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Abstract

In this paper, two mathematical models for investigating wave generation in
reservoirs are considered: the first one is based on the small amplitude wave theory
and the second one is based on the shallow water theory. For numerical solving
the system of equations obtained, a completely conservative two-layerd finite dif-
ference scheme is constructed. Finally, the results of physical and mathematical
simulations are compared.
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Introduction

Our time has regretfully been marked by a great number of technogenic
catastrophes. The need for preventing them calls for the investigation of
many natural phenomena that, up until now, have been all but ignored by
engineers.

Among such phenomena is that of wave generation in reservoirs due
to large landslides. These waves (let us call them ”landslide-waves”) can
attain a reasonable height and provoke the overflow of the reservior’s pro-
tective structures, damaging them, along with constructions occuring lower
levels, flooding structures in the vicinity of the shore line, etc. This real
threat is emphasised by the large number of past cases (it’s enough to re-
call the waves provoked by landslides in the reservoirs Latuya Bay, Vaiont,
ete.[1,2]).

The existence of numerous large reservoirs, together with those under
construction, in mountainous and semi-mountainous regions with complex
geologic and seismic conditions, makes it important to investigate these
phenomena and develop techniques for predicting wave parameters.

These investigations can be carred out using methods based on both
physical and mathematical models. The former is time-consuming and
expensive, as physical models have to be specially constructed for each
case, whether it be a reservoir or its dam site. It is important to bear in
mind that, at the present time, the geometric and kinematic parameters of
the landslide process usually can not be predicted with sufficient accuracy,
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S0 it is necessary to use a wide range of parameters during research, which
is rather complicated in case of physical models. For this reason, there is
an increasingly urgent need for the construction of mathematical models
and for carrying out of a series of numerical experiments.

The process of generating and developing landslide-waves can be math-
ematically described by means of models based on:
a) the small amplitude wave theory,
b) the shallow water theory.

1  Mathematical Model Based on the Small Amplitude
Wave Theory

This model is constructed on the assumption that water fraction velocities
u(x,y,t) and u(z,y,t), the elevation of free surface z = n(z,y,t) and their
derivatives are small quantities. We also assume that the liquid is ideal,
uniform and incompressible, and its movement is vortexless. These condi-
tions ensure the existence of simple velocity potential ¢(z,y, z,t) in every
singly connected domain €2, for which the following base equation of small
amplitude wave theory - the Laplace equation - is true:
Pp 0P 9P

B = 922 oy? T 0. (1.1)

Likewise, we assume that the liquid has a movable or immovable boundary
surface S, which separates it from every other medium and with has the
property that every fraction on this surface stays on it. Such boundary
surfaces have impremable bottoms and free water surfaces. On the solid
impremeable boundary the following condition is given:

g—i = Uy, (1.2)
where n =the initial normal vector of the given section of water area bound-
ary S, v =the projection of velocity of the given side of the boundary in
the direction of normal n.

On the surface of water, for z = n(z,y,t) ~ 0 the following conditions
will be fulfilled:
dp _ I _ Oy

where g is acceleration of gravity.

If we schematise the reservior in the rectangle or parallelepiped rectangle
mode (plane and space cases, respectively), according to equations (1.1)-
(1.3) we obtain the analytical solution of the boundary value problem. In

21



AMI Vol.2, 1997 F. Criado, T. Guelesiani, et all

this case, the landslide process is simulated in the following way: as a result
of a horizontal landslide culminating in a wave process on the water surface,
the displacement of liquid with intensity v, which determines the volume
of liquid discharged at the end face of the wall (in the plane case) or at the
corresponding board site (in the space case) during a time span 0 < ¢ < tg,
is equal to the given volume of the landslide mass.

The solution to the problem can be obtained using Laplace’s integral
transformation by various ¢ and Furier’s finite cosines - transformation by
variables z,y - and in the three-dimentional case the following is given [3]:

n(x,y,t)

hIH
O\h

t
/v (z,y,t)dxdzdt+
0 (1.4)
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L =lenght, Ly =width and h =depth of reservoir.

Formula (1.4) allows us to estimate the wave amplitude comparatively
quickly, which is extremely important for engineers, above all in the case
of the problem’s multivariant performance.

In this case, the velocity of the water at the board site and its discharge
time can be determined on the basis of any simplified assumptions on the
effect of landslides on water.

The problem of the influence of water on its movement arises on account
of the former’s dynamic interaction with the latter. Therefore, it is nec-
essary to find a combined solution to equations (1.1)-(1.3) and equations
describing the landslide movement so to determine the latter’s kinematic
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characteristics more precisely. The numerical solution to this problem in
a two-dimentional application was discussed in paper [4]. With the aim of
investigating this case, we consider the most important section of the real
reservoir and landslide medium. The landslide movement is described by
the following system of equations:

dl dvg F,+Fo+F,+F,

at _ _ 1.
at bt T M ’ (1.5)

where vy =landslide velocity, as a whole, [(¢) =the direction of the landslide
from the moment it began to move until moment ¢, M =landslide mass.

Fy = M; sin a gravitational force, My =mass of the slide part lying over
the board slope, a =board slope angle.

Foy = k(Mycosa+ (M — My)) + cLg opposing force, k =opposing coef-
ficient, ¢ =bond coefficient, Ly =slide length.

F, = —gpanG—kgpngdG hydrodynamic force, p = g—i+y surplus, in

comparison with the atmospheric pressure of water, G and dG, respectively,
slide bound converted to water and its infinitely small element (integral is
taken over the wet side of the slide bound),y = ordinate of site G, n,
and n, = normal projection of initial normal vector, respectively, on the
direction of the movement and perpendicularly to it

F, =k [ y'dG’ force, conditioned by blowing pressure and activated at

G

the foot of the slide and perpendicular to the slope, G’ = foot of the slide,
being below the surface of the water.

The force producing the slide can be given as follows:

F(a) = Fi(a) + aFs(a),

where a = slide acceleration

F1 = FO - /fganG— k /§2ngdG’ FQ = — /gl’anG— k /é.lno'dG’

Fo=Fy+ Fy+ Fp — /yanG—k/yngdG,
G G

& and & =functions that satisfy the Laplace equation with the following
boundary conditions on the surface of the water

and on moving solid bound of domain engaged by the water

o0 ve 000 09 o
an " an T “ozom Yoy on’ ¥ =T,
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m =initial vector, parallel to v, m =initial vector, perpendicular to an
infinitely small section of the solid bound of domaim.

Acceleration a is determined by equation
F(a) _ Fi(a) Fy(a)

M M T

a =

By solving the system of differential equations (1.1)-(1.3), combined
with (1.5), using net method and some standard numerical method, we can
obtain the unknown functions (the initial data) for carrying out calculations
being determined by formula (1.4), which describes the wave generation
process in a reservoir schematised in the parallelepiped rectangle mode.

2  Mathematical Model Based on the Shallow Water The-
ory

This model is based on a rough theory which springs from the assumption
that the distribution of pressure in liquid obeys hydrostatic laws.

If we consider the ideal liquid and the potential stream, then the water
plane movement can be described by three-dimentional Eulerian equations.
If we average these equations by vertical axis z with the condition of im-
permeability on the bottom

where h is the water surface mark and on free surface of water

%—&—u%—l—vg—Z—w:O and p=0 for z=mn,

this gives us the main equation - Saint-Venant equation - of the shallow

water theory.
Ju Ju Ju on
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After introducing the mass produced on the init. of area p = p(n + h)
and the force produced on the init. of surface p = ¢g/2pp?, this equation
becomes

Op  Opu  Opv
ot ox y
opu  Opu?  Opuv 8]9

ot | ox oy oz’ (2.7)
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=0,

The sound velocity, determined as , is the local velocity of small per-
turbations relatively spreading through the water.
The initial conditions are

u(ac,y,O):O, v(x7y70):07 p(x7y70):p0(xvy)

So as to determine fall-wave parameters, the slide is simulated by mov-
ing the bound site at a given velocity. As a boundary condition, the velocity
of the reservoir board site during time span 0 < ¢ < tq is therefore given in
the following way:

u(z,y,t) =uo, v(z,y,y) =vo, (v,y)€S,

where S is the slide section.
For solving the system of equation (2.2), the following completely con-
servative two-layer difference scheme [5,6]

0.5 .(0.5
pt+j( ) .](0):07
lz 2y

Jie + ( i (U))g + (Jéo"r))u(g)) +p(0 Vmwe+ fi+gF, (28)

jau + (31> (U))ﬁ (j§°'5)v(")) +p§ %) = oy + fo+ gF,

. . g
J1=pu, Jo=pv, p=po(n+h)), p—2—_p,
2 _ 2
pph uzluzg|, w2 = pph uglvgl,
fi=-— “f<u FoR)2 = (2 2)12
p p

is constructed. Here, py =water density, p =viscosity coefficient, f; and
fo =friction forces in directions x and y, respectively, wi and we =viscosity
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forces in directions x and y, respectively, F1 = Fy(z) and F, = Fy(x) =functions
describing the bottom relief of the reservoir.
The initial conditions are

u(ih,jh,0) =0, w(ih,jh,0) =0, p(ih,jh,0) = po(ih,jh,0).

For boundary conditions on the fictitious knots grid, where velocity and
”density” functions are determined by the following formulae

Up—1 = 20y — U1, V=1 = 20, — V41, Pi—1 = Pi+1-

Here, [ =boundary knot, [ — 1 =the nearest functions knot, [ + 1 =the
nearest preboundary knot.

An interval process may be used for solving these non-linear differential
equations.

The choice of the definite friction computation model is determined by
utility. It is usefull to take into consideration the computations can be
easily made for the wide set of probable values of landslide parameters by
means of computational dependence (1.4), which allows us to reread their
less favorable combination. If, together with this, the maximum water in-
crease near the dam is less then the excess of its crest above the back water
level, the problem may be considered as solved. Otherwise, it might also
be necessary to make more time-consuming calculations along the lines of
the shallow water theory, which will allow us estimate the influence of the
reservoir’s real shape. It is also necessary to bear in mind that in some
cases the results of the computations condition the need for physical exper-
iments.

3  Comparison of the Results of Physical and Mathemat-
ical Simulations.

In order to control analytical and calculated dependencies, as well as re-
vealing the applicability limits of mathematical models, the results obtained
from the said models were compared with each other and with those of the
labour experiments.

Because the analytical dependencies were obtained with the assumption
that the domain occupied by the water is rectangle parallelepiped, in which
the slide is simulated by the vertical fall of the solid mass and has the same
rectangle parallelepiped form, the comparison was first carried out for the
domain with the corresponding form.
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As the slide solid is pulled down at the butt-end of the rectangle par-
allelepiped chute, it generates a wave that spreads along the chute, which,
with a sufficient amount of accuracy, can be considered to be the plane wave
corresponding to the solution obtained from the two-dimensional boundary
problem. The comparison of the results obtained from the Baronin and
Noda experiments [3],[7] are given below.

In the Baronin experiment, the chute had a rectangle cross-section of
width L1 = 0.3m and length L = 3m. The depth of the water was H =
0.202m. A slide solid mass of thickness D = 0.101m,0.20Pm, 0.404m was
pulled along the whole width of the chute during a time span of ty =
0.375sec,0.25sec and 0.6sec. Simulating the dam, the vertical wall was
located opposite the "slide” butt-end The wave amplitude was measured
at different cross-sections of the chute by means of wave-meters situated
over the butt-end.

The results of the above experiment were compared with those of cal-
culations obtained by simulating the fall of a slide solid mass at a given
velocity at the butt- end. Both mathematical models adequately described
the wave generation process and their results coincided well with experi-
mental results when D/H < 1.0. This is clearly shown in fig. 1.

In the case of a slide at the butt-end [7], Noda obtained a theoretical
solution to the wave generation two-dimensional problem in a half-infinity
domain. To verify this solution, an experiment using a chute of length
L = 32m and a rectangle parallelepiped box with a thickness D = 7.5sm
(for different depths) was carried out, in which the slide solid mass fell
vertically at the butt-end along the whole width L; = 0.3m during a time
span tg. The wave amplitude was measured at a definite distance from the
butt-end. The depth was H = 0.61m, 0.305m,0.229m. The wave amplitude
was observed at distance x = 20H,20H and 26.7H.

The comparison of the results of physical and mathematical simulation
shows that the model based on the small amplitude wave theory describes
the wave generation process just as well as the model based on the shallow
water theory. The results of the computations coincide with the experi-
mental results, especially in the case of the former, i.e. the main wave This
comparison is shown in fig. 2.

The experiments for investigating waves generated by the lateral fall of
slide solids mass, simulating a landslide on the shore of the reservoir,were
conducted by authors [8]. A slide solid, length b = 1.6m and thickness
D = 1.5sm, fell vertically at the middle of lateral wall of a chute rectangle
of length L = 7,53m and width L; = 1.3m. Experiments were conducted
for different depths of water and falling times. The waves generated were
measured by wave-meters, located in the corners of the vertical walls at the
butt-end of the chute (dam-site). The wave generation process for a water
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depth of H = 8sm and a time span of ¢ty = 0.2sec is shown in fig. 3: (a)
wave formation at ¢t = 1sec, (b) wave spreading along the chute at ¢t = 4sec.
On the basis of comparison experimental and calculation data the limits of
application the theoretical methods were determined [9].

Methods developed for investigating the wave generation process were
used for carrying out the numerical investigation of the for the Getic reser-
voir in Armenia (fig. 4). An unstable mass of volcanogenic rock, with a
total volume of 5 — 6min.m3, is located on the right shore of the reser-
voir. Geological investigations have shown that as much as 1mln.m? of
rock could fall into the water at a fall-line with an extension of 2b = 100m,
approximately xg = 960m away from the dam. After determination the
probable velocity and duration of the fall, calculations were made in a two-
dimensional application using the aforementioned methods [4].

It is not surprising that the calculations based on the shallow water the-
ory, taking into consideration the lateral bay of the reservoir, local widen-
ing near the dam, bottom relief and the back of the dam (fig. 4), gave
a smaller maximal amplitude wave (rise of the water level) near the dam
7 = 6.3m than the calculations made using the small amplitude wave theory
n = 8.3m, which were used in the case of the schemed rectangle reservoir.

Fig.1
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Fig.2

Fig.3
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Fig.4
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