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Abstract

The present article is devoted to the initial-boundary value problems with
the so called nonlocal conditions, where, in contrast to classical initial-boundary
value problems, there is given a certain relation between the boundary meanings of
unknown function and its inherent ones. On the example of string oscillation and
telegraph equations there are studied different types of nonlocal problems, proved
existence and uniqueness theorems and given algorithms for direct construction of
solutions. The mentioned problems could be interpreted as problems with boun-
dary control, when maintenance of a certain link between boundary and inherent
meanings of the unknown function is requested.

In order to solve the above problems we use the method of reflected wave in the
case of string oscillation equation, and the case of telegraph equation is reduced
to Volterra type integral equations. The proof of uniqueness theorems are basicly
based on the theory of characteristics.

1 Introduction

Nonlocal problems arise while mathematical modelling of different processes
in physics, ecology, chemistry, biology and other fields [14]-[19]. The above
mentioned problems are very important from the point of their practical
application in solving mathematical problems of the mechanic of solid body.
They allow to control stress-strain state of body and therefore, from a
certain point, are similar to the control problems, and particularly, to those
of exact controlability [13].

It must be pointed out that the theoretical study of nonlocal problems
is connected with the great difficulties. Too many things are expected to be
done in this direction, though a lot of interesting works are already devoted
to these issues [1]-[12]. Naturally, arises a question: what prevents us from
solving nonlocal problems even in the case of linear three-dimensional equa-
tions of the theory of elasticity? First of all, here usually it is impossible to
apply traditional approach for proving uniqueness theorem, since nonlocal
conditions contain inherent points of the region, and obtaining integral of
energy, none of the members become zero in homogeneous nonlocal condi-
tions on the boundary. Even in the simplest case it is obvious that direct
application of the method of singular integral equations does not give a
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result. Here does not even work the method of functional analysis which
considers the proof of coerciveness on the basis of Korn’s inequality with
the following application of Lax-Milgram’s theorem. This is the reason for
existing only separate results.

First, a certain class, particularly the class of three dimensional nonlo-
cal problems, was formulated and studied in the article [1]. Further, in the
works [4, 5] the problem stated in [1] was called Bitsadze-Samarskii prob-
lem and resolution methods were suggested for the such type problems in
the case of rather general elliptic equations. In the work [6] there were con-
sidered boundary conditions, similar to those of Bitsadze-Samarskii ones,
for the equations of shell and elasticity theory. Under rather strict con-
ditions there is proved uniqueness of the solution of the nonlocal problem
for the three dimensional models of the elasticity theory. The stated non-
local problems was effectively solved in the case of round plates for the
Kirchhoff model. Later, in the works [17, 19] were suggested interesting
generalizations of Bitsadze-Samarskii conditions.

As was already mentioned, investigation of nonlocal problems in the
mechanics of solid body for general mathematical models is rather difficult.
Therefore, we limit ourselves by considering simple models, especially as the
issues of existence and uniqueness of the solution are not studied previously.
But it should be mentioned that the methods applied herein can be used
even for more general nonlocal problems.

Secs. 2 and 3 of the present work are devoted to the investigation of
one-dimensional problem of the mechanic of solid medium with different
nonlocal boundary conditions. More precisely, in Sec. 2 there is considered
string oscillation equation with the classical initial and discrete nonlocal
conditions, which represent the generalization of Bitsadze-Samarskii con-
ditions. There we prove the theorem of existence and uniqueness of the
solution, which can be constructed directly using algorithms given ibidem.
In Sec. 3 there is considered the telegraph equation. As in the case of
string oscillation equation there is studied nonlocal problem with discrete
nonlocal conditions. Finally, in Sec. 4 we state the general theorem of
uniqueness for multidimensional nonlocal problem with discrete nonlocal
conditions.

2 The nonlocal problem for string oscillation equation

As we mentioned in the introduction, we study rather general nonlocal
problem, state the theorem of existence and uniqueness and give an algo-
rithm for direct construction of the solution. Main tools for finding the
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solution are the method of a reflected wave and properties of the solution
on characteristics.
Consider nonlocal problem for the equation of string oscillation

*u  O%*u
—_— = — l t<T 2.1
52 = 922 O<az<l, 0<t<T, (2.1)
with the classical initial conditions
U(JJ,O) = (,0($),
0<ax<I, (2.2)

ut(x,()) = ¢(9C)a

and nonlocal boundary conditions

Q()u(0,6) + B0 SH0,0) = 3 al (ules(t), ) + 1 1),

~
Il
—

0<t<T, (23)
Y(®)u(l,t) + G(t)% (1,1) =D W (#)u(n;(8),t) + g(¢),

=1

where a, 3,7,0, f,g,a*(t),b’(t) (i = 1,...,m; j = 1,...,n) are prescribed
functions, &(t), n;j(t) (¢ = 1,m; j = 1,n) are sliding points of the string
(0,1) which define nonlocal condition, i.e. if all a*,b’ are zero, then we get
classical initial-boundary value problem. The following theorem is true.

Theorem 2.1. Assume that the following conditions are in force:

(i) f,9,,8,7,0,a",00 € C*[0,T](i = 1,m; j = 1,n), ¢ € C?[0,1],
b€ C0,1), a(h)B(t) £ 0, 1(8)6(t) £0, 0<i<T;

(ii) &,mj € C?[0,T), 0 < &(t),nj(t) <, when t € [0,T], i =1,...,m,
g=1..mn;

(iii) each of the functions (3(t), 8(t) either does not equal to zero for any
t € [0,77], or is equal to zero for all ¢. Then nonlocal problem (2.1)-(2.3)
has unique solution w(x,t), which is twice continuously differentiable on
the set D = {0 < 2 <, 0 <t < T}, satisfies the equation (2.1) and the
conditions (2.2), (2.3).

Proof. Note, that if the solution of the problem (2.1)-(2.3) is found,
then we get some functions on the ends of the string

U(O, t) = /Ll(t)u
0<t<T, (2.4)

u(lv t) = MQ(t)a

and then u(z,t) is the solution of classical Cauchy-Dirichlet problem for the
equation (2.1) with the initial and boundary conditions (2.2), (2.4), which
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has unique solution

x4+t
w(z,t) = O(x+1t)+ P(x—1t) +1 / ¥(a)da
2 2,
z—1
" "
l
- )\fsi(r?))\l sin(A(l — z)) cos At — )\éosii))\l sin Az cos At
(2.5)
—i—Zﬁl(t— 2nl —x) — Zﬁl(t— 2nl + x)
n=0 n=1
+> pa(t— 2n+ D+ a) =Y fia(t— (2n+ 1)l — z),
n=0 n=0
where A = H—Ll’ ®(x), U(x) represent respectively the functions ¢(x) +
iz "
l
)\fsi(r?.))\l sin(A\(I — z)) '—i— )\;0 Siil))\l sin Az, ¢ (x) expanded on the whole axle
retaining smoothness in such a way, that
D)+ B(—2) = 20(0), V() + U(~) = 20(0),
O(l—a)+P(l+x)=20(), VI—2)+ T +2x)=2V(),
and the function
¢"(0) ¢"(0)
fi1 (t) — lgl(t) - (90(0) + \2 ) - @b(O)t + 22 COs )\tu Z > 8 (26)
s <

and analogiously for fio(t), where 0 is changed by {. Thus, any solution
of the problem (2.1)-(2.3) can be expressed by the form (2.5). If we find
twice continuously differentiable functions puq(t), p2(t), then the problem
is solved. Consequently, due to this fact under the solution of the prob-
lem (2.1)-(2.3) sometimes we mean the couple {p1, pu2}. To make further
calculations easier we bring in the following notation:

T+t

F(x,t) = CID(x—l—t)—;—CID(x—t) +% / U(o)da

x—1

" (0)

"
l
BV, sin(A(l — z)) cos A\t — v () sin \x cos \t.
sin

A2 sin A\l
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Taking into account nonlocal conditions (2.3) we get, that the prob-
lem (2.1)-(2.3) is solved, if we find the couple {u1, po}, which satisfies the
equations

a(t)pr (t) + B(0) (Fu(0,8) = F1(t) =2 iy (t — 2nl)
n=1

23 (e — 2n+ 1)) = S a6 (b)) + £(8),
n=0 i=
1 (2.7)
V() p2(t) + 08 (Fo(l, 1) + () +2 ) fi(t — 2nl)
n=1
—2 3 (= @+ 1) = S Buln(6),1) + g(¢),
n=0 j=1

when 0 <t <T.

It should be mentioned, that from the above discussions it follows
that resolution of the problem is completely reduced to finding of the pair
{p1, po}, i.e. existence and uniqueness of the solution u(x,t) and the pair
{p1, 2} are equivalent.

Since the functions &;(t) and n;(t) (¢ = 1,...,m; j = 1,...,n) are conti-
nuous on [0,7] and for all ¢ € [0,7] they belong to the interval (0,[), then
there exist

g1 = min fz (t), 51 = max fi(t),
0<t<T 0<t<T
1<:<m 1<:<m

€9 = min n;i(t), &= max n;(t),
0<t<T 0<t<T
1<j<n 1<j<n

where each of the numbers e1,e9,£71,&2 belongs to (0,1). Let’s denote by
t* = min{ey,e2,l — €1,1 — €2} and then all the curves &, n; are located in
the stripe [t*,1 —t*] x [0, T7.

Taking (2.7) into account and the definition of fi1(¢), fia(t), we get, that
if the pair {p1, uo} is the solution of the problem, then it has to satisfy the

69



AMI Vol.2, 1997 D. G. Gordeziani, G. A. Avalishvili

following equalities

a(t)p (t) — B()p(t)

Il
NJE
S
%
—
o~
S—
o
—
e
L
—
o~
S—
~
S—
+
=
—
~
N~—

0<t<t*

)

V() F(n;(t),) + (1),

I
M=

V() p2(t) + 0(8)5(t)

where f(t), §(t) are prescribed continuously differentiable functions. Con-
sequently, for defining 11 (¢) and pa(t) we get an ordinary differential equa-
tions of the first order. Assume, that one of the conditions of the point (iii)
in the theorem 2.1 is true, i.e. 3(t) # 0, when ¢ € [0,T]. Then taking into
account compatibility condition j1(0) = ¢(0), for 0 < ¢ < ¢* we obtain

b a(n) - t _ Tals) s (I 4 ' -
i (t) = eg Eok o(0) — /e Ofﬁ(s d (Z (T)F(&(T),T) . f(7)> ir
0

Q

N

2" 5m 5(7)

In the second case, pq(t) can be directly expressed by the functions
standing in the right part of the equation. Here, correspondent functions
f(t) or §(t) will be twice continuously differentiable. In both cases, as
we see, p1(t) is equal to twice continuously differentiable function, when
0 <t < t*. Therefore, in the time period [0, t*] we can define the unknown
pair of functions {p1, po} and, using the formula (2.5), get the solution of
the problem (2.1)-(2.3) in this time interval.

Now, take for the initial moment t*, i.e. we bring in a new time variable
7 = t—t*. Then the nonlocal problem for the function v(x, 7) = u(x, 7 +t*)
considered in [0,] x [0,¢*] gets the following form

Urr = Uge, O0<az<Il, 0<7T<t¥, (2.8)
0
a(r +#)0(0,7) + BT + ) 52(0,7)
= d (TG +17),7) + f(T+ 1),
=1 0< 7 <t (29)

YT+t )l T)+0(T + t*)%(l, T)

V(T + to(ni(t +t%),7) + g(T + ),

I
NE

1

<.
Il

where the initial conditions are
v(z,0) = u(z,t*),
0<x<lI. (2.10)
vr(z,0) = wy(x, t%),
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As in the previous case we can find the solution of the nonlocal problem
(2.8)-(2.10) on [0,t*] and it will be an expansion of u(x,t) on the time
interval [t*,2t*]. Let’s show now that obtained u(x,t) is the solution of the
problem (2.1)-(2.3), when 0 < ¢t < 2t*. Obviously, it’s sufficient to check
twice continuously differentiability of w(x,t) in the moment ¢ = ¢*. Since
u(zx,t) is the solution of (2.1)-(2.3) on [0,¢*], then it is twice continuously
differentiable by x, when ¢t = t*, and

lim  wu(x,t) =u(x,t*) =v(x,0) = lim wu(x,t),
t—t*—0— t—t*—0t

and consequently u(z,t) is continuous in the point ¢t*. Analogically,

u(x, t* + A) —u(x, t*)

li = ,
Jm T (o)
Cou(z, A —u(x, t
= 'UT(-Tg 0) = AILHOEF ( A) ( )’
lm  w(x,t) = u(z, t*) = v (x,0) =  lim  w(z,t).
t—t*—0— t—t*—0+

Therefore, us(z,t) exists and is continuous for t = ¢*.

In the same way we can check that wy(x,t) is continuous for ¢ = ¢*.
Consequently w(z,t) is the solution of the nonlocal problem (2.1)-(2.3),
when 0 <t < 2¢*.

Applying the same method we find w(z,t) on the intervals [0, nt*]

(n = 2,3,...) up to the moment 7. Therefore we can find u(z,t) for the
whole time interval [0,77], i.e. the solution of the problem (2.1)-(2.3) exists,
is unique and expressed through the given functions and their integrals. O

The stated problem can be interpreted as the problem of exact con-
trolability by the boundary conditions, where the boundary meanings of
unknown function are required to differ from the linear combination of its
meanings in certain points by a given beforehand number. This type of
problems arise in building constructions, generators, etc.

3 Nonlocal problem for telegraph equation

As in the case of string oscillation equation we consider nonlocal problem
for telegraph equation. However, in contrast to the case of string oscillation,
here the main method of constructing solution is the application of a special
type potential, which allows to reduce stated nonlocal problem to integral
equations. Here we also use corresponding notations of the Sec. 2.
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Consider the nonlocal problem for telegraph equation

0? 0?
8—;;—8—Z+cu O<z<l, 0<t<T, (3.1)

with homogeneous initial conditions
u(z,0) = u(z,0) =0, 0<az<], (3.2)

and nonlocal boundary conditions

a(t)u(0,t) + B(t) => d(thu t) + f(t),
= 0<t<T, (3.3

V(u(l,t) +6(t) Zbg ), 1) +9(t),

where 0 # ¢ = const is real or imaginary number, and u(x,t) is unknown
function, twice continuously differentiable on [0,1] x [0,7], satisfying the
equation (3.1) and conditions (3.2), (3.3). The following theorem is true.

Theorem 3.1. If all the conditions of the Theorem 2.1 are in force,
then nonlocal problem (3.1)-(3.3) has unique solution.

Proof. Note that if we find the solution wu(x,t) of the problem (3.1)-
(3.3), then it gets certain meanings on the boundary and, consequently, is
the solution of the telegraph equation with classical Dirichlet conditions on
the boundary. In this case we simply can show that

u(x,t) = % / o(T)I(er/(t — 1) — 22)dT
’ (3.4)
t—Il+x
+ (e (t—71)2 = (I—2x)2)dr|,
I

where I(z) = Z ﬁ (g)zs, @, € C?0,T], ¢(1) =w(r) =0, for 7 <0
s=0 \°

and if the expression under the square root is negative, then we consider
imaginary meaning of the root. Therefore the solution of the problem
(3.1)-(3.3) is uniquely defined by the functions ¢, and due to this fact
resolution of the stated problem is reduced to finding of functions ¢(¢) and
¥ (t). In order to make our reasoning more clear we consider the case when
B(t) #0, 6(t) # 0 for 0 <t < T in (3.3). Though in the other cases they
are slightly different.
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Substituting formula (3.4) into first condition (3.3) we get an equation
relatively to ¢(t) and ) (t)

aawm¢y+mw§§m¢>=§jfaﬂ—wa—&&»

dr + 9t =1+ &(t))

V(E—7)2 = £2t)
t—I4Ei (1)
* 7 gkt 1 1L YA kst UtV )
/ m—ﬂ —0-&0)»

Analogous equation follows from the second boundary condition (3.3). As
in the proof of the Theorem 2.1 we consider the same time interval [0, ¢*]
for which we have

—a(t)e(t) + 500 — 8) [ oA =ar = o),
’ (3.5)
0 + 06 - 0) [T ar = o),
0
From (3.5) denoting w = I(c(t — 7)), we get, that
o(t) = //gO(T)C]l(C(S—T des—i-/g(—:
0 0 0
f(r)
+ [ oy
- 0, o<t (36)
= W(T)el(e(s — 7))dTds — 1
.0// ({97’
g(T
+/W
0

The equations (3.6) are almost the same Volterra type integral equa-
tions. Due to this fact we consider them only for ¢(t). Let’s bring in the
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operator

t s t
://cp Yeli(e(s — ) des—F/ﬁ
: B(7)
0 0
Then the first equation (3.6) takes the following form
=Ko+ [, (3.7)
¢
where f*(¢ /é—dT and obviously f* € C?[0,t*]. Let’s prove now that

K is the compact operator from C|0,t*] to C[0,t*]. Consider bounded set
X C C[0,t*] and prove that KX is supercompact in C[0,t*]. In order to
do so, according to Arcella’s theorem, we have to check uniform boundness
and uniform continuity of K X. Indeed, if we denote a norm in CI0,¢*] by
|1, we get

K¢l < T*Chllell + TCollell,

at) : .
——=1, and since ||¢|| is bounded, K X
S Il

where C] = max|c[1(t)|, C2 = max
[0,£%] [0,t%]

is uniformly bounded. Also

(Ke)(t) — () m-'7/s Pely(e(s — 7)) dnm]ﬁ(_:

<tz = 0|(TCell + Callell)

and, consequently, K X is uniformly continuous. This fact proves that K
is compact.

Taking the latter into account for the equation (3.7) the theorems of
Fredholm are true. If we prove, that the homogeneous equation has trivial
solution, then the equation (3.7) has unique solution. Let’s consider the
homogeneous equation

=Ko

t s t
//go Yeli(e(s —T) des—i-/aT
(7)
0 0

Let’s show that the following estimation is true:

or

—

Q

t2n "
< n n_- . .
[9(8)] < CF gyl + O el (33)
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Indeed, (3.8) is obvious for n = 1. Assume that the above estimation is
true for n and let it show for n + 1.

e <1 [ [lemlards+ s [ lotriar
0 0 0

3 Cn+1 t. s TQTL " t. n

<l [ [ Gmdrds+Cy el [ Srar
0 0 0

_ Cn+1 t2n+2 1 tn+1

= OpH el + 3 el

Therefore the inequality (3.8) is true for any n. For n — co we get
e(t) =0, t €0,t*].

So, the first equation (3.6) has unique continuous solution. However the
form of the equation provides twice continuously differentiability of ¢ on
[0,¢*]. Analogically we can check existence and uniqueness of the function
1 (t), which allows to conclude that the pair {¢, 9} is defined single-valued
and, consequently, the solution of the problem (3.1)-(3.3) is also single-
valued defined on [0, t*].

Now, consider the time interval [t*,2t*]. Here we also get equations
similar to (3.6), where f and g are changed by combinations of functions
@(t) and 1(t), already defined on [0, t*], since t* < &;(t),n;(t) <1 —t* and
consequently for ¢* < ¢ < 2t*

2 — 1 <t—&(t) <t*, 2" —1<t—1+n;(t) <t

U — 1<t —1+&(t) <t*, 26 — 1 < t—n;(t) <t

Repeating above reasoning for these equations we will be able to deter-
mine @(t) and v (t) for t € [t*,2t*]. It is not difficult to check that ¢(t) and
¥ (t) functions found in that way, will be twice continuously differentiable
on [0, 2t*]. Therefore u(x,t) solution of the stated problem will be uniquely
found on [0, 2t*]. Analogically we can define u(x,t) on [0,nt*],n € N up to
the moment 7". Consequently, for any ¢ € [0,7] the solution (3.1)-(3.3) is
uniquely defined. O

75



AMI Vol.2, 1997 D. G. Gordeziani, G. A. Avalishvili

4  Nonlocal problem for multidimensional medium oscil-
lation equation.

As was pointed out in the introduction we encounter significant difficul-
ties in resolving nonlocal problems when the number of space variables
increases. Though, it should be mentioned that nevertheless the theorem
of uniqueness is correct under rather general assumptions.

Consider bounded region Q@ C R", n > 2, = = (x1,...,x,) € R, where
I" is the boundary of Q. Let Q;(t) (¢ = 1,...,m) be the subsets of Q, where
each Q;(t) is strictly included into 2. Assume that I';(¢) boundaries of §2;(#)
are diffeomorphic images of I, i.e. 2 (t) = I;(x,t), where 29 € T;(t),z €
T, I;(+, t) is diffeomorphism, I' and I'; are Lyapunov surfaces for all i = 1, m.

Let L be uniformly elliptic operator

L= 3 anlo) g+ 3 ble) g+ ).

where a;x, b;, ¢ (¢ < 0) are rather smooth prescribed functions.
Consider nonlocal problem for hyperbolic equation
0%u

@—Lu:f(ar,t), (x,t) € Qr = Q2 x (0,T), (4.1)

with classical initial conditions

u(x,0) = up(x),
x €, (4.2)
ug(2,0) = uq(x),

and nonlocal boundary conditions
u(w,t) =Y pilz, hu(@®,t) + g(x,1), (x,t) € Sp =T x [0,T], (4.3)
i=1

where all the prescribed functions and the regions, where the equation is
considered, are such that the theory of characteristics is applicable, and
u(x,t) is unknown function which is the classical solution of the equation
(4.1) satisfying, at the same time, conditions (4.2) and (4.3). Under such
assumptions the following theorem is correct.

Theorem 4.1. The nonlocal problem (4.1)-(4.3) has no more than one
regular solution.

Proof. Assume that there exist two u(z,t) and v(z,t) solutions of the
problem. Then obviously their difference w(z,t) = u(x,t) — v(x,t) is the

76



Investigation of the Nonlocal Initial-Boundary Value ...  AMI Vol.2, 1997

solution of the homogeneous equation (4.1) under homogeneous initial and
nonlocal conditions. Note, that

pilt) = dist(T(1),T) = inf_p(Ii(x,1).)

continuously depends on ¢

|pi(to + At) — pi(to)| = |dist(Ti(to + At),I') — dist(T;(to), )|
< dist(T;(to + At),[i(tg)) < inlﬁ p(Li(x, to), Ii(x, tg + At)) — 0, At — 0,
ze

since I;(x,t) is continuous function.

Taking into account that each €2;(¢) is the proper subset of Q, we get
that for all ¢ € [0,7], pi(t) > 0, and consequently, there exists such a
§ > 0, that p;(t) > 6, t € [0,T] (i = 1,m). Therefore, for any point (z,t)
belonging to some curvilinear cylinder €;(¢), the sphere with center x of a
radius 6 will entirely be in a "horizontal” cut Q x {¢}.

Uniform ellipticness of the operator L allows to inscribe as well as to
overdraw cones respectively inside and outside of a characteristic conoid,
defined by the operator L. Tangents of angles between the axle and rulings
of the cones we denote by a and § (o < ) and call them spreads of the
cones.

Note that since w(x,0) = w(z,0) = 0, = € , then w(x,t) equals
to zero in any point (z,t) for which the base of the characteristic conoid,
passing through this point, lies in 2. Consider now an interval 0 < ¢ < t*,
where t* = §/3. Then for any point (Z,t) belonging to the curvilinear
cylinder Q;(¢) (i = 1,...,m), base of the cone, with a top in (Z,1), and axle
parallel to the axle ¢t and with spread (3, lies in Q, as {3 < t*3=§/3 -5 =
5. Therefore, w(z,t) = 0, i.e. in any point of the curvilinear cylinders
Q)i = 1,m), w(x,t) = 0, for 0 < ¢t < t*. Taking into account that
w(x, t) satisfies the homogeneous nonlocal boundary conditions, we obtain

w(z,t) =0, (x,t) € S,

and therefore w(x,t) is the solution of the homogeneous equation (4.1)
under homogeneous initial and boundary conditions. Since classical initial-
boundary value problem has unique solution, then

w(z,t) =0, 0<t<t™

Now take for an initial moment of time t*, i.e. change the variable

7 =t —t*. Then the function w*(z,7) = w(x, T + t*) satisfies the following
problem

wi, = Lw*, (x,7) € Qr_¢=, (4.4)
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w*(x,0) = wi(z,0) =0, =€, (4.5)
m
w*(mu 7-) = sz(xv T+ t*)w*(IZ(mu T+ t*)v 7-)7 (CU, T) € ST—t*- (46)
i=1
Repeating the proceeding reasoning we get, that w*(x,7) =0, 0 < 7 <
t*, and consequently, w(z,t) = 0, 0 < ¢t < 2t*. Analogically, w(x,t) = 0

for t € [0,nt*], n € N up to the moment T'. So, w(x,t) =0, (z,t) € Qr,
which means, that u(x,t) = v(z,t) and the solution is unique. O
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