z| > ‘—’;',
we estimate

1
Az 6C—PF ="

and

. . 1 2\s
/ dz/ A+ ) )2 ¢
Jr, Jeer_pic—apzlzl (L4 1C—2[2)

50 )
g2/ (1—i—|z|2)sdz/ dd
Jr, J1

(14 (y = 0)? +92)

2

L 1 Sl )
< 9% / B / W
= Joo, AP Y Ja THo

which converges if j is large enough. It follows that the Hilbert-Schmidt
norm of Ry is finite.
O

To complete the proof, it remains to observe that the functions of the
type Riu are supported in a finite interval (0, A] C T because p o a|x
vanishes for ¢ close to b, independently of z. Thus, Lemma 3.2.4 may be
applied implying that R is of trace class.

Case 4 (u = a,v = b) Here we have a pseudolocality property similar
to Case 2, but the proof runs in a slightly different way. Again we have
(¢ap) o (Ppa)|x = 0, so we need to show that the operator op (¢4p) ¢pop (a)
is of trace class. As the symbol a(t, z) vanishes for ¢ close to the endpoint b
of T', we may assume that ¢, has a compact support in the interval T". Since
op (a) is bounded in H%7(C), it suffices to prove that op (¢.p) ¢» belongs to
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the trace class. But the multiplication operator v — ¢pu may be regarded
as an F-pseudodifferential operator with a holomorphic symbol, so we are
under the assumptions of Case 3. This proves the theorem.

O

3.3  Regularized trace of product

Given any two operators A = op (a) and P = op (p) with

a(t,2) € CRo(T, U™ (X;T)),  m <0,

loc

plt, z) € CX(T, 97 (X;T)), w@<0,

satisfying a(b—, z) = 0 and p(b—, z) = 0, we define the regularized trace of
the product PA by

trx PA =tr (PA —op(poalk)). (3.3.1)

Theorem 3.2.3 shows that the regularized trace of PA does exist if the
number K is sufficiently large.

Theorem 3.3.1 The reqularized trace of the product is independent of
the order, that is
tI‘K PA = tI‘K AP. (332)

Proof. We are going to consider several cases corresponding to those
listed in the proof of Theorem 3.2.3.

Case 1 (p,v # a) The assertion reduces to the theorem on the reg-
ularized trace of the product of Fourier pseudodifferential operators (cf.
Fedosov [Fed74]).

Case 2 (= b,v = a) or Case 4 (u = a,v = b) For P = op (¢,p) and
A = op(¢ya), we deduce by Theorem 3.2.3 that both PA and AP are of
trace class. Lidskii’'s Theorem now shows that the traces of PA and AP
coincide.

Case 3 (pu,v = a,i) Using (3.2.14) with o = v and —f < imw = —a
(cf. (3.2.15)), we get

tI‘K PA = tr RK

- (271r)2‘/1;ﬁdc‘ 1;_7tr Rk Fp(z—(,(,2) FD%q (¢ — 2,2)dz(3.3.3)

the second equality being a consequence of tr Rx = tr F,VRKF:#. The
function
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has a pole of the first order at ( = z (for p(6 1(logg), z) is smooth up
to o = 0). So, we may move the lines I'_, and I'_g within the strips
{z€C: |imz+v| <e} and {z € C: |im( + 7| < e}, provided that —f
remains smaller than —~.

Moreover, we may shift I'_g crossing I'_,, but then we must take into
account the residue at ( = z. It is equal to
= tr R F-Dp (0,2, z) FD¥a (0,z7) dz.

21 . F—’Y

By (3.2.13), we have
1
RKFDp (07272) = ﬁ FD(a/aZ)Kp (072)7

so the residue is equal to

1 ' 1 K K
i - trﬁFD((‘)/(?z) p(0,z) FD®*a(0,z)dz.

However, for K > 1, this integral vanishes because

FD%a(0,2) = /T %% DE Yot 2) dt

| =

= (DKfla(b—,z) - DKfla(a—&—,z))

O

Hence it follows that, for K > 1, integral (3.3.3) does not depend on the
position of the lines I'_, and I"_g within the strips {z € C: [imz+~| < ¢}
and {z € C: |im({ + | < e}. A similar assertion holds for the integral

Ly :
trg AP = ok '/F_ﬁ dg' - trRxFa(z— ¢, ¢ z) FDXp (¢ — 2,2) dz.
(3.3.4)

Our goal is to prove that (3.3.3) and (3.3.4) are equal. To this end, we
consider the families

as(t,z) = al(t, z)A(2),
ps(tvz) = p(t,z)AS(z),

where s is a complex parameter ranging in the half-strip
{s e C: Rs <0, |ims| < R},

R > 0. Let A; and Ps be the corresponding operators on the stretched
cone C. The estimates used in the proof of Theorem 3.2.3 show that both
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trg PsAg and trg AgPs are holomorphic functions of s belonging to the
above half-strip. Thus, it is sufficient to prove the equality

tl“K PSAS = tl“K ASPS

for Rs close to —oco
We are reduced to verifying (3.3.2) for operators A and P of sufficiently
large negative order. For this purpose, we write

—— RiFDp(:=(.C.2)
-1 K-1
B W(FDP 2 G0 ) g FD©/02)f <z—<,z><<—z>’“)
k=0
and then
__; . tr FDp (z — (,{) FDa (¢ — z,2)
trg PA = (271_)2 /1" g C r (C — Z)2 dz
21 1 [ [ 0 FD/00)"(z— (2)(C — 9)"FDa(C ~ 2.2)
d : " dz.
kZ CICG (C—2)? 2
(3.3.5)

Each summand in (3.3.5) makes sense if both a and p have large negative
orders and —(3 < —+ are fixed.

Interchanging the variables z and ( in the first integral and using the
equality tr F Dp F Da = tr F Da F Dp for trace class operators, we obtain

1 ' tr FDa (z — FD —

ol [ a [ EEDaC-GOFDRC-nd),
(2m)? Jr I'_p (C—2)

The remaining summands in the right-hand side of (3.3.5) may be trans-

formed as follows. We introduce the new coordinate v = z—( ranging along
the line I'_ 5, thus obtaining

/' dc tr FD(0/02)%p (z — (, 2) (C—Z)kFDa(C—z,Z)dZ

I_p I, (€ —2)?
ok [ Y tr (0/0z)*FDp (v, z) v8 FDa(—v,z) s
— (-1) /F_Wd/F dz.

(3.3.6)

V2
-

Now, integrating by parts with respect to z and permutting F Dp and F Dp
under the trace sign, we get

. . K B k
/ dv/ tr (0/0z)“F Da(—v,z) v FDp (U’z)dz
Tytp r

L2
-
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" " tr FD(0/0z)%a(z — (,2) (( —2)*FD — 2,7
-/ | /00— ) (- D ),
V= (= +8) et
" ' r z)¥a (z — (2 —z)k — 7,7
[ ] ED@OICHC N FDYC v,
Jr_, JT 4
(3.3.7)

the last equality being obtained by shifting both the lines of integration
towards the vector i(y — 3).

Summing up (3.3.6) and (3.3.7) for k = 0,1, ...
equality

, K —1, we arrive at the

1 / o trRxFDa(z — (,¢,z) FD%p (¢ — z,72)
(2m)? r-, Jrg (—z

This expression coincides with the corresponding expression (3.3.4) for
trg AP except that the lines I'_, and I'_g are interchanged. To complete
the proof it remains to note that, as we have seen, we may interchange I'_,
and I'_g not affecting the value of the integral.

trg PA = — dz.

O

It is worth pointing out that Theorem 3.3.1 remains valid for all oper-

ators A and P of zero order, whose symbols are equal to 1 for ¢ € T close
to the endpoint b of T'. Indeed, we can write

A=op(a)+1,
P=op(p)+1

with some symbols a(t, z) and p(t, z) vanishing for ¢ € T" close to b. Then,
an easy computation shows that

trk PA = trk op (p) op (a)7

trk AP = trk op(a)op (p),
so the desired conclusion follows from Theorem 3.3.1 applied to the opera-
tors op (a) and op (p).

3.4 Algebraic index

First we introduce an algebra of formal symbols on 7', define elliptic symbols
and introduce an algebraic index of elliptic elements. Then, constructing
a parametrix and applying the theorem on a regularized trace of product,
we prove that the analytical and algebraic indices coincide.

A formal symbol is a formal power series

a(t7 Z) = Z hjaj(ta Z),
=0
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where the coefficients a;(t,2) € C(T, ¥™3(X;T)), m < 0, satisfy the
following conditions:

o (3/02)% a;(t, 2) € CZ(T, ¥™ I X(X;T)) for all k = 0,1,.. ;

e a;(t,z) is “sufficiently” smooth up to ¢ = 0 in the sense that the
symbol a; (6§ 1(log p), ) is C* up to o = 0;

o for t € (C,b), ap(t, z) is independent of ¢ while a;(t,z) = 0if j > 0.

The powers of a formal parameter h serve for ordering the series terms.
Let us define the product o of two symbols by

|
poa= > h”?*ky (8/02)" pi(t, z) D*a(t, 2).
i,5,k=0 ’

It is easy to check that the formal symbols form an associative algebra
with the unit e(¢,z) = 1 consisting of the leading term only. We denote
this algebra by A.

Introduce a trace ideal Z in this algebra, consisting of those formal
symbols a(t, z) for which m < —n — 1 and all the components a;(t, 2)
vanish at the point ¢t = a and for ¢t € (C,b). A trace for a € T is defined by

o0 - 1 2 . .
tra = Z h! 1 (%> /Fdz /T tr aj(t,z) dm(t)
pan . .

This is a formal series with constant coefficients and the exponents of
h ranging from —1 to +oo.

Lemma 3.4.1 If one of the formal symbols p and a belongs to the ideal
Z, then
trpoa=traop.

Proof. Use integration by parts.
O
A symbol a € A is said to be elliptic if there exists a symbol p such
that both 1 —poa and 1 — a o p belong to 7.
Such a symbol p is called a (formal) parametriz of a. In particular, for
leading terms pg and ag we obtain

1—poayp € I,

| —ape € T (3.4.1)

The following construction is well-known (see for instance Fedosov [Fed95]).
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Lemma 3.4.2 Let there exist a function py(t, z) satisfying (3.4.1). Then,
for J large enough, the symbol

J )
p = ijo(l_Pooa)jopo

: 3.4.2
= poo Y j_o(1—aopy), (3.42)

the powers being understood with respect to the product o, is a parametrix
of a.
Proof. By direct calculation we have
1—poa = (l—pooa)o(J+1),
l—aop = (1 —aopO)O(J+1),

where the exponent o(J + 1) means the (J + 1)-th power with respect to
the product o. Clearly, the formal symbols on the right belong to 7 if J is

large enough.
O
Given any elliptic symbol a € A, we define the algebraic index of a by

inda=tr(l—poa)—tr(l—aop). (3.4.3)

By definition, inda is a formal power series in h with constant coef-
ficients. It turns out, however, that all the coefficients, with the possible
exception of a constant term, vanish, so we can treat it as a number. More-
over, the algebraic index is independent of the particular choice of the
formal parametrix p. All these properties are standard consequences of the
stability of the index.

Lemma 3.4.3 Suppose a(\) is a family of elliptic symbols in A and
p(A) is a family of formal parametrices for a(\). Then,

tr (1 —p(A) ca(A)) —tr (1 —a(A) o p(A))
is independent of A.

Proof. An easy computation shows that

(l1—=poa) =(1-poa)o(poa)+(l—poa)o(l-poa)
=((1-poa)o(poa)) —(1—poa)o(poa) —(poa)o(l—-poa),

where “prime” means the derivation in A. Thus,
tr (1—poa)’ = (d/d\) tr ((1—poa)o(poa))—2tr ((1—poa)o(p'oat+poa’)).
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Similarly,
tr (1—aop)’ = (d/d\) tr ((1—aop)o(aop))—2tr((1—aop)o(a’op+aop’)).
Since
tr((l1—-poa)o(poa)) =tr(po(l—aop)oa) =tr((l—-aop)o(aocp)),
tr((l1—-poa)o(p'oa)) =tr(ao(l—poa)op’) = tr((1-acp)o(acp)),
tr((1—poa)o(poa)) = tr(po(1—aop)oa’) = tr((1—aop)o(a op)),
both expressions tr (1 — poa)’ and tr (1 — ao p)’ coincide, and the lemma
follows.
U
In particular, given two parametrices p; and pz of the same elliptic
symbol a, we consider the linear homotopy p(\) = (1—=X)p1+Ap2, A € [0, 1],
which gives a family of parametrices. Then, Lemma 3.4.3 implies that the

index does not depend on the choice of a parametrix.
Now, for a real A > 0, we define a homomorphism H(\) : A — A by

H(MNa(t,z) = i Nha;(t,\z).
=0

It is a simple matter to see that H(\) is in fact a homomorphism of the
algebra A, i.e., H(A)(poa) = (H(\)p)o (H(Na).

Lemma 3.4.4 Ifa € I, then
trH(A)a = H()) tra,

where H(A) acts on formal series with constant coefficients by replacing h
by Ah.

Proof. The lemma follows by the change of variables z — . Indeed,

tr H\)a = i)\jhj_l (%)2 /;dz /T tra;(t, Az) dm(t)
= : :

o) ] ) 1 2 . .

= Z)\Jflhjfl <—> /dz/ tra;(t, z) dm(t)
= 2r) JrJr

= H(\) tra,

as required.
(]
We are now in a position to show that the algebraic index is actually
independent of the parameter h.
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Lemma 3.4.5 The formal series inda consists of the constant term
only.

Proof. For A > 0, we consider the family a(\) = H(\)a of elliptic
symbols. Then p(\) = H(\)p is a family of parametrices since

1—-HANpoH(Na = H\)(1—poa) € I,
1—-HMNaoHANp = HAN(1—-aop) € TI.

Hence

inda(A\) = trH(A\)(1—poa)—trH(A\)(1—aop)
= H()\) inda.

On the other hand, ind a(\) is independent of A, by Lemma 3.4.3, which
completes the proof.
[l

3.5 Analytical index

The following result has encountered so often that it can be attributed to
the mathematical folk-lore.

Lemma 3.5.1 A closed densely defined operator A : H° — H'! in
Hilbert spaces is Fredholm if and only if there exists an operator P: H' —
HO such that both 1—PA and 1— AP are operators of trace class. Moreover,

ind A = tr (1 — PA) — tr (1 — AP). (3.5.1)

Proof. Necessity. The equality dim coker A = d means that there are
elements f1, ..., fg such that each element f € H' can be uniquely written
in the form f = Au + 2?21 c¢;jfj, where u is orthogonal to ker A. The

operator A : (ker A)L @ C% — H!, given by

d
(u,c1,...,¢q) r—>Au+Zijja

J=1

is densely defined, closed and has the inverse operator defined on the whole
space H'. By the Open Mapping Theorem, the inverse operator A1 s
bounded. Hence it follows that there is a constant ¢ > 0 such that ||u||zo <
c||Aul| g1 for each u € D(A) N (ker A)*. Therefore, the range im A of A is
closed and so we have the orthogonal decomposition H* = ker A* @ im A,
where A* stands for the adjoint of A.
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JFrom the a priori estimate written as (A*Au,u)po < C% (u,u)go, we
deduce that the range of A* is closed. Thus, we have the orthogonal de-
composition H® = ker A ® im A*, whence the Fredholm property of A* is
obvious.

Now, we introduce an operator R by being A1 onim A and 0 on ker A*.
Then, R: H' — HY is a bounded operator and a trivial verification shows
that 1 — RA and 1 — AR are orthogonal projections onto ker A and ker A*
respectively.

Finally, from what has already been proved it follows that the spaces
coker A and ker A* are isomorphic, whence

indA = dimker A — dimker A*
= tr(l-RA)—tr(l1—-AR),

as required.

Sufficiency. Suppose P : H! — HY is a bounded operator, such that
both 1— PA and 1— AP are of trace class. Then, PA and AP are Fredholm
operators, because they differ from the identity operators by compact op-
erators. Since ker A C ker PA and im A D im AP, the Fredholm property
of A follows.

On the other hand, the equality (3.5.1) is fulfilled for the operator P = R
and is independent on the particular choice of P, for the operators (P—R)A
and A(P — R) are of trace class and have the same traces. This completes
the proof.

O

The operator P is called a parametriz (or regularizer) of the operator
A. This notation is sometimes used for the operators P with the weaker
property that both 1 — PA and 1 — AP are compact.

In the sequel, by the analytical index of A we mean the right-hand side
of (3.5.1). We are going to compare the analytical and algebraic indices.

Given an operator A = op(a) of the form (3.1.1), we may treat its
symbol a(t, z) as a formal symbol consisting of the leading term only.

Lemma 3.5.2 If A = op(a) is an elliptic operator of order 0, then there
exists a formal parametriz for a.

Proof. The ellipticity conditions listed in Definition 3.1.1 imply that
there exists a symbol pg(t, z) such that both 1 — pga and 1 — apg belong to
7.

Indeed, for ¢t € T close to the endpoints of T, a~! exists by defini-
tion. An important point to note here is the so-called spectral invariance
of the subalgebra of parameter-dependent elliptic operators on X. This
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implies that if a(t, z) is invertible within the (larger) algebra of pseudod-
ifferential operators on X, then it is also invertible within the subalge-
bra of parameter-dependent elliptic operators. Thus, there is a segment
[c,C] CC T such that a=1(t, z) is a parameter-dependent elliptic pseudod-
ifferential operator of order zero on X, for all ¢t € T away from [c, C].

For t € [c,C], the symbol a(t, z) is parameter-dependent elliptic, with
the parameter z € I". This implies, in particular, that a(¢, z) is also invert-
ible for |z| > R, provided R is large enough.

Asfort € [¢,C] and |z| < R, it follows from the parameter-dependent el-
lipticity of a(t, z) that this symbol has a parametrix r(t, 2) € C2 (T, ¥(X;T))
on X.

Now, we pick a C'® function ¢ on T x I" which is equal to 1 in a
neighborhood of the rectangle [¢, C] x [—R, R] and vanishes away from a
compact subset of T' x I". For (t,z) € T x I, define

po(t,z) = o(t, z) r(t,z) + (1 — ¢(t, 2)) ail(t, z). (3.5.2)

Then,
l—pia = ¢(1—ra) € I,
l—apy = ¢(1—ar) € I,
i.e., po satisfies (3.4.1). By Lemma 3.4.2, the function pg(¢, z) may serve as

a leading term of the formal parametrix given by (3.4.2). This proves the
lemma.
O

Thus, for elliptic operators A = op(a) of order zero, the algebraic index
is well-defined.

To compute the analytical index of A, we need an operator parametrix
P inverting A up to trace class operators. To this end, given a formal
symbol p(t,z) =372 hip;(t, z), we introduce the notation

J-1
p\J:ij, J=1,2,....
=0

Theorem 3.5.3 Let A = op(a) be an elliptic operator of order zero
and let p be a formal parametriz (3.4.2) of the symbol a. Then, for J large
enough, the operator P = op(p|s) is an operator parametriz of A and

indA = tr(l—PA)—tr(l—AP) (3.5.3)
= tr(l—poa)—tr(l—aop).

Proof. Denoting p|; by r and taking N sufficiently large, we obtain

1 —op(r) op(a) = op((1 —roa)lx)—(op(r)op(a) —op(roalx)),
1 —op(a) op(r) = op((1—aocr)lx)—(op(a)op(r) —op(aor|x)).
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By Theorems 3.2.3 and 3.3.1, the operators

op(r) op(a) — op(r o a|x),
op(a) op(r) — op(a o r|x)

are of trace class and their traces are equal.
On the other hand, an easy computation shows that

1
roaly = Z T (0/02) ijka,
l

poa|J = a/az psz

hence, for N > J, the difference op(r o a|n) — op(p o aly) is a finite sum of
terms

p ((9/07)" p; D¥a) .
with j+k>N,j<J—1land k< N—1. If N > n+ 1, then this operator
is of trace class since its order is less then —n — 1 and its symbol vanishes

for t € T away from the segment [c, C].
The same is true for op(aor|x) — op(ao p|y), which is the sum of

op ((0/07)" a D*p;)
with j+k>N,j<J—1land k<N —1.

Moreover, the traces of such operators are equal. Indeed, integrating
by parts yields

/. dz / tr <(8/8Z)kpj(t, z) D¥a(t, z)) dm(t)
JI JT

_ /F dz /T tr ((0/02)* a(t,7) D*py(1,) ) dn(o).
Thus,

tr(1—PA)—tr(1—AP) = trop(l—roa)|y —trop(l—aor)|x
— trop(1—poa)ly— trop(l—aop)|;
— tw(—poa)y—tr(l—aop),

which is precisely the algebraic index.
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3.6 Topological index

Following Fedosov [Fed74], we introduce yet another algebra which allows
one to simplify significantly various calculations with non-commutative dif-
ferential forms.

We will use a real variable 7 instead of 2z = 7 +4y. An element a of our
new algebra Ais an operator-valued non-homogeneous differential form of
even degrees on 1" x R. Thus,

a(t,7) = ag(t,7) + ai(t, 7)dt A dr, (3.6.1)

where ag(t,7) and a1(t,7) 3are pseudodifferential operators on X of non-
positive orders.
A product 6 of two elements p,a € A is defined by

péa:p/\a—l—%dp/\da.

One immediately checks that this product is associative.

Any function a(t,7) € Cpo.(T,¥™(X;I')), m < 0, may be considered as
an element of A consisting of O-component only. Thus, for functions a and
p we have three products:

e pa is the usual point-wise operator product of functions;

e poa=pa+h (0/0T)pDa+...is a product in A as formal symbols;
and

e péa = pa + %dp Ada is a product in A.

We may also consider the powers of a function a with respect to any of
these products, using the notations a’, a® and % to distinguish the three
possibilities.

One can verify a simple rule to pass from the o-product to the 6-product
of functions:

o feep the terms of degree < 1 in h, then alternate the derivations 0/0T

and D, and then write dt A dt instead of h 5%(1‘/).

This rule remains true for any number of factors ajo...0a; and a16...0a;.

Similarly to Z we introduce a trace ideal 7 in A. It consists of forms
(3.6.1) where ag and a; are operators of order m < —n — 1 with regard for
a parameter 7 € R, vanishing at the point ¢ = a and for t € (C,b). For
ael , we define a trace by

1 .
tra = —// tra
2 JTxR

1 77
= — // traq, dt Adr,
2 ) Jrxr
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the orientation of T' X R being given by the form dt A dr.

The trace property tr pda = tr adp is obviously satisfied if either a or p
belongs to 7.

When using this definition of trace, we have the following formula, of
which the right-hand side will be referred to as the topological index.

Theorem 3.6.1 For any J > 1, we have
ind A = tr (1 — ppéa)°I*+) — tr (1 — adp)°UHY), (3.6.2)
where pg s the leading term of the parametriz of a.

Proof. We begin with the algebraic index formula (3.5.3) taking

J

p = Y (I—pyoa) op
§=0
J .
= poo Y (1—aopg),
j=0
with J large enough. Then
l1—poa = (1—pyoa)*D,
l—aop = (1—aopy)P°U*D,
whence
ind A = tr (1 — pg o a)°UtY —tr (1 — aopg)°UtD). (3.6.3)

According to Lemma 3.4.5, we need to extract the constant term in
(3.6.3). It follows that we may calculate both (1 — pg o a)°/+D and (1 —
a opo)o(‘”l) keeping merely the terms of degree < 1 in h.

We have

l—ppoa=1—poa—h(0/0T)pgDa— ...,

“dots” meaning the terms of higher degree in h. By induction, one easily
arrives at the equality

(1 —pooa)’/™ = (1 - pga)’*!
J

~h [ 31— poa)? (8/0r)p Da (1 — poa)’
j=0

— > (1=poa)! (8/07)(1 = poa) (1 = poa)’ D(1 = poa) (1 — poa)”
it jtk—=J—1

+ ... (3.6.4)
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The sum }; ;7 1(-) on the right of (3.6.4) may be written as

<~

> (9/07)(1 - poa)! D(1 = poa)’ (3.6.5)
7=0

or

J
> (1= poa)? (8/07)(1 = poa) D(1 — ppa)” 7.
=0

Using “integration by parts”, we can transform the latter expression to the
form

J
D ) (1 - poa)’ (8/07)(1 = poa) (1 — poa)’
7=0

D(1 — poa)? (9/07)(1 — poa) (1 — poa)’ 7

|
.
i Mu
o

J
Z (1 —poa)! D(8/07)(1 — poa) (1 — poa)’™.  (3.6.6)

If J > 1, all the written terms belong to the trace ideal 7 for they
contain a factor 1 — pga € 7 or its derivatives.

Let us now write down the constant term of the trace of (1—pgoa)°/+1.
We represent the second sum in the right-hand side of (3.6.4) as the half-
sum of expressions (3.6.5) and (3.6.6). We may drop the first sum in (3.6.6)
for the complete derivative in ¢ vanish under integration. Then, permutting
cyclically the factors under the trace sign, we obtain

Opg Oa 0?
— J — — —
o ,//mR ( J+1) (1=poa) (aT ot atar(p0“)>

J
1 ;0 0 0 .
—Z - I = (1— _ J=j
2 < (1—poa)’ 5 —(1—poa) — 5 —(1—poa) 57 (1 poa)> (1—poa) dtdr.
Since
Odpg Oa 0? 10pgOa  10pgOa 1 %*pg 1 0%

or 9t 9ir Y =55 5 " 2ot o 20i0r" " 2P0y

and

Opy Oa  Opg Oa
<67 ot ot ar> di ndr
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= —dpg N da,
0 0 0 0
<E(1—Poa) 875(1 poa) — 8t(1 poa)’ a—(l—Poa)> dt NdT
—d(1—poa)’ A d(1—poa),

we get, for the constant term of tr (1 — pg o a)O(J+1), the expression

i /]
2mi TxR 2

x tr ((J—i—l) (1—poa)’dpo A da — i:od(l—poa)j A d(l—poa)(l—poa)‘]_j>

0?pg 0%a
- . J
27m //TX]R 2tr < (J+1) (1—poa) <at87a+poat87>>dtd7.

(3.6.7)

A similar expression can be written for the constant term of the trace
of(1—ao pO)O(J+1) by interchanging a and pg. Note that

d*po d*po d*po
tr <(1 poa) e a) tr <a (1—poa) 8t87‘> tr <(1 apo)’ a 6t67‘> ,
d%a d%a d%a
— J = — J = — J
tr <(1 poa)” po 8t8¢> tr <p0 (1—apo) 87&87) tr <(1 apo) pTEE po) .

Hence it follows that the last integral in (3.6.7) does not change under
permutation of a and pg. Thus, taking the difference of (3.6.7) and the
corresponding expression obtained by interchanging a and pg, we find

indA = — // 1
27T1 TxR 2

x( ((J+1)(1 poa)‘]dpo/\da—Zd(l —poa)! A d(1—poa) (1—poa)’

7=0

((J+1)(1 apo)Jda/\dpo—Z:()d(l apo)? A d(1—apg) (1—apg) )
8)

(3.6.

Taking into account the rule for passing from the o-product to the 6-
product, one easily recognizes formula (3.6.2) in (3.6.8). In particular, we
obtain that the right-hand side of (3.6.8) or (3.6.2) is independent of J,
provided J is large enough.
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Using the é-product, we prove now that (3.6.2) is valid for J > 1.
Indeed,

tr (]. - poéa)a(J+1) —tr (]. - aépo)a(‘]—‘rl)
= (tr (1 — ppda)®’ —tr (1 — aépo)a‘])
— (tr (1 — poda)®’8(poda) — tr (1 — aépo)é“’é(aépo)> .
However, by the associativity of the é-product, we have
tr (1 — poda)®/8(poda) = trped(1 — adpy)®’sa
= tr(1— adpy)®’8(adpy)

for J > 1. The last equality is due to the fact that (1 — adpg)®’ € 7 for
J > 1, and hence a cyclic permutation of factors under the trace sign is
possible. The proof is complete.

O
For J =1, formula (3.6.8) becomes

indA = L // tr ((1—poa)dpo A da) — tr ((1—app)da A dpg)
2mi JTxR
for

trd(1—poa) ANd(1—poa) = trd(l—apo) A d(1—apop)
= 0.

Integrating by parts in the first summand yields

// tr ((1—poa)dpg Ada) = — // tr (d(1—poa) A poda)
J JTxR J JTXR
= // tr (dpg A apoda + poda N poda) .
J JTXR

On the other hand, the second summand may be transformed as follows:
—tr ((1—apo)da A dpg) = tr (dpo A (1—apg)da) .
So, (3.6.8) for J =1 gives formula (3.1.3).
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